## <sup>150</sup>Sm(<sup>29</sup>Si,4nγ) **1990Fa02**

|                 | Hi                     | istory              |                        |
|-----------------|------------------------|---------------------|------------------------|
| Туре            | Author                 | Citation            | Literature Cutoff Date |
| Full Evaluation | M. Shamsuzzoha Basunia | NDS 102, 719 (2004) | 1-Jun-2004             |

Enriched target. Projectile:  $E(^{28}Si)=147$  MeV. Measured  $E\gamma$ ,  $I\gamma$ ,  $\gamma\gamma$  coin,  $\gamma(\theta)$  at  $0^{\circ}$ ,  $33^{\circ}$ ,  $57^{\circ}$ , and  $90^{\circ}$ . Multiplicity filter.

## <sup>175</sup>Os Levels

| E(level) <sup>†</sup>        | $J^{\pi \ddagger}$  | T <sub>1/2</sub> | Comments                                                                                                                                                                                                              |
|------------------------------|---------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0#                         | (5/2 <sup>-</sup> ) | 1.4 min <i>1</i> | $J^{\pi}$ : The assignment of the ground-state configuration to 5/2[512] is based on the values of $g_{K}$ - $g_{R}$ determined from crossover-cascade branching ratios. $T_{1/2}$ : From 1972Be89.                   |
| 90.32 <sup>#</sup> 14        | $(7/2^{-})$         |                  | ., -                                                                                                                                                                                                                  |
| 102.3 <sup>@</sup> 4         | $(1/2^{-})$         |                  |                                                                                                                                                                                                                       |
| 105.7 <sup>&amp;</sup> 2     | (7/2 <sup>+</sup> ) | 10 ns 2          | $T_{1/2}$ : from $\gamma\gamma(t)$ .<br>J <sup><math>\pi</math></sup> : 105.7 $\gamma$ (E1) and assigned from 7/2[633] Nilsson configuration as such bands present throughout the odd Os isotopes at low spin levels. |
| 147.8 <sup>&amp;</sup> 3     | $(9/2^+)$           |                  |                                                                                                                                                                                                                       |
| 175.60 <sup>@</sup> 17       | $(3/2^{-})$         |                  |                                                                                                                                                                                                                       |
| 193.76 <sup>@</sup> 15       | $(5/2^{-})$         |                  |                                                                                                                                                                                                                       |
| 207.56 <sup>#</sup> 15       | $(9/2^{-})$         |                  |                                                                                                                                                                                                                       |
| 218.3 <sup>&amp;</sup> 3     | $(11/2^+)$          |                  |                                                                                                                                                                                                                       |
| 279.1 <sup>&amp;</sup> 3     | $(13/2^+)$          |                  |                                                                                                                                                                                                                       |
| 346.56 <sup>#</sup> 17       | $(11/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 355.86 <sup>@</sup> 22       | $(7/2^{-})$         |                  |                                                                                                                                                                                                                       |
| 381.56 <sup>@</sup> 21       | $(9/2^{-})$         |                  |                                                                                                                                                                                                                       |
| 443.7 <sup>&amp;</sup> 3     | $(15/2^+)$          |                  |                                                                                                                                                                                                                       |
| 504.77 <sup>#</sup> 19       | $(13/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 523.9 <sup>&amp;</sup> 3     | $(17/2^+)$          |                  |                                                                                                                                                                                                                       |
| 614.8 <sup>@</sup> 3         | $(11/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 644.51 <sup>@</sup> 25       | $(13/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 679.89 <sup>#</sup> 21       | $(15/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 783.9 <sup>&amp;</sup> 3     | $(19/2^+)$          |                  |                                                                                                                                                                                                                       |
| 869.25 <sup>#</sup> 22       | $(17/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 890.0 <sup>&amp;</sup> 3     | $(21/2^+)$          |                  |                                                                                                                                                                                                                       |
| 940.4 <sup>@</sup> 3         | $(15/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 970.2 <sup>@</sup> 3         | $(17/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1072.87 <sup>#</sup> 23      | $(19/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1210.9 3                     | $(23/2^+)$          |                  |                                                                                                                                                                                                                       |
| 1288.79 <sup>#</sup> 24      | $(21/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1327.0 <sup><b>@</b></sup> 4 | $(19/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1350.6 4                     | $(25/2^+)$          |                  |                                                                                                                                                                                                                       |
| 1352.0 <sup><i>w</i></sup> 3 | $(21/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1517.65 <sup>#</sup> 25      | $(23/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1708.2 <sup><i>x</i></sup> 4 | $(27/2^+)$          |                  |                                                                                                                                                                                                                       |
| 1757.1 <sup>#</sup> 3        | $(25/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1770.9 4                     | $(23/2^{-})$        |                  |                                                                                                                                                                                                                       |
| 1785.9 <sup>w</sup> 3        | $(25/2^{-})$        |                  |                                                                                                                                                                                                                       |

1990Fa02 (continued)

 $^{150}$ Sm( $^{29}$ Si,4n $\gamma$ )

|                             |              |                           |              | <sup>175</sup> C             | s Levels (a      | continued)                  | _            |
|-----------------------------|--------------|---------------------------|--------------|------------------------------|------------------|-----------------------------|--------------|
| E(level) <sup>†</sup>       | Jπ‡          | E(level) <sup>†</sup>     | Jπ‡          | E(level) <sup>†</sup>        | J <sup>π</sup> ‡ | E(level) <sup>†</sup>       | Jπ‡          |
| 1881.4 <sup>&amp;</sup> 4   | $(29/2^+)$   | 2815.8 <sup>@</sup> 5     | $(31/2^{-})$ | 3741.1 <sup><b>#</b></sup> 4 | (39/2-)          | 4771.8? <sup>#</sup> 7      | $(45/2^{-})$ |
| 2010.9 <sup>#</sup> 3       | $(27/2^{-})$ | 2833.3 <sup>#</sup> 3     | $(33/2^{-})$ | 3814.5 <mark>&amp;</mark> 5  | $(41/2^+)$       | 5064.9 <sup>&amp;</sup> 7   | $(47/2^+)$   |
| 2265.7 <sup>@</sup> 3       | $(29/2^{-})$ | 2886.1 <sup>&amp;</sup> 4 | $(35/2^+)$   | 3992.5 <sup>@</sup> 5        | $(41/2^{-})$     | 5115.2 <sup>#</sup> 7       | $(47/2^{-})$ |
| 2267.9 <mark>&amp;</mark> 4 | $(31/2^+)$   | 3116.2 <sup>&amp;</sup> 4 | $(37/2^+)$   | 4059.1 <sup>@</sup> 6        | (39/2-)          | 5352.5 <mark>&amp;</mark> 7 | $(49/2^+)$   |
| 2268.2 <sup>@</sup> 5       | $(27/2^{-})$ | 3125.8 <sup>#</sup> 4     | $(35/2^{-})$ | 4085.8 <sup>#</sup> 4        | $(41/2^{-})$     | 5391.2 <sup>@</sup> 5       | $(49/2^{-})$ |
| 2274.5 <sup>#</sup> 3       | $(29/2^{-})$ | 3368.8 <sup>@</sup> 4     | $(37/2^{-})$ | 4288.9 <sup>&amp;</sup> 5    | $(43/2^+)$       | 5880.9? <sup>&amp;</sup> 9  | $(51/2^+)$   |
| 2471.2 <sup>&amp;</sup> 4   | $(33/2^+)$   | 3410.2 <sup>@</sup> 5     | $(35/2^{-})$ | 4404.2 <sup>#</sup> 5        | $(43/2^{-})$     | 6170.5 <mark>&amp;</mark> 9 | $(53/2^+)$   |
| 2548.7 <sup>#</sup> 3       | $(31/2^{-})$ | 3438.0 <sup>#</sup> 4     | $(37/2^{-})$ | 4563.5 <sup>&amp;</sup> 5    | $(45/2^+)$       | 6172.2? <sup>@</sup> 7      | $(53/2^{-})$ |
| 2794.7 <sup>@</sup> 4       | $(33/2^{-})$ | 3560.3 <sup>&amp;</sup> 5 | $(39/2^+)$   | 4667.3 <sup>@</sup> 5        | $(45/2^{-})$     | 7007.5? <sup>&amp;</sup> 10 | $(57/2^+)$   |

 $^{\dagger}$  Deduced by evaluator from a least-squares fit to  $\gamma\text{-ray energies}.$ 

<sup>±</sup> Spin and parity assignments are based on rotational structure,  $\gamma$ -ray decay patterns,  $\gamma(\theta)$  and systematics of neighboring odd Os nuclei. In particular, the (1/2<sup>-</sup>) state can be associated with the 1/2[521] configuration on the basis of its decoupling parameter. # 5/2(512) band.

<sup>@</sup> 1/2(521) band.

& 7/2(633) band : strongly mixed by Coriolis coupling with the other members of the i13/2 intruder orbital.

|         |                          |                  |                       |        |                       | $\gamma(^{175}\text{Os})$ |            |                                                                                                                             |
|---------|--------------------------|------------------|-----------------------|--------|-----------------------|---------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------|
| Eγ      | $I_{\gamma}^{\dagger}$   | $E_i$ (level)    | $\mathbf{J}_i^{\pi}$  | $E_f$  | ${ m J}_f^\pi$        | Mult. <sup>‡</sup>        | α <b>b</b> | Comments                                                                                                                    |
| 42.1 2  | 92 22                    | 147.8            | $(9/2^+)$             | 105.7  | $(7/2^+)$             |                           |            |                                                                                                                             |
| 61.0 5  | 43 <sup>@</sup> 26       | 279.1            | $(13/2^+)$            | 218.3  | $(11/2^+)$            |                           |            |                                                                                                                             |
| 71.0 5  | 59 <mark>&amp;</mark> 40 | 218.3            | $(11/2^+)$            | 147.8  | $(9/2^+)$             |                           |            |                                                                                                                             |
| 73.0 5  | 26 <mark>&amp;</mark> 8  | 175.60           | $(3/2^{-})$           | 102.3  | $(1/2^{-})$           |                           |            |                                                                                                                             |
| 80.3 2  | 64 <i>6</i>              | 523.9            | $(17/2^+)$            | 443.7  | $(15/2^+)$            |                           |            | $A_2 = -0.67 \ 15.$                                                                                                         |
| 90.3 2  | 72 11                    | 90.32            | $(7/2^{-})$           | 0.0    | $(5/2^{-})$           |                           |            | $A_2 = -0.44 \ 9.$                                                                                                          |
| 91.3 2  | 30 11                    | 193.76           | $(5/2^{-})$           | 102.3  | $(1/2^{-})$           |                           |            |                                                                                                                             |
| 102.0 5 | ≈10                      | 102.3            | $(1/2^{-})$           | 0.0    | $(5/2^{-})$           |                           |            |                                                                                                                             |
| 103.5 2 | 32 7                     | 193.76           | $(5/2^{-})$           | 90.32  | $(7/2^{-})$           |                           |            |                                                                                                                             |
| 105.7 2 | 1000                     | 105.7            | $(7/2^+)$             | 0.0    | (5/2 <sup>-</sup> )   | (E1) <sup>#</sup>         | 0.343      | $\alpha(\mathbf{K}) = 0.279; \ \alpha(\mathbf{L}) = 0.0497; \ \alpha(\mathbf{M}) = 0.0114; \ \alpha(\mathbf{N}+) = 0.00340$ |
| 106.1.2 | 52.7                     | 890.0            | $(21/2^+)$            | 783 9  | $(19/2^+)$            |                           |            | $A_2 = -0.15 2 A_4 = +0.07 2.$                                                                                              |
| 112.6 2 | 53 7                     | 218.3            | $(11/2^+)$            | 105.7  | $(7/2^+)$             |                           |            | $A_2 = +0.20.5$                                                                                                             |
| 117.2 2 | 144 3                    | 207.56           | $(9/2^{-})$           | 90.32  | $(7/2^{-})$           |                           |            | $A_2 = -0.62 \ 3 \ A_4 = -0.07 \ 2.$                                                                                        |
| 131.3 2 | 129 <i>3</i>             | 279.1            | $(13/2^+)$            | 147.8  | $(9/2^+)$             | Q                         |            | $A_2^2 = +0.28 \ 4.$                                                                                                        |
| 139.0 2 | 106 18                   | 346.56           | $(11/2^{-})$          | 207.56 | $(9/2^{-})$           |                           |            | $A_2 = -0.65 \ 16.$                                                                                                         |
| 139.7 2 | 41 13                    | 1350.6           | $(25/2^+)$            | 1210.9 | $(23/2^+)$            |                           |            |                                                                                                                             |
| 158.2 2 | 148 15                   | 504.77           | $(13/2^{-})$          | 346.56 | $(11/2^{-})$          |                           |            |                                                                                                                             |
| 162.0 5 | 30 5                     | 355.86           | $(7/2^{-})$           | 193.76 | $(5/2^{-})$           |                           |            |                                                                                                                             |
| 164.6 2 | 336 6                    | 443.7            | $(15/2^+)$            | 279.1  | $(13/2^+)$            |                           |            | $A_2 = -0.87 \ 3 \ A_4 = +0.07 \ 4.$                                                                                        |
| 173.2.2 | 51 2                     | 1881.4           | $(29/2^+)$            | 1708.2 | $(2^{\prime}/2^{+})$  |                           |            | $A_2 = -0.38$ 9.                                                                                                            |
| 175.12  | 75 17                    | 679.89           | (15/2)                | 504.77 | (13/2)                |                           |            | $A_2 = -0.574$ $A_4 = +0.085.$                                                                                              |
| 1/5./2  | 8/1/                     | 1/5.60           | (3/2)                 | 0.0    | (5/2)                 |                           |            | $A_{-} = +0.20.0$                                                                                                           |
| 100.5 2 | 255 7                    | 333.80<br>381.56 | (1/2)<br>$(0/2^{-})$  | 1/3.00 | (3/2)<br>$(5/2^{-})$  | 0                         |            | $A_2 = \pm 0.20$ 9.                                                                                                         |
| 107.02  | 2557                     | 201.20<br>869.25 | (9/2)<br>$(17/2^{-})$ | 670.80 | (3/2)<br>$(15/2^{-})$ | Q                         |            | $A_2 = \pm 0.30 \ J.$<br>$A_2 = -0.33 \ 6. \ A_4 = \pm 0.08 \ 8.$                                                           |
| 193.7 2 | 55 7                     | 193.76           | $(5/2^{-})$           | 0.0    | $(5/2^{-})$           |                           |            | $M_2 = 0.550$ $M_4 = \pm 0.000$ 0.                                                                                          |

Continued on next page (footnotes at end of table)

## <sup>150</sup>Sm(<sup>29</sup>Si,4nγ) **1990Fa02** (continued)

# $\gamma(^{175}\text{Os})$ (continued)

| $E_{\gamma}$         | $I_{\gamma}^{\dagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$   | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$     | Mult. <sup>‡</sup> | Comments                                        |
|----------------------|------------------------|---------------|------------------------|----------------------------------------------|--------------------|-------------------------------------------------|
| 203.3 2              | 13 4                   | 2471.2        | $(33/2^+)$             | 2267.9 (31/2 <sup>+</sup> )                  |                    | $A_2 = -0.38$ 9.                                |
| 203.7 2              | 76 4                   | 1072.87       | $(19/2^{-})$           | 869.25 (17/2 <sup>-</sup> )                  |                    |                                                 |
| 207.6 2              | 60 7                   | 207.56        | $(9/2^{-})$            | $0.0 (5/2^{-})$                              |                    |                                                 |
| 216.1 2              | 110 7                  | 1288.79       | $(21/2^{-})$           | 1072.87 (19/2-)                              |                    | $A_2 = -0.71 \ 9 \ A_4 = +0.23 \ 11.$           |
| 225.4 2              | 323 4                  | 443.7         | $(15/2^+)$             | 218.3 $(11/2^+)$                             | Q                  | $A_2 = +0.30 \ 2 \ A_4 = -0.11 \ 2.$            |
| 228.9 2              | 64 2                   | 1517.65       | $(23/2^{-})$           | 1288.79 (21/2-)                              |                    | $A_2 = -0.61 \ 6.$                              |
| 230.0 5              | 8 <i>3</i>             | 3116.2        | $(37/2^+)$             | 2886.1 (35/2 <sup>+</sup> )                  |                    |                                                 |
| 233.0 5              | 25 5                   | 614.8         | $(11/2^{-})$           | 381.56 (9/2 <sup>-</sup> )                   |                    |                                                 |
| 239.4 2              | 67 <i>3</i>            | 1757.1        | $(25/2^{-})$           | 1517.65 (23/2 <sup>-</sup> )                 |                    | $A_2 = -0.58 \ 14.$                             |
| 244.7 2              | 515 5                  | 523.9         | $(17/2^+)$             | 279.1 (13/2 <sup>+</sup> )                   | Q                  | $A_2 = +0.29 \ 2  A_4 = -0.04 \ 3.$             |
| 253.8 2              | 54 19                  | 2010.9        | $(27/2^{-})$           | 1757.1 (25/2 <sup>-</sup> )                  |                    |                                                 |
| 254.0 5              | ≈5                     | 3814.5        | $(41/2^+)$             | $3560.3  (39/2^+)$                           |                    |                                                 |
| 256.2 2              | 176 <i>3</i>           | 346.56        | $(11/2^{-})$           | 90.32 (7/2 <sup>-</sup> )                    |                    | $A_2 = +0.26 A_4 = -0.04 3.$                    |
| 259.0 2              | 70 8                   | 614.8         | $(11/2^{-})$           | 355.86 (7/2 <sup>-</sup> )                   |                    | $A_2 = +0.12 \ 12 \ A_4 = -0.19 \ 12.$          |
| 260.0 2              | 200 50                 | 783.9         | $(19/2^+)$             | $523.9 (17/2^+)$                             |                    |                                                 |
| 263.0 2              | 327 11                 | 644.51        | $(13/2^{-})$           | 381.56 (9/2 <sup>-</sup> )                   |                    |                                                 |
| 263.4 2              | 42 11                  | 2274.5        | $(29/2^{-})$           | $2010.9 (27/2^{-})$                          |                    |                                                 |
| 274.0 5              | 44 5                   | 2548.7        | $(31/2^{-})$           | $22/4.5$ ( $29/2^{-}$ )                      |                    |                                                 |
| 275.0 <sup>a</sup> 5 | ≈5                     | 4563.5        | $(45/2^+)$             | $4288.9  (43/2^+)$                           |                    |                                                 |
| 285.0 5              | 13 8                   | 2833.3        | $(33/2^{-})$           | 2548.7 (31/2 <sup>-</sup> )                  |                    |                                                 |
| 292.0 5              | ≈25                    | 3125.8        | $(35/2^{-})$           | 2833.3 (33/2 <sup>-</sup> )                  |                    |                                                 |
| 296.0 <sup>d</sup> 5 | ≈2                     | 940.4         | $(15/2^{-})$           | 644.51 (13/2 <sup>-</sup> )                  |                    |                                                 |
| 297.2 2              | 251 5                  | 504.77        | $(13/2^{-})$           | 207.56 (9/2-)                                | Q                  | $A_2 = +0.28 \ 4 \ A_4 = -0.13 \ 6.$            |
| 312.0 5              | ≈18                    | 3438.0        | $(37/2^{-})$           | 3125.8 (35/2 <sup>-</sup> )                  |                    |                                                 |
| 321.0 2              | 108 <i>3</i>           | 1210.9        | $(23/2^+)$             | $890.0  (21/2^+)$                            |                    | $A_2 = -0.64 \ 5 \ A_4 = -0.07 \ 5.$            |
| 325.6 2              | 74 10                  | 940.4         | $(15/2^{-})$           | $614.8 (11/2^{-})$                           |                    | $A_2 = -0.33 \ 2  A_4 = -0.15 \ 2.$             |
| 325.7 2              | 324 10                 | 970.2         | $(17/2^{-})$           | 644.51 (13/2 <sup>-</sup> )                  |                    |                                                 |
| 333.3 2              | 280 7                  | 679.89        | $(15/2^{-})$           | 346.56 (11/2 <sup>-</sup> )                  | _                  |                                                 |
| 340.1 2              | 394 20                 | 783.9         | $(19/2^+)$             | $443.7 (15/2^+)$                             | Q                  | $A_2 = +0.31 \ 2 \ A_4 = -0.06 \ 2.$            |
| 357.4 2              | 82 4                   | 1708.2        | $(2^{\prime}/2^{+})$   | $1350.6 (25/2^+)$                            |                    | $A_2 = -0.77 9.$                                |
| 364.5 2              | 302 5                  | 869.25        | $(1^{\prime}/2^{-})$   | $504.77$ $(13/2^{-})$                        | Q                  | $A_2 = +0.313$ $A_4 = -0.194$ .                 |
| 366.1 2              | 734 11                 | 890.0         | $(21/2^+)$             | $523.9 (17/2^+)$                             | Q                  | $A_2 = +0.32$ 3.                                |
| 381.9 2              | 327 10                 | 1352.0        | (21/2)                 | 9/0.2 (1//2)                                 | Q                  | $A_2 = +0.31$ 5.                                |
| 386.5 2              | 75 10<br>75 10         | 2267.9        | $(31/2^{+})$           | $1881.4 (29/2^{+})$                          |                    |                                                 |
| 380.0 Z              | 75 10<br>759 10        | 1327.0        | (19/2)                 | 940.4 (15/2)                                 |                    |                                                 |
| 390.8 2              | 75 10                  | 1072.87       | $(10/2^{-})$           | $670.80 (15/2^{-})$                          | 0                  | $\Lambda_{-1} = 0.345  \Lambda_{-1} = 0.186$    |
| 392.9 Z              | 2127                   | 2886 1        | (19/2)<br>$(35/2^+)$   | 0/9.09 (13/2)<br>$24712 (33/2^+)$            | Q                  | $A_2 = +0.54$ J $A_4 = -0.18$ 0.                |
| 419.0 5              | 300 30                 | 1288 79       | (35/2)<br>$(21/2^{-})$ | 2471.2 (33/2)<br>869.25 (17/2 <sup>-</sup> ) | 0                  | $\Delta_{2} = \pm 0.33 I  \Delta_{4} = -0.10 I$ |
| 427 1 2              | 388 7                  | 1210.9        | (21/2)<br>$(23/2^+)$   | $783.9 (19/2^+)$                             | Õ                  | $A_2 = +0.55 T A_4 = -0.10 T.$                  |
| 433 9 2              | 317.8                  | 1785.9        | $(25/2^{-})$           | $1352.0 (21/2^{-})$                          | Q                  | $A_2 = +0.225 + A_4 = -0.0147$                  |
| 44392                | 79 10                  | 1770.9        | $(23/2^{-})$           | $1332.0  (21/2^{-})$<br>$1327.0  (19/2^{-})$ |                    | $N_2 = +0.225$ $N_4 = -0.117$ .                 |
| 444.0.5              | ≈5<br>≈5               | 3560.3        | $(39/2^+)$             | $31162$ ( $37/2^+$ )                         |                    |                                                 |
| 444.6.2              | 293 10                 | 1517.65       | $(23/2^{-})$           | $1072.87 (19/2^{-})$                         | 0                  | $A_2 = +0.284$ $A_4 = -0.155$                   |
| 460.6.2              | 708 42                 | 1350.6        | $(25/2^+)$             | $890.0  (21/2^+)$                            | ×                  | $A_2 = +0.38$ 3 $A_4 = -0.17$ 2                 |
| 468.4 2              | 297 5                  | 1757.1        | $(25/2^{-})$           | $1288.79 (21/2^{-})$                         |                    | $A_2 = +0.41 \ 3 \ A_4 = -0.20 \ 3.$            |
| $475.0^{d}5$         | ≈5                     | 4288 9        | $(43/2^+)$             | $3814.5$ $(41/2^+)$                          |                    | 2                                               |
| 479.8.2              | 217 4                  | 2265.7        | $(10/2^{-})$           | $1785.9 (25/2^{-})$                          |                    | $A_{2} = +0.41.4$ $A_{4} = -0.19.4$             |
| 488.7 2              | 97 21                  | 2274.5        | $(29/2^{-})$           | $1785.9$ $(25/2^{-})$                        |                    | $A_2 = +0.23$ 3 $A_4 = -0.09$ 4.                |
| x489.7 2             | 73 <sup>a</sup> 9      |               | ( )                    | (_0,_ )                                      |                    | 2 ·····                                         |
| 493.2 2              | 315 4                  | 2010.9        | $(27/2^{-})$           | $1517.65 (23/2^{-})$                         |                    | $A_2 = +0.34$ 2 $A_4 = -0.13$ 2.                |
| 497.3 <sup>°</sup> 2 | 364 <sup>°</sup> 40    | 1708.2        | $(27/2^+)$             | $1210.9$ $(23/2^+)$                          | 0                  | $A_2 = +0.34$ 2 $A_4 = -0.11$ 2.                |
| 497.3 <sup>°</sup> 2 | 65 <sup>c</sup> 40     | 2268.2        | $(27/2^{-})$           | 1770.9 (23/2 <sup>-</sup> )                  | ò                  | $A_2 = +0.34$ 2 $A_4 = -0.11$ 2.                |
| 508.6 2              | 119 15                 | 2265.7        | $(29/2^{-})$           | $1757.1$ $(25/2^{-})$                        |                    | <u>е</u> с т. с                                 |

Continued on next page (footnotes at end of table)

### <sup>150</sup>Sm(<sup>29</sup>Si,4nγ) **1990Fa02** (continued)

#### $\gamma(^{175}\text{Os})$ (continued)

| Eγ                    | $I_{\gamma}^{\dagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | Comments                             |
|-----------------------|------------------------|---------------|----------------------|------------------|----------------------|--------------------|--------------------------------------|
| 517.5 2               | 216 6                  | 2274.5        | $(29/2^{-})$         | 1757.1           | $(25/2^{-})$         | 0                  | $A_2 = +0.29 6.$                     |
| 529.0 2               | 220 4                  | 2794.7        | $(33/2^{-})$         | 2265.7           | $(29/2^{-})$         | ò                  | $A_2 = +0.29 \ 3 \ A_4 = -0.18 \ 4.$ |
| 530.9 2               | 597 25                 | 1881.4        | $(29/2^+)$           | 1350.6           | $(25/2^+)$           | ò                  | $A_2 = +0.27 2.$                     |
| 537.9 2               | 267 50                 | 2548.7        | $(31/2^{-})$         | 2010.9           | $(27/2^{-})$         |                    | $\tilde{A_2} = +0.44$ 17.            |
| 547.6 2               | 55 4                   | 2815.8        | $(31/2^{-})$         | 2268.2           | $(27/2^{-})$         |                    | -                                    |
| 558.7 2               | 199 <i>10</i>          | 2833.3        | $(33/2^{-})$         | 2274.5           | $(29/2^{-})$         | Q                  | $A_2 = +0.317$ $A_4 = -0.1911$ .     |
| 559.7 2               | 303 18                 | 2267.9        | $(31/2^+)$           | 1708.2           | $(27/2^+)$           | -                  | 2                                    |
| <sup>x</sup> 562.5 2  | 75 <mark>a</mark> 15   |               |                      |                  |                      |                    |                                      |
| <sup>x</sup> 566.4 2  | 77 <mark>a</mark> 14   |               |                      |                  |                      |                    |                                      |
| 574.1 2               | 181 5                  | 3368.8        | $(37/2^{-})$         | 2794.7           | $(33/2^{-})$         | Q                  | $A_2 = +0.25 \ 4  A_4 = -0.13 \ 5.$  |
| 577.1 2               | 164 37                 | 3125.8        | $(35/2^{-})$         | 2548.7           | $(31/2^{-})$         | Q                  | $A_2 = +0.25 \ 3 \ A_4 = -0.10 \ 4.$ |
| 589.8 2               | 446 21                 | 2471.2        | $(33/2^+)$           | 1881.4           | $(29/2^+)$           | -                  | 2 .                                  |
| 594.4 2               | 48 6                   | 3410.2        | $(35/2^{-})$         | 2815.8           | $(31/2^{-})$         |                    |                                      |
| <sup>x</sup> 604.7 2  | 80 14                  |               |                      |                  |                      |                    |                                      |
| 604.7 2               | 135 40                 | 3438.0        | $(37/2^{-})$         | 2833.3           | $(33/2^{-})$         | Q                  | $A_2 = +0.275$ $A_4 = -0.126$ .      |
| 615.3 2               | 100 15                 | 3741.1        | $(39/2^{-})$         | 3125.8           | $(35/2^{-})$         | Q                  | $A_2 = +0.326$ $A_4 = -0.157$ .      |
| 618.2 2               | 196 4                  | 2886.1        | $(35/2^+)$           | 2267.9           | $(31/2^+)$           |                    | $A_2 = +0.41 \ 4 \ A_4 = -0.17 \ 7.$ |
| 623.7 2               | 105 4                  | 3992.5        | $(41/2^{-})$         | 3368.8           | $(37/2^{-})$         | Q                  | $A_2 = +0.296$ $A_4 = -0.198$ .      |
| 644.9 2               | 305 10                 | 3116.2        | $(37/2^+)$           | 2471.2           | $(33/2^+)$           |                    | $A_2 = +0.09 \ 3 \ A_4 = -0.08 \ 6.$ |
| 647.8 2               | 75 9                   | 4085.8        | $(41/2^{-})$         | 3438.0           | $(37/2^{-})$         |                    |                                      |
| 648.9 2               | ≈20                    | 4059.1        | $(39/2^{-})$         | 3410.2           | $(35/2^{-})$         |                    |                                      |
| 663.1 2               | 88 7                   | 4404.2        | $(43/2^{-})$         | 3741.1           | $(39/2^{-})$         |                    | $A_2 = +0.04 \ I8.$                  |
| 674.3 5               | 114 20                 | 3560.3        | $(39/2^+)$           | 2886.1           | $(35/2^+)$           |                    |                                      |
| 674.8 2               | 71 20                  | 4667.3        | $(45/2^{-})$         | 3992.5           | $(41/2^{-})$         |                    |                                      |
| 686.0 <sup>d</sup> 5  | ≈5                     | 4771.8?       | $(45/2^{-})$         | 4085.8           | $(41/2^{-})$         |                    |                                      |
| 698.4 2               | 132 5                  | 3814.5        | $(41/2^+)$           | 3116.2           | $(37/2^+)$           |                    |                                      |
| 711.0 5               | ≈75                    | 5115.2        | $(47/2^{-})$         | 4404.2           | $(43/2^{-})$         |                    |                                      |
| 723.9 2               | ≈15                    | 5391.2        | $(49/2^{-})$         | 4667.3           | $(45/2^{-})$         |                    |                                      |
| 728.6 2               | 54 <i>4</i>            | 4288.9        | $(43/2^+)$           | 3560.3           | $(39/2^+)$           |                    |                                      |
| 749.0 2               | 58 10                  | 4563.5        | $(45/2^+)$           | 3814.5           | $(41/2^+)$           |                    |                                      |
| 776.0 5               | 26 10                  | 5064.9        | $(47/2^+)$           | 4288.9           | $(43/2^+)$           |                    |                                      |
| 781.0 <sup>d</sup> .5 | ≈5                     | 6172.2?       | $(53/2^{-})$         | 5391.2           | $(49/2^{-})$         |                    |                                      |
| 789.0 5               | 37 10                  | 5352.5        | $(49/2^+)$           | 4563.5           | $(45/2^+)$           |                    |                                      |
| 816.0 <sup>d</sup> 5  | ~5                     | 5880.92       | $(51/2^+)$           | 5064.9           | $(47/2^+)$           |                    |                                      |
| 818.0.5               | ≈10                    | 6170.5        | $(53/2^+)$           | 5352.5           | $(49/2^+)$           |                    |                                      |
| 837.0 <sup>d</sup> 5  | ≈5                     | 7007.5?       | $(57/2^+)$           | 6170.5           | $(53/2^+)$           |                    |                                      |

<sup>†</sup> From A0 term of angular distributions; otherwise, from coincidence rates.

<sup> $\ddagger$ </sup> Assigned by evaluator from angular distribution coefficient (A<sub>2</sub>,A<sub>4</sub>), except as noted.

<sup>#</sup> From  $\alpha \approx 0.34$ , determined from intensity balance.

<sup>@</sup> Transition obscured by Os K $\alpha$  x ray.

<sup>&</sup> Transition obscured by Os K $\beta$  x ray.

<sup>a</sup> From coincidence rate in 105.7-keV gate.

<sup>*b*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>c</sup> Multiply placed with intensity suitably divided.

<sup>d</sup> Placement of transition in the level scheme is uncertain.

<sup>*x*</sup>  $\gamma$  ray not placed in level scheme.



<sup>175</sup><sub>76</sub>Os<sub>99</sub>



<sup>175</sup><sub>76</sub>Os<sub>99</sub>

6

#### <sup>150</sup>Sm(<sup>29</sup>Si,4nγ) 1990Fa02

# $\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

@ Multiply placed: intensity suitably divided

| <b>&gt;</b> | $I_{\gamma} < 2\% \times I_{\gamma}^{max}$  |
|-------------|---------------------------------------------|
|             | $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ |
|             | $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ |
| •           | $\gamma$ Decay (Uncertain)                  |

Legend



<sup>175</sup><sub>76</sub>Os<sub>99</sub>