Adopted Levels, Gammas

		_		Hi	story	
		Туре		Author	Citation	Literature Cutoff Date
		Full Evalua	tion N	A. Shamsuzzoha Basunia	NDS 102,719 (2004)	1-Jun-2004
$Q(\beta^{-})=-9.44$ Note: Currer $\Delta Q(\beta^{-})=110$	4×10^3 9; S at evaluation, $\Delta S(n)=11$	(n)= 1.125×10 n has used the $0(syst)$.	⁴ syst; S e follow	$S(p) = -6.1 \times 10^2 4$; $Q(\alpha) = 65$ ing Q record -9450 SY	577 8 2012Wa38 X11320 syst-590 4065	562 15 2003Au03.
				¹⁷⁵ Au	1 Levels	
				Cross Reference	ce (XREF) Flags	
				$ \begin{array}{rcl} \mathbf{A} & {}^{179}\text{Tl} \ \alpha \ \alpha \\ \mathbf{B} & {}^{179}\text{Tl} \ \alpha \ \alpha \\ \mathbf{C} & {}^{94}\text{Mo}({}^{84}) \end{array} $	decay (0.23 s) decay (1.5 ms) Sr,p2nγ)	
E(level)	J^{π}	T _{1/2}	XREF		Commen	ts
0.0 0.0+x	$(1/2^+)$ $(11/2^-)$	156 ms 5	A BC	J ^π : By analogy to ¹⁷¹ Au % α =94 +6-25; %ε+%β % α : From 1983Sc24. J ^π : Favored alpha decay T _{1/2} : Weighted average 185 ms 30 (1996Pa01	a and ¹⁷³ Au (both 1/2 ⁺ , s) $3^{+}=6+25-6$ (HF \approx 2.1) to ¹⁷¹ Ir ($J^{\pi}=0$ of 158 ms 3 (2002Ro17)), 200 ms 22 (1983Sc24)	see 1999Po09). (11/2 ⁻)).) and 143 ms 8 (2001Ko44). Others:).
887.5+x	$(13/2^{-})$		С	×		, ,
976.7+x	$(13/2^+)$		С	$(\pi 13/2(606))$ oblate conf heavier Tl nuclides (2	figuration based on similar (001Ko44).	arity to analogous π =+ sequences in
1270.9+x	$(17/2^+)$		С			
1593.8+x	$(21/2^+)$		С			
1973.9+x	$(25/2^+)$		С			
2422.1+x	$(29/2^+)$		С			
2935.8+x	$(33/2^+)$		С			
3509.8+x	$(37/2^+)$		C			
4134.4+x	$(41/2^+)$		C			
4778.1+x 5430.1+x	$(45/2^+)$ $(49/2^+)$		C			

[†] From ${}^{92}Mo({}^{84}Sr,p2n\gamma)$. Proposed spins and parities are consistent with the analysis of spectroscopic data on the daughter and grand-daughter nuclei, and systematics in heavier Au and Tl isotopes.

 $\gamma(^{175}\mathrm{Au})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
887.5+x	$(13/2^{-})$	887.5	100	0.0+x	$(11/2^{-})$		
976.7+x	$(13/2^+)$	89.4		887.5+x	$(13/2^{-})$	E1	Mult.: From intensity balance at 888+x level in $({}^{84}$ Sr,p2n γ).
		976.7	100	0.0+x	$(11/2^{-})$		I_{γ} : From arrow width of Fig. 1 in (⁸⁴ Sr,p2n γ) (2001Ko44).
1270.9+x	$(17/2^+)$	294.2	100	976.7+x	$(13/2^+)$		
1593.8+x	$(21/2^+)$	322.9	100	1270.9+x	$(17/2^+)$		
1973.9+x	$(25/2^+)$	380.1	100	1593.8+x	$(21/2^+)$		
2422.1+x	$(29/2^+)$	448.2	100	1973.9+x	$(25/2^+)$		
2935.8+x	$(33/2^+)$	513.7	100	2422.1+x	$(29/2^+)$		
3509.8+x	$(37/2^+)$	574.0	100	2935.8+x	$(33/2^+)$		
4134.4+x	$(41/2^+)$	624.6	100	3509.8+x	$(37/2^+)$		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 $\gamma(^{175}Au)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	
4778.1+x	$(45/2^+)$	643.7	100	4134.4+x	$(41/2^+)$	
5430.1+x	$(49/2^+)$	652.0 [‡]	100	4778.1+x	$(45/2^+)$	

[†] From ${}^{92}Mo({}^{84}Sr,p2n\gamma)$. The placement of transitions and levels was determined from the γ -ray coincidence relationships. Their ordering follows from the relative intensities within a given cascade.

[‡] Placement of transition in the level scheme is uncertain.

Adopted Levels	, Gammas
-----------------------	----------

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

	9 9 9	
$(49/2^+)$	6 ⁷ 5430.1+x	
(45/2+)	4778.1+x	
(41/2 ⁺)	4134.4+x	
(37/2 ⁺)	3509.8+x	
(33/2 ⁺)	2935.8+x	
(29/2+)	₹	
(25/2+)	1973.9+x	
$(21/2^+)$	ب ب ⁶ کې 1593.8+x	
(17/2 ⁺)	▼ ³	
$(13/2^+)$	976.7+x	
(13/2 ⁻)		
$(11/2^{-})$	0.0+x	156 ms 5
(1/2+)	0.0	

¹⁷⁵₇₉Au₉₆