¹⁷⁶Yb(pol t,α) **1979Lo09**

	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 102, 719 (2004)	1-Jun-2004

E=17 MeV with polarization of \approx 78% target: 96.43% enriched ¹⁷⁶Yb measured α spectra with Q3D magnetic spectrometer. Typical energy resolution FWHM=24 keV.

Measured angular distribution and analyzing powers in the angular range $\theta = 10^{\circ} - 50^{\circ}$. Relative uncertainties are $\approx 5\%$; absolute uncertainties are about 20%.

¹⁷⁵Tm Levels

E(level)	$\mathrm{J}^{\pi \dagger}$	T _{1/2}	S [‡]	Comments
≈0 [#]	(1/2 ⁺ & 3/2 ⁺)	15.2 min 5	≤0.70	 Probable doublet comprised of J=1/2 and J=3/2 members of the 1/2[411] rotational band. A small energy spacing between these levels is expected for typical values of the decoupling parameter in this region. S: the upper limit in spectroscopic factor assumes all the cross section is due to the 3/2 member of the band. J^π: g.s. 1/2⁺ assignment from systematics in ^{169, 171}Tm T_{1/2}: from Adopted Levels.
≈126 [#]	(5/2+ & 7/2+)		≤0.72	 Probable doublet. As for the ground state, the 5/2 and 7/2 members of the band are expected to lie close to each other. S: for J=7/2. S=0.12 for J=5/2.
353 <mark>#</mark>	$(9/2^+)$		0.11	
439 [@]	$(7/2^{-})$		0.081	
532 [@]	$(9/2^{-})$		0.13	
611 <mark>&</mark>	$(3/2^+)$		0.11	
645 [@]	$(11/2^{-})$		2.1	
672 <mark>&</mark>	$(5/2^+)$		0.72	
756 <mark>&</mark>	$(7/2^+)$		0.18	
870 <mark>&</mark>	$(9/2^+)$		0.11	
941	(15/2 ⁻)			Tentative assignment: 15/2 ⁻ , 7/2[523]. Level is probably populated through a multistep process.
1004 1072				
1146	$(7/2^+, 3/2^+)$		0.16	S: for J=7/2. S=0.072 for J=3/2.
1212	$(7/2^{-}, 5/2^{+})$		0.065	S: for J=7/2. S=0.066 for J=5/2.
1305 1423 <mark>4</mark>	$(1/2^+, 3/2^+)$		0.096	S: for $J = 1/2$. S=0.04/ for $J = 3/2$.
1425 1495 1583	$(7/2^{-}, 5/2^{+})$		0.048	S: for J=7/2. S=0.056 for J=5/2.
1706 ^b 1744	$(5/2^+)$		0.11	
1810 <mark>b</mark>	$(7/2^+)$		0.42	
1916 ^C	$(7/2^{-})$		0.24	
1985	$(5/2^+)$		0.16	Energy systematics of the $1/2[420]$ Nilsson orbital in Ho isotopes suggests a $5/2^+, 1/2[420]$ assignment.
2013 2056				
2095 ^c 2216 2310	(11/2 ⁻)		1.3	

[†] Comparison with DWBA calculations permitted spin and parity assignments of several rotational bands. Weakly populated band

¹⁷⁶**Yb(pol t,** α) 1979Lo09 (continued)

¹⁷⁵Tm Levels (continued)

members assignments rely on the Nilsson model and are based on energy patterns and comparison with neighboring nuclei.

[‡] Experimental values of nuclear structure factors are given by $(1/(2N))(d\sigma/d\Omega(exp)/d\sigma/d\Omega(DWBA))$ with N=23.

 $\frac{1}{2}(411)$ band.

^(a) 7/2(523) band. ^(b) 3/2(411) band.

^{*a*} 5/2(402) band: tentative.

 b 5/2(413) band.

^c 5/2(532) band.