¹⁷⁹Tl α decay (0.426 s) 2017Ba46,2013An10,2010An01

Type Author Citation Literature Cutoff Date
Full Evaluation Jin Wu NDS 206,1 (2025) 29-Oct-2024

Parent: ¹⁷⁹Tl: E=0.0; J^{π} =(1/2⁺); $T_{1/2}$ =0.426 s 10; $Q(\alpha)$ =6709.1 26; % α decay=60 2

¹⁷⁹Tl-T_{1/2}: from 2017Ba46. Others: 0.265 s 10 (2013An10), 0.23 s 4 (1998To14), 0.42 s 6 (2002Ro17), 0.43 s 35 (1996Pa01), 0.16 s +9-4 (1983Sc24). J^{π} : From $J^{\pi}(g.s.)$ systematics for heavier odd-A Tl isotopes.

¹⁷⁹Tl-Q(α): From 2021Wa16.

¹⁷⁹Tl-%α decay: %α=60 2 (2013An10).

- 2017Ba46: The 179 Tl was produced through the fusion-evaporation reaction 104 Pd(78 Kr,p2n) 179 Tl, using a 78 Kr $^{15+}$ beam of 358 MeV impinging on a self-supporting rotating 104 Pd target with a thickness and enrichment of 745 μ g/cm 2 and 92.25%, respectively. The evaporation residues of interest were separated from beam and unwanted reaction products using the gas-filled separator RITU and transported to the focal plane, where the HPGe GREAT spectrometer is located to detect the emitted γ rays. The isotopes of interest were implanted into a 300- μ m-thick double-sided silicon strip detectors (DSSDs) placed in the center of the GRETA spectrometer, in which the decay products of α particles were detected. Measured E γ , E α , T_{1/2}.
- 2013An10,2010An01: The ¹⁷⁹Tl was produced in two reactions. First reaction E(p)=1.4 GeV at ISOLDE-CERN, using a target of 50 g/cm² ²³⁸U. The ¹⁷⁹Tl was ionized to 1⁺ charge by the Resonance Ionization Laser Ion Source (RILIS) and mass separated by the High Resolution (HRS) and General Purpose (GPS) Separators. Second reaction E(⁴⁰Ca)=232 MeV provided by the UNILAC of GSI, using a target of \approx 350 μ g/cm² ¹⁴⁴Sm, separated by the velocity filter SHIP at GSI. Measured E γ , I γ , E α , I α , T_{1/2}, yield using a single Miniball Ge cluster and a DSSD. Deduced J^{π}, α branching ratio.
- 2002Ro17: The parent 179 Tl was produced using a projectile of 78 Kr at E=355 MeV (340 MeV at midtarget) bombarding a target of 90.4% enriched 202 Pb. The recoil residues were transported to a gas-filled separator and parallel-plate avalanche counters, finally implanted into a Si strip detector. The emitted γ rays were detected with the HPGe detector. Deduced $T_{1/2}$, corrected for random correlation rates.
- 1998To14: The parent 179 Tl was produced using a projectile of 92 Mo at E=420 MeV (404 MeV at midtarget) bombarding a target of 90 Zr. The recoil residues were transported to a gas-filled separator and parallel-plate avalanche counters, finally implanted into a double sided Si strip detector with 40 in horizontal and 40 in vertical. Measured: $\text{E}\alpha$, t, $\text{I}\alpha$.
- 1996Pa01: The parent 179 Tl was produced from heavy-ion fusion-evaporation reactions. The recoil residues were transported to a mass separator and implanted into a double-sided Si strip detector (FWHM \leq 20 keV). Measured E α , parent and daughter $T_{1/2}$.
- 1983Sc24: The parent ¹⁷⁹Tl was produced using a projectile of ⁹²Mo at E=414-497 MeV bombarding a target of enriched (>95%) Rb-Mo isotopes. The recoil residues were implanted into an array of seven position surface Si detectors. The emitted γ rays were detected with the HPGe detector. Measured E α , I α .

175 Au Levels

α radiations

[†] Additional information 1.

[‡] The nuclear radius parameter $r_0(^{175}\text{Au})=1.5297$ 36 is deduced from interpolation of radius parameters of the adjacent even-even nuclides in 2020Si16.

[#] For absolute intensity per 100 decays, multiply by 0.60 2.