179 Tl α decay (1.40 ms) 2017Ba46,2002Ro17,1998To14

Type Author Citation Literature Cutoff Date
Full Evaluation Jin Wu NDS 206,1 (2025) 29-Oct-2024

Parent: 179 Tl: E=0.0+x; J^{π} =(11/2⁻); $T_{1/2}$ =1.40 ms 3; $Q(\alpha)$ =6709.1 26; $\%\alpha$ decay=100

¹⁷⁹Tl-T_{1/2}: : from 2017Ba46. Others: 1.46 ms 4 (2010An01), 1.7 ms 2 (2002Ro17), 1.8 ms 4 from Eα=7213 and 1.6 ms 8 from Eα=7096 (1998To14), 0.7 ms +6-4 (1996Pa01), and 1.4 ms 5 (1983Sc24).

¹⁷⁹Tl-Q(α): From 2021Wa16.

¹⁷⁹Tl-%α decay: %α=100 (2010An01).

- 2017Ba46: The ¹⁷⁹Tl was produced through the fusion-evaporation reaction ¹⁰⁴Pd(⁷⁸Kr,p2n)¹⁷⁹Tl, using a ⁷⁸Kr¹⁵⁺ beam of 358 MeV impinging on a self-supporting rotating ¹⁰⁴Pd target with a thickness and enrichment of 745 μg/cm² and 92.25%, respectively. The evaporation residues of interest were separated from beam and unwanted reaction products using the gas-filled separator RITU and transported to the focal plane, where the HPGe GREAT spectrometer is located to detect the emitted γ rays. The isotopes of interest were implanted into a 300–μm-thick double-sided silicon strip detectors (DSSDs) placed in the center of the GRETA spectrometer, in which the decay products of α particles were detected. Measured Eγ, Eα, T_{1/2}.
- 2013An10,2010An01: The ¹⁷⁹Tl was produced in two reactions. First reaction E(p)=1.4 GeV at ISOLDE-CERN, using a target of 50 g/cm² ²³⁸U. The ¹⁷⁹Tl was ionized to 1⁺ charge by the Resonance Ionization Laser Ion Source (RILIS) and mass separated by the High Resolution (HRS) and General Purpose (GPS) Separators. Second reaction E(⁴⁰Ca)=232 MeV provided by the UNILAC of GSI, using a target of \approx 350 μ g/cm² ¹⁴⁴Sm, separated by the velocity filter SHIP at GSI. Measured E γ , I γ , E α , I α , T_{1/2}, yield using a single Miniball Ge cluster and a DSSD. Deduced J, π , α branching ratio.
- 2002Ro17: The parent 179 Tl was produced using a projectile of 78 Kr at E=355 MeV (340 MeV at midtarget) bombarding a target of 90.4% enriched 202 Pb. The recoil residues were transported to a gas-filled separator and parallel-plate avalanche counters, finally implanted into a Si strip detector. The emitted γ rays were detected with the HPGe detector. Deduced $T_{1/2}$, corrected for random correlation rates.
- 1998To14: The parent 179 Tl was produced using a projectile of 92 Mo at E=420 MeV (404 MeV at midtarget) bombarding a target of 90 Zr. The recoil residues were transported to a gas-filled separator and parallel-plate avalanche counters, finally implanted into a double sided Si strip detector with 40 in horizontal and 40 in vertical. Measured: $\text{E}\alpha$, t, $\text{I}\alpha$.
- 1996Pa01: The parent ¹⁷⁹Tl was produced from heavy-ion fusion-evaporation reactions. The recoil residues were transported to a mass separator and implanted into a double-sided Si strip detector (FWHM \leq 20 keV). Measured E α , parent and daughter T_{1/2}.
- 1983Sc24: The parent ¹⁷⁹Tl was produced using a projectile of ⁹²Mo at E=414-497 MeV bombarding a target of enriched (>95%) Rb-Mo isotopes. The recoil residues were implanted into an array of seven position surface Si detectors. The emitted γ rays were detected with the HPGe detector. Measured E α , I α .

¹⁷⁵Au Levels

 $\frac{\text{E(level)}}{0.0+\text{x}} \quad \frac{\text{J}^{\pi}}{(11/2^{-})} \quad \frac{\text{T}_{1/2}}{137 \text{ ms } I} \quad \frac{\text{Comments}}{\text{J}^{\pi}: \text{From Adopted Levels.}}$

E(level): It seems that 6568α is a g.s. to g.s. transition from ^{179}Tl (0.23 s) to ^{175}Au , and the observed 7069α and 7213α 's are from 0.0+x to 0.0+x state transitions between ^{179}Tl (1.4 ms) and ^{175}Au (1998To14). The $1/2^+$ g.s. and $11/2^-$ isomeric state, from systematics and experiment, for these isotopes also looks reasonable for these transitions with low HF values. $T_{1/2}$: from Adopted Levels. 138 ms 5 by 2010An01.

α radiations

Εα	E(level)	$I\alpha^{\dagger \ddagger}$	Comments
7096 [#] <i>10</i>		20 8	E α : Observed only in 1998To14. An expected level of 116 keV above the (11/2 ⁻) state at (0.0+x)
			keV level, calculated from the 7209α and 7096α energy difference, has not been observed in
			¹⁷⁵ Au level scheme (2001Ko44).
7207 4	0.0+x	808	Eα: Weighted average of 7206 4 (2017Ba46), 7207 5 (2010An01), 7213 10 (1998To14), 7201 20
			(1996Pa01), and 7200 20 (1983Sc24).

179 Tl α decay (1.40 ms) 2017Ba46,2002Ro17,1998To14 (continued)

α radiations (continued)

- † Normalized from 1998To14 values. ‡ Absolute intensity per 100 decays. # Existence of this branch is questionable.