174 Tm β^- decay **1975Ka32**

	Н	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, Huo Junde	NDS 87, 15 (1999)	1-Nov-1998

Parent: ¹⁷⁴Tm: E=0.0; $J^{\pi}=(4)^{-}$; $T_{1/2}=5.4 \text{ min } 1$; $Q(\beta^{-})=3.08\times10^{3} 5$; % β^{-} decay=100.0

¹⁷⁴Yb Levels

¹⁷⁴Tm g.s. probable Configuration= $(\pi \ 1/2[411]) + (\nu \ 7/2[514]).$

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0‡	0+	stable	
76.45 [‡] 5	2+		
253.0 [‡] 1	4+		
526.0 [‡] 1	6+		
889.7 [‡] 2	8+		
1318.3 [#] 2	2^{-}		
1381.5 [#] 2	3-		
1467.9 [#] 2	(4) ⁻		
1518.0 [@] 1	6+	850 μs 80	T _{1/2} : from 1964Ka15, $\gamma\gamma$ (t). J ^{π} : J ^{π} =7 ⁻ is also possible. The J ^{π} =6 ⁺ assignment is preferred from considerations of the hindrance factors per degree of K-forbiddenness of the γ rays which deexcite this level.
1569.5 [#] 10	(5 ⁻)		
1606.1 ^b 2	$(3)^{+}$		
1671.1 [@] 2	(7^{+})		
1701.2 ^b 2	4+		
1884.5 ^{<i>a</i>} 2	(5)-		
2020.5 ^{<i>a</i>} 2	(6 ⁻)		
2049.8 2	(3 ⁻)		J^{π} : odd parity from (n,γ) .
2088.4 2	(4^{-})		
2160.4 2	(4)		J ^{n} : odd parity from (n,γ) .
2330.73	(4, ,3)		
23/8./ 1	(5)		

[†] From Adopted Levels.

[‡] $K^{\pi}=0^+$ g.s. rotational band member.

[#] $K^{\pi}=2^{-}$ octupole-vibrational band member. Probable Configuration=(v 5/2[512])-(v 9/2[624]).

[@] $K^{\pi}=6^+$ band member. Probable Configuration=($\nu 7/2[514]$)+($\nu 5/2[512]$) assignment is not definite.

[&] $K^{\pi}=(5^{-})$ band member. Probable Configuration=((π 1/2(411))+(π 9/2(624))) is consistent with log *ft*=4.6 from ¹⁷⁴Tm β^{-} decay.

^{*a*} $K^{\pi}=5^{-}$ band member. Probable Configuration=($\nu 1/2[521]$)+($\nu 9/2[624]$). log *ft*=4.7 from ¹⁷⁴Tm β^{-} decay and intense 494.4

M1 γ from 2378.7 keV level requires mixing between these states.

^b $K^{\pi}=(3^+)$ band member. Probable Configuration=(ν 7/2[514])-(ν 1/2[521]).

174 Tm β^- decay 1975Ka32 (continued)

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments				
700 50	2378.7	14.3 8	4.67 12	av E β =	226 19			
				E(decay): $I\beta \approx 20\%$	from 1967Gu12. I β =18%, $\gamma\beta$ coin, Kurie-plot, scin. Other values: 600, % (1966Wi04). Other: 1964Ka16.			
$(7.4 \times 10^2 5)$	2336.7	0.4 1	6.31 15	av $E\beta =$	241 19			
$(9.2 \times 10^2 5)$	2160.4	0.9 1	6.28 10	av E β =	308 20			
$(9.9 \times 10^2 5)$	2088.4	0.5 1	6.66 12	av Eβ=	336 20			
$(1.03 \times 10^3 5)$	2049.8	1.4 2	6.24 10	av Eβ=	352 20			
1200 50	1884.5	83 5	4.73 8	av Eβ=	418 21			
				E(decay): from 1967Gu12, I β =82%, $\gamma\beta$ coin, Kurie-plot, scin. Other values: 1200 100 (1964Ka16), 1150 100 (1964Or01), 1100, I β ≈80% (1966Wi04).				

[†] From γ-ray intensity balance.
[‡] Absolute intensity per 100 decays.

 $\gamma(^{174}{\rm Yb})$

I γ normalization: From Σ (γ rays to g.s., 76, and 253 levels, except 76 γ and 176 γ)=100%. Two β^- groups of 1200 and 700 keV have been measured (1964Ka16). The first one was observed in coincidence with 366.4 γ , consistent with no β^- population to levels below 1884 keV. Positive transition intensity imbalances to levels below this energy (which suggest β^- feeding) can not be confirmed because of possible uncertainties in the decay scheme and/or low-energy

transitions between those levels, which may be significantly converted and therefore escaped detection. Measured E γ , I γ , $\gamma\gamma$ coin, detectors:Ge(Li). Others: 1971Tu02, 1967Ka13, 1967Gu12, 1966Wi04, 1964Ka15, 1964Ka16.

K x ray relative intensity=60 30 (1964Ka16), scin; 40 13 (1967Gu12), scin.

 $\boldsymbol{\omega}$

Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
76.45 [†] 5	10.5 10	76.45	2+	0.0	0+	E2		9.44	$\alpha(K) = 1.62; \ \alpha(L) = 5.95; \ \alpha(M) = 1.46; \ \alpha(N+) = 0.402$
94.9 2	0.11 3	1701.2	4+	1606.1	(3)+	M1+E2	0.56 18	4.02	$\alpha(K) = 2.84; \ \alpha(L) = 0.91; \ \alpha(M) = 0.21; \ \alpha(N+) = 0.061$
136.0 5	0.07 3	2020.5	(6 ⁻)	1884.5	(5)-			0.7 6	$\alpha(K) = 0.75; \alpha(L) = 0.2815; \alpha(M) = 0.074; \alpha(N+) = 0.01413$
138.2 5	≈0.08	1606.1	(3)+	1467.9	(4)-	[E1]		0.147	$\alpha(K) = 0.122; \ \alpha(L) = 0.0192; \ \alpha(M) = 0.00426; \ \alpha(N+) = 0.00113$
149.5 5	≈0.03	1467.9	(4) ⁻	1318.3	2-	[E2]		0.738	$\alpha(K) = 0.377; \ \alpha(L) = 0.276; \ \alpha(M) = 0.0671; \ \alpha(N+) = 0.0180$
153.1 2	0.36 7	1671.1	(7 ⁺)	1518.0	6+	[M1,E2]		0.85 17	$\alpha(K) = 0.61\ 25;\ \alpha(L) = 0.19\ 8;\ \alpha(M) = 0.045\ 20;\ \alpha(N+) = 0.012\ 4$
176.52 [†] 7	76.1 24	253.0	4+	76.45	2+	E2		0.414	$\alpha(K) = 0.237; \ \alpha(L) = 0.135; \ \alpha(M) = 0.0327; \ \alpha(N+) = 0.00885$
223.4 [†] 10	0.34 5	1606.1	(3)+	1381.5	3-	E1		0.0419	$\alpha(K) = 0.0351; \alpha(L) = 0.00528; \alpha(M) = 0.00117; \alpha(N+) = 0.000342$
233.0 5	≈0.1	1701.2	4+	1467.9	(4) ⁻	[E1]		0.0376	$\alpha(K)$ = 0.0315; $\alpha(L)$ = 0.00473; $\alpha(M)$ = 0.00105; $\alpha(N+)$ = 0.000311
272.73 [†] 10	98.6 <i>30</i>	526.0	6+	253.0	4+	E2		0.0998	$\alpha(K)$ = 0.0691; $\alpha(L)$ = 0.0235; $\alpha(M)$ = 0.00557; $\alpha(N+)$ = 0.00165 %I γ =85.7 3
288.0 [†] 5	1.77 8	1606.1	(3)+	1318.3	2-	E1		0.0221	$\alpha(K)$ = 0.0185; $\alpha(L)$ = 0.00274; $\alpha(M)$ = 0.000608; $\alpha(N+)$ = 0.000194
315.8 8	≈0.1	2336.7	(4-,5)	2020.5	(6 ⁻)			0.07 6	$\alpha(K) = 0.075; \alpha(L) = 0.0138; \alpha(M) = 0.003017; \alpha(N+) = 0.00076$
319.8 [†] 10	0.31 6	1701.2	4+	1381.5	3-	E1		0.0171	$\alpha(K)$ = 0.0143; $\alpha(L)$ = 0.00211; $\alpha(M)$ = 0.000467; $\alpha(N+)$ = 0.000152
348.5 5	0.30 15	2049.8	(3 ⁻)	1701.2	4+	[E1]		0.0139	$\alpha(K)$ = 0.0117; $\alpha(L)$ = 0.00171; $\alpha(M)$ = 0.000378; $\alpha(N+)$ = 0.000124
349.3 5	0.40 15	2020.5	(6 ⁻)	1671.1	(7 ⁺)	[E1]		0.0138	$\alpha(K)$ = 0.0116; $\alpha(L)$ = 0.00170; $\alpha(M)$ = 0.000376; $\alpha(N+)$ = 0.000123
358.1 2	0.60 6	2378.7	(5)-	2020.5	(6 ⁻)	[M1,E2]		0.07 3	$\alpha(K) = 0.06 \ 3; \ \alpha(L) = 0.011 \ 4; \ \alpha(M) = 0.0024 \ 9; \ \alpha(N+) = 0.00077 \ 15$

						174 Tm β^- decay 1975Ka32 (continued)		a32 (continued	<u>)</u>	
$\gamma(^{174}\text{Yb})$ (continued)										
Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α@	Comments	
363.7 2	3.1 3	889.7	8+	526.0	6+	[E2]		0.0423	$\alpha(K) = 0.0315; \ \alpha(L) = 0.00828; \ \alpha(M) = 0.00194; \\ \alpha(N+) = 0.000589$	
366.4 [†] 2	106 4	1884.5	(5)-	1518.0	6+	E1		0.0123	$\alpha(\mathbf{K}) = 0.0104; \ \alpha(\mathbf{L}) = 0.00151; \ \alpha(\mathbf{M}) = 0.000335; \ \alpha(\mathbf{N}+) = 0.000110$	
387.2 2	0.38 7	2088.4	(4-)	1701.2	4+	[E1]		0.0108	Mult.: from α (K)exp=0.009 4, γ -K x ray coin. α (K)= 0.00912; α (L)= 0.00132; α (M)= 0.000293; α (N+)= 0.0000952	
443.63 10	1.25 12	2049.8	(3-)	1606.1	(3)+	[E1]		0.00794	$\alpha(K) = 0.00670; \ \alpha(L) = 0.000959; \ \alpha(M) = 0.000212; \ \alpha(N+) = 0.0000656$	
452.2 2	0.34 8	2336.7	(4 ⁻ ,5)	1884.5	(5)-			0.027 23	$\alpha(K) = 0.026 \ 20; \ \alpha(L) = 0.004 \ 3; \ \alpha(M) = 0.0010 \ 6; \ \alpha(N+.) = 0.00026 \ 20$	
458.9 2	0.64 10	2160.4	(4 ⁻)	1701.2	4+	[E1]		0.00736	$\alpha(K) = 0.00621; \ \alpha(L) = 0.000887; \ \alpha(M) = 0.000196; \ \alpha(N+) = 0.0000594$	
482.4 3	0.16 6	2088.4	(4 ⁻)	1606.1	(3)+	[E1]		0.00658	$\alpha(\mathbf{X}) = 0.00556; \ \alpha(\mathbf{L}) = 0.000791; \ \alpha(\mathbf{M}) = 0.000175; \ \alpha(\mathbf{N}+) = 0.0000511$	
494.12 10	13.1 7	2378.7	(5)-	1884.5	(5)-	M1		0.0433	$\alpha(\mathbf{K}) = 0.00364; \ \alpha(\mathbf{L}) = 0.00537; \ \alpha(\mathbf{M}) = 0.00119; \alpha(\mathbf{N}+) = 0.000347$ With frame $\alpha(\mathbf{K}) = 0.006$ (4 to K to real point	
502.4 3	0.27 10	2020.5	(6 ⁻)	1518.0	6+			0.021 18	$\alpha(K) = 0.020 \ 15; \ \alpha(L) = 0.0033 \ 21$	
554.5 2	0.32 8	2160.4	(4-)	1606.1	$(3)^{+}$	[E1]		0.00488	$\alpha(K) = 0.00411; \ \alpha(L) = 0.000580$	
628.3 1	3.10 15	1518.0	6+	889.7	8+			0.012 10	$\alpha(K) = 0.011 \ 8; \ \alpha(L) = 0.0018 \ 12$	
860.75 10	1.86 10	2378.7	(5)-	1518.0	6+			0.005 4	$\alpha(K) = 0.005 \ 4; \ \alpha(L) = 0.0008 \ 5$	
991.84 10	100 4	1518.0	6^+	526.0	6^+	(M1+E2)	+1.63 20	0.00482 16	$\alpha(\mathbf{K}) = 0.00401 \ 14; \ \alpha(\mathbf{L}) = 0.000611 \ 20$	
1064.7 10	≈0.1 0.21 4	1318.3	2-	253.0	4 · 1+	E3(+M2) E1	>1.64	0.0082 11	$\alpha(\mathbf{K}) = 0.0000 \ I0; \ \alpha(\mathbf{L}) = 0.00120 \ I4$	
1128.5 2	0.16 4	1701.2	3 4 ⁺	233.0 526.0	4 6 ⁺	LI		0.00120	$\alpha(\mathbf{K}) = 0.001613, \ \alpha(\mathbf{L}) = 0.000140$ $\alpha(\mathbf{K}) = 0.0026, \ l6: \ \alpha(\mathbf{L}) = 0.00037, \ 22$	
1214.9 2	0.21 3	1467.9	(4) ⁻	253.0	4 ⁺	E1		0.00106	$\alpha(L) = 0.000894; \ \alpha(L) = 0.000122$	
$1242.1^{\dagger} 5$	1.98 10	1318.3	2-	76.45	2^{+}	E1+E3+M2				
1265.18 10	2.52 12	1518.0	6+	253.0	4+			0.0021 16	$\alpha(K)$ = 0.0022 13; $\alpha(L)$ = 0.00031 18	
1304.7 [†] 7	0.75 5	1381.5	3-	76.45	2+	E1				
1316.5 10	≈0.1	1569.5	(5 ⁻)	253.0	4+			0.0019 14	$\alpha(K)$ = 0.0020 12; $\alpha(L)$ = 0.00028 17	
1318.2 <i>3</i>	≈0.1	1318.3	2-	0.0	0^{+}	M2		0.00891	$\alpha(K) = 0.00741; \ \alpha(L) = 0.00112$	
1353.3 3	0.14 3	1606.1	$(3)^+$	253.0	4 ⁺			0.0018 13	$\alpha(\mathbf{K}) = 0.0019 \ 11; \ \alpha(\mathbf{L}) = 0.00027 \ 15$	
1358.7 3	0.07/3	1884.5	(5)	526.0	6' 4+			0.0018 13	$\alpha(\mathbf{K}) = 0.0018 \ II; \ \alpha(\mathbf{L}) = 0.00026 \ IS$	
1448.5 5	0.18 5	1/01.2	$(3)^+$	233.0 76.45	4 · 2+			0.0015 11	$\alpha(\mathbf{K}) = 0.0010 \ 9; \ \alpha(\mathbf{L}) = 0.00023 \ 13$ $\alpha(\mathbf{K}) = 0.0014 \ 8$	
1631.5 3	0.18 5	1884.5	$(5)^{-}$	253.0	4+			0.0011 0	$u(\mathbf{X}) = 0.00170$	

4

[†] Ge(Li), $\gamma\gamma$ coin (1971Tu02). [‡] From adopted gammas, unless otherwise specified.

 $^{174}_{70} \rm Yb_{104}\text{-}4$

174 Tm β^- decay 1975Ka32 (continued)

 $\gamma(^{174}$ Yb) (continued)

For absolute intensity per 100 decays, multiply by 0.87 2.
 @ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{174}_{70} \rm Yb_{104}\text{--}5$

9