¹⁴⁷Sm(³²S,p3nγ) **1991Dr06,1991Ce02**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	M. Shamsuzzoha Basunia	NDS 102, 719 (2004)	1-Jun-2004		

Includes 144 Sm(35 Cl,2p2n γ).

Other: 1991Dr02.

1991Dr06: targets: ¹⁴⁷Sm, ¹⁴⁴Sm. Reactions: ¹⁴⁷Sm(³²S,p3n γ), E=159 MeV, ¹⁴⁴Sm(³⁵Cl,2p2n γ), E=180 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$. Detectors: array of 6 Compton-suppressed germanium detectors.

1991Ce02: targets: ¹⁴⁴Sm, ¹²¹Sb, ¹¹⁸Sn. Reactions: ¹⁴⁴Sm(³⁵Cl,2p2n γ), E=175-185 MeV; ⁵⁸Ni on ¹²¹Sb and ⁶⁰Ni on ¹¹⁸Sn, E=270 MeV. Measured E γ , I γ (not reported), $\gamma\gamma$ coin, γ -recoil (mass) coin, γ - γ recoil (mass) coin, $\gamma(\theta)$. Detectors: ESSA30, an array of 30 Compton-suppressed hyperpure germanium detectors. Also, an array of 20 germanium detectors with a recoil mass separator.

¹⁷⁵Ir Levels

E(level) [†]	J ^π ‡	Comments
0.0#	5/2-	
0.0+x ^{<i>a</i>}	9/2-	
49 [#]	9/2-	
53 &	(5/2)	
89+x ^{<i>a</i>}	$(11/2^{-})$	
132		
156	(7/2)	
196 [#]	$(7/2^{-})$	
263+x ^a	$(13/2^{-})$	
277	(11/2)	
279#	$13/2^{-}$	
282	(9/2)	
422#	$11/2^{-}$	
426	(11/2)	
433+x ^a	$15/2^{-}$	
438		
$622 \pm \mathbf{v}^{\mathbf{a}}$	17/2-	
652 [#]	$17/2^{-}$	
660 [@]	$\frac{17/2}{13/2^+}$	
000 767#	$(15/2^{-})$	E(laya), 1001D-06 size this as 718 which scenes to be an array It is 770 in 1001Ce02
707 812 [@]	(13/2)	E(level). 1991D100 give this as 716, which seems to be an error. It is 770 in 1991Ceo2.
812^{-} $822 \pm x^{a}$	$17/2^{-1}$	
$1038 + x^{a}$	$\frac{19/2}{21/2^{-}}$	
1061	$21/2^+$	
1114#	$21/2^{-}$	
$1266 + x^{a}$	$\frac{21}{2}$ $\frac{23}{2}$	
$1388^{@}$	$25/2^+$	
1508+x ^{<i>a</i>}	$\frac{25}{2}$	
1629 [#]	$25/2^{-}$	
1762+x ^{<i>a</i>}	$27/2^{-}$	
1784 [@]	$29/2^{+}$	
2029+x ^a	29/2-	
2174 [#]	29/2-	

¹⁴⁷ Sm(³² S,p3n γ)	1991Dr06,1991Ce02 (continued)
---	-------------------------------

				II Levels (continued)			
E(level) [†]	J ^π ‡	E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
2242 [@]	33/2+	2890+x ^{<i>a</i>}	35/2-	3826+x ^{<i>a</i>}	$41/2^{-}$	4549 [#]	45/2-
2306+x ^a	$31/2^{-}$	3194+x ^a	37/2-	3896 [#]	$41/2^{-}$	4603 [@]	49/2+
2599+x ^a	33/2-	3301 [#]	37/2-	3939 [@]	$45/2^{+}$	4837+x ^{<i>a</i>}	$(47/2^{-})$
2735 [#]	33/2-	3323 [@]	$41/2^{+}$	4154+x ^a	$43/2^{-}$	5315 [@]	53/2+
2756 [@]	$37/2^+$	3507+x ^a	39/2-	4490+x ^a	$(45/2^{-})$	6076 [@]	$(57/2^+)$

¹⁷⁵Ir Levels (continued)

[†] From 1991Dr06.

[‡] Spin and parity assignments are based on γ -ray angular correlations and rotational structure. Additional support for assignments to members of the 9/2[514] rotational band comes from a comparison of gyromagnetic ratios (g_K) predicted by the Nilsson model, with experimental values deduced from B(M1)/B(E2) cascade-to-crossover branching ratio intensities (1991Dr06). Tentative spin and parity assignments of 1991Ce02 are based on the systematics of rotational structure in this region, and on measured angular anisotropies for the strongests γ rays.

1/2(541) band.

[@] 1/2(660) band.

& 5/2(402) band.

^a 9/2(514) band.

$\gamma(^{175}\mathrm{Ir})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
(49)		49	9/2-	0.0	5/2-
(53)		53	(5/2)	0.0	5/2-
88.9	215 7	89+x	$(11/2^{-})$	0.0+x	9/2-
^x 98.8	150 20				
103.0	104 <i>6</i>	156	(7/2)	53	(5/2)
^x 119.3	≈49				
126.1	165 70	282	(9/2)	156	(7/2)
^x 131.5	≈54				
144.3	106 10	426	(11/2)	282	(9/2)
144.5	104 10	277	(11/2)	132	
151.8	800 10	812	$17/2^{+}$	660	$13/2^{+}$
160.4	109 7	812	$17/2^{+}$	652	$17/2^{-}$
160.6	62 9	438		277	(11/2)
169.6	486 12	433+x	$15/2^{-}$	263+x	$(13/2^{-})$
173.0	42 8	611		438	
174.5	532 <i>13</i>	263+x	$(13/2^{-})$	89+x	$(11/2^{-})$
188.9	5.2×10 ² 17	622+x	$17/2^{-}$	433+x	$15/2^{-}$
196.3	147 10	196	$(7/2^{-})$	0.0	$5/2^{-}$
200.3	490 <i>35</i>	822+x	19/2-	622+x	$17/2^{-}$
215.5	607 21	1038+x	$21/2^{-}$	822+x	19/2-
^x 217.5	≈62				
222.4	38 7	660	$13/2^{+}$	438	
225.8	145 9	422	$11/2^{-}$	196	$(7/2^{-})$
228.1	4.9×10 ² 24	1266+x	$23/2^{-}$	1038+x	$21/2^{-}$
229.1	56 10	282	(9/2)	53	(5/2)
230.3	1000 7	279	$13/2^{-}$	49	9/2-
233.8	288 9	660	$13/2^{+}$	426	(11/2)
237.9	235 10	660	$13/2^{+}$	422	$11/2^{-}$
242.3	298 29	1508+x	$25/2^{-}$	1266+x	$23/2^{-}$
^x 242.4	121 7				

Continued on next page (footnotes at end of table)

¹⁴⁷Sm(³²S,p3nγ) **1991Dr06,1991Ce02** (continued)

$\gamma(^{175}\text{Ir})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$
248.9	1231 15	1061	$21/2^{+}$	812	$17/2^{+}$
254.1	275 9	1762 + x	$27/2^{-}$	1508 + x	$25/2^{-}$
263.4	64 9	263+x	$(13/2^{-})$	0.0 + x	9/2-
266.8	255 15	2029 + x	29/2-	1762 + x	27/2-
270.9	100 5	426	(11/2)	156	(7/2)
277.1	196 24	$2306 \pm x$	$\frac{(11/2)}{31/2^{-}}$	2029 + x	(7/2) 29/2-
287.5	159 11	2500 + x	33/2-	$2306 \pm x$	$\frac{2}{1/2^{-}}$
296.3	131.8	2890 + x	35/2-	2500 + x 2599 + x	$33/2^{-}$
304.3	84 17	$3194 \pm x$	37/2-	$2890 \pm x$	$35/2^{-}$
312	86 20	$3507 \pm x$	39/2-	$3194 \pm x$	37/2-
310	00 20	3826±x	$\frac{33}{2}$	$3507 \pm x$	30/2-
207.5	1252 50	1200	$\frac{+1}{2}$	1061	$\frac{39/2}{21/2^+}$
221.5	1233 30	1300 4154 i v	23/2 12/2-	1001 2826 i v	$\frac{21}{2}$
220 222 7	112 15	4134±X	43/2	3620+X	(11/2)
222.1	≈00 270 50	422 + 1	15/2-	2//	(11/2) (11/2-)
344.5	270.30	455+X	15/2	89+X	(11/2)
345.1	193 33	/6/	(15/2)	422	11/2
359.1	299 16	622+x	17/2	263+x	(13/2)
372.4	720 24	652	17/2	279	13/2
373.3	105 10	422	11/2-	49	9/2-
380.9	780 30	660	13/2+	279	$13/2^{-}$
383.1	191 20	660	$13/2^{+}$	277	(11/2)
389.3	490 <i>35</i>	822+x	19/2-	433+x	15/2-
395.9	1505 12	1784	$29/2^+$	1388	$25/2^+$
416.2	558 18	1038+x	$21/2^{-}$	622+x	$17/2^{-}$
443.8	505 <i>38</i>	1266+x	$23/2^{-}$	822+x	$19/2^{-}$
457.5	870 <i>35</i>	2242	$33/2^{+}$	1784	$29/2^{+}$
462.9	472 12	1114	$21/2^{-}$	652	$17/2^{-}$
470.4	497 <i>17</i>	1508+x	$25/2^{-}$	1038+x	$21/2^{-}$
496.3	416 22	1762+x	$27/2^{-}$	1266+x	$23/2^{-}$
514.2	637 20	2756	$37/2^{+}$	2242	$33/2^{+}$
514.8	453 20	1629	$25/2^{-}$	1114	$21/2^{-}$
520.9	392 <i>34</i>	2029+x	$29/2^{-}$	1508+x	$25/2^{-}$
543.9	325 20	2306+x	$31/2^{-}$	1762+x	$27/2^{-}$
545.2	330 10	2174	$29/2^{-}$	1629	$25/2^{-}$
560.7	265 18	2735	$33/2^{-}$	2174	$29/2^{-}$
564.7	259 39	2599+x	33/2-	2029+x	$29/2^{-}$
566.2	193 20	3301	$37/2^{-}$	2735	33/2-
566.4	442 30	3323	$41/2^{+}$	2756	$37/2^{+}$
583.8	273 27	2890 + x	$35/2^{-}$	2306+x	$31/2^{-}$
595	138 27	3896	$41/2^{-}$	3301	37/2-
600 5	197 25	3194 + x	$37/2^{-}$	2599 + x	33/2-
616.0	266 19	3939	$45/2^+$	3323	$41/2^+$
616.7	164 23	3507 + x	39/2-	$2890 \pm x$	35/2-
631	97.16	$3826 \pm x$	$\frac{37/2}{41/2^{-}}$	$3194 \pm x$	37/2-
647.5	112 20	$4154 \pm x$	$\frac{41}{2}$	$3507 \pm x$	39/2-
653	108 15	15/0	45/2-	3806	$\frac{39}{2}$
055	100 15	+3+7	τJ/2	3090	±1/∠
664*	≈69	4490+x	$(45/2^{-})$	3826+x	41/2
664.0	158 16	4603	49/2+	3939	45/2+
683 [‡]	≈30	4837+x	$(47/2^{-})$	4154+x	43/2-
711.8	59 17	5315	$53/2^{+}$	4603	49/2+
761	≈30	6076	$(57/2^+)$	5315	53/2+

[†] From 1991Dr06.

147 Sm(32 S,p3n γ) 1991Dr06,1991Ce02 (continued)

 $\gamma(^{175}\text{Ir})$ (continued)

^{\pm} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

¹⁷⁵₇₇Ir₉₈

 $^{175}_{77}\mathrm{Ir}_{98}$