92 Mo(86 Sr,3n γ) 2009Od01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	08-Sep-2009				

2009Od01: ⁸⁶Sr¹⁷⁺ beam at 403 MeV provided by the K130 cyclotron at Jyvaskyla. Enriched (98%) ⁹²Mo target. The recoiling residues were transported to the focal plane of the RITU He-filled magnetic separator. The gamma rays were detected using JUROGAM array of 43 escape-suppressed Ge detectors. The α particles, conversion electrons and delayed γ rays were detected using GREAT spectrometer which consisted of a multi-wire proportional chamber, two double-sided silicon-strip detectors, a planar Ge detector, a clover Ge detector and an array of Si PIN diodes. The energy loss and time-of-flight information from the particle detectors was used to select ¹⁷⁵Hg recoils and distinguish these from background scattered beam and radioactive decays. Measured $E\gamma$, $I\gamma$, α -correlated delayed $\gamma\gamma$ and $\gamma(ce)$ coin, recoil- α coin, $\alpha\gamma$ coin, $\alpha(ce)$ coin and isomer half-life using recoil-decay tagging (RDT) technique.

¹⁷⁵Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	(7/2 ⁻)	10 ms 1	$T_{1/2}$: from (recoil)(6913 α)(t) where measured E α =6913 5 from ¹⁷⁵ Hg α decay (2009Od01). J ^{π} : from favored α decay to ¹⁷¹ Pt g.s. with J^{π} =7/2 ⁻ (J^{π} quoted by 2009Od01 in their reference 25: to be published). Most likely face state
80 1	$(9/2^{-})$		Most likely $h_{9/2}$ state.
494 [#] 2 731? 2 1181 [#] 2 1909 [#] 2 2523 [#] 2	$(13/2^+) (13/2^-) (17/2^+) (21/2^+) (25/2^+)$	0.34 μs <i>3</i>	T _{1/2} : from decay curve for 414 γ (2009Od01).

[†] From $E\gamma$'s, assuming $\Delta(E\gamma)=1$ keV.

^{\ddagger} As proposed by 2009Od01, parentheses on some spins added by the evaluator due to lack of strong supporting arguments.

[#] Band(A): $K^{\pi} = 13/2^+$ band. Probable $vi_{13/2} \otimes (\text{oblate deformed core})$.

$\gamma(^{175}\text{Hg})$

Due to low statistics of prompt γ rays, $\gamma\gamma$ coin analysis was not possible. However, all γ transitions listed here were seen in α -correlated prompt transitions observed in delayed coin with either 80-keV or 414-keV delayed γ or ce.

Eγ	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
80	80	(9/2 ⁻)	0	(7/2 ⁻)	(M1)	2.74 11	α (L)=2.10 9; α (M)=0.49 2; α (N)=0.123 5; α (O)=0.0232 10; α (P)=0.00178 7
							Mult.: from $I\gamma(414)/I\gamma(80) \approx 3$ (2009Od01) and theoretical conversion coefficients.
414	494	$(13/2^+)$	80	(9/2 ⁻)	M2	0.380 6	$\alpha(K)=0.380\ 6;\ \alpha(L)=0.0816\ 14;\ \alpha(M)=0.0197\ 4;$ $\alpha(N)=0.00496\ 8:\ \alpha(O)=0.000931\ 15$
							$\alpha(K) \exp = 0.36 \ 11 \ (2009Od01); \ \alpha(K) \exp = 0.45 \ 10 \ (2009Od01) \ \alpha(L) \exp + \alpha(M) \exp - \alpha \ 10 \ 3 \ (2009Od01)$
614	2523	$(25/2^+)$	1909	$(21/2^+)$			u(L)exp+u(w)exp=0.10.5 (200)Od01)
651 [#]	731?	$(13/2^{-})$	80	$(9/2^{-})$			
687	1181	$(17/2^+)$	494	$(13/2^+)$			
^x 708 [†]							
728	1909	$(21/2^+)$	1181	$(17/2^+)$			
^x 843 [†]							

⁹²Mo(⁸⁶Sr,3nγ) 2009Od01 (continued)

$\gamma(^{175}\text{Hg})$ (continued)

[†] The γ seen in prompt γ spectrum correlated with α decay of ¹⁷⁵Hg to ¹⁷¹Pt.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation

based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

	⁹² Mo(⁸⁶ Sr,3nγ)	2009Od01	Legend			
	Level Sch	<u>neme</u>	_	•	γDecay (Uncertain)	
(25/2+)	0 ⁴		2523			
(21/2+)	▼ ~~~		1909			
(17/2 ⁺)	& &		1181			
$\frac{(13/2^{-})}{(13/2^{+})}$			<u>731_</u> 494_	0.34 μs 3		
(9/2 ⁻)	, ▼	10 %	80	10 ms <i>1</i>		

3