¹⁷⁹Tl α decay (1.5 ms) 2002Ro17,1998To14,1996Pa01 Type Author Citation Literature Cutoff Date Update M. S. Basunia 31-Jan-2005 Parent: 179 Tl: E=0.0+x; J^{π} =(11/2⁻); $T_{1/2}$ =1.5 ms 3; $Q(\alpha)$ =6718 8; $\%\alpha$ decay≈100.0 Other: 1983Sc24. 2002Ro17: Target: 90.4% enriched 202Pb; Projectile: ⁷⁸Kr, E=355 MeV (340 MeV at midtarget); gas-filled separator, parallel-plate avalanche counters, Si strip detector, HPGe detector; deduced T_{1/2}, corrected for random correlation rates. 1998To14: Target: 90 Zr; Projectile: 92 Mo, E=420 MeV (404 MeV at mid-target); fragmented mass analyzer, gas-filled parallel grid avalanche counter, double-sided Si strip detector with 40 horizontal and 40 vertical strips; measured: $E\alpha$, t, $I\alpha$. 1996Pa01: Sources from heavy-ion fusion-evaporation reactions; recoil mass separator, double-sided Si strip detector (FWHM≤20 keV); measured Eα, parent and daughter T_{1/2}. 1983Sc24: Target: enriched (>95%) Rb-Mo isotopes; Projectile: 92 Mo, E=414-497 MeV; An array of seven position sensitive surface barrier detectors, HPGe detector; measured E α , I α . 179 Tl assigned from the known α particle emission by the daughter 175 Au. Parent (179 Tl) $T_{1/2}$: 1.5 s 3, weighted average of 1.7 ms 2 (2002Ro17), 1.8 ms 4 from $E\alpha$ =7213 and 1.6 ms 8 from $E\alpha$ =7096 (1998To14), 0.7 ms +6-4 (1996Pa01), and 1.4 ms 5 (1983Sc24). ## ¹⁷⁵Au Levels E(level) J^{π} Comments O.0+x J^{π} : From Adopted Levels. E(level): From a suspected doublet of 6438 α and 6412 α of 175 Au α decay (2002Ro17), it seems that 6568 α is a g.s. to g.s. transition from 179 Tl (0.23 s) to 175 Au, and the observed 7069 α and 7213 α 's are from 0.0+x to 0.0+x state transitions between 179 Tl(1.5 ms) and 175 Au (1998To14). The 1/2+ g.s. and 11/2- isomeric state, from systematics and experiment, for these isotopes also looks reasonable for these transitions with low HF values. ## α radiations | Εα | E(level) | $I\alpha^{\ddagger \#}$ | HF | Comments | |---------|----------|-------------------------|-------------------|--| | 7096 10 | | 20 8 | | E α : Observed only in 1998To14. An expected level of 116 keV above the (11/2 ⁻) state at (0.0+x) keV level, calculated from the 7209 α and 7096 α energy difference, has not been observed in ¹⁷⁵ Au level scheme (2001Ko44). | | 7209 8 | 0.0+x | 80 8 | ≈1.1 [†] | Eα: Weighted average of 7213 10 (1998To14), 7201 20 (1996Pa01), and 7200 20 (1983Sc24). | [†] Using $r_0=1.537$; average of $r_0(^{174}\text{Pt})=1.545\ 10$, and $r_0(^{176}\text{Hg})=1.53\ 4\ (1998\text{Ak}04)$. [‡] Normalized from 1998To14 values. [#] For absolute intensity per 100 decays, multiply by \approx 1.0.