¹⁸⁰**Pb** *α* decay **1999To11,1996To08**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 107, 791 (2006)	15-Sep-2005

Parent: ¹⁸⁰Pb: E=0.0; J^{π}=0⁺; T_{1/2}=4.4 ms *11*; Q(α)=7415 *15*; % α decay=100.0 T_{1/2}(¹⁸⁰Pb) from 1999To11.

1999To11: 90 Zr(92 Mo,2n), E=410 MeV; Detector: double sided Si strip detector; measured E α , T_{1/2}; deduced α -branching ratio. 1996To08: 144 Sm(40 Ca,4n),E=230 MeV; detector: an array of six Si detector; measured E α , I α ; deduced evidence for 180 Pb.

 α/β branchings have not been experimentally determined. The gross- β calculations of 1973Ta30 yield $T_{1/2}(\beta^+)=1-4$ s from which

 β branching can be calculated as 0.1-0.4%. Any β branching is taken as negligible here and $\%\alpha$ =100 is adopted. Additional information 1.

Added-in-Proof: 1997Mo25 calculated the β partial half-life as T_{1/2}(β)=618.8 ms which corresponds to a β branching of 0.65%.

¹⁷⁶Hg Levels

E(level)	J^{π}
0.0	0^{+}

 α radiations

Eα	E(level)	HF [†]	Comments
7250 15	0.0	1.0	 Eα: From 1999To11. Other value: 7230 40 (1996To08). Only one α group could be observed; due to the small production cross section and short half-life. Even the main α group was very weak in the spectrum. Therefore, any α less than half of the main α could not have been seen; besides, any α's to excited states would be obscured in the spectrum of 1996To08 by strong α's from other nuclei. Iα: the first 2⁺ state in ¹⁷⁶Hg is at 613 keV. By requiring the hindrance factor to be >1 for an α transition to this level, its intensity should be Iα<1%. The calculated r₀ parameter retains the same value for Iα(7250)>96%. The computed r₀ parameter of 1.53 4 is consistent with the expected value of 1.52 2 from the r₀ systematics.

[†] $r_0(^{176}\text{Hg})=1.53 \ 4 \ (1998\text{Ak04}).$