	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, Huo Junde	NDS 87,15 (1999)	1-Nov-1998

 $Q(\beta^{-}) = -6.55 \times 10^{3} 4$; $S(n) = 9.57 \times 10^{3} 4$; $S(p) = 5.12 \times 10^{3} 4$; $Q(\alpha) = 3.60 \times 10^{3} 4$ 2012Wa38

Note: Current evaluation has used the following Q record -6.5E3 SY9.6E3 SY4.8E3 SY3.6E3 syst 1995Au04. Additional information 1. Other reaction: 150 Nd(30 Si,6n γ), E=178 MeV. Measured $\gamma\gamma$ coin. Detector: 8 π array of 20 hyperpure germanium detectors.

Measured γ rays from high-spin members of rotational bands, as well as strong γ rays from a quasicontinuum spectrum (1996Cr07).

Spin assignments are based on rotational structure and angular correlation data of 1978Dr04 in $^{162}Dy(^{16}O,4n\gamma)$. Additional specific arguments are given for individual levels.

¹⁷⁴W Levels

Cross Reference (XREF) Flags

- A
- 162 Dy(16 O,4n γ) 159 Tb(19 F,4n γ), 165 Ho(14 N,5n γ) В
- 169 Tm(11 B,6n γ) С
- 174 Re ε decay D

E(level) [†]	Jπ b	T _{1/2} &	XREF	Comments		
0.0 [‡]	0+	33.2 min 21	ABCD	$\sqrt[\infty]{\varepsilon} + \sqrt[\infty]{\beta^+} = 100$		
				$T_{1/2}$: weighted average (LRSW, χ^2/ν =8.1) of 35.3 min 5 (1990Me12), 33.2 min 9 (1985Sz03), 31 min 2 (1965De25,1966De22), 29 min 1 (1964Sa22), and 29 min 3 (1973CaYH).		
113.0 [‡] <i>1</i>	2+	1.14 ns 7	ABCD	J^{π} : 113.0 E2 γ to 0 ⁺ .		
356.4 [‡] 2	4+	42 ps 2	ABCD	J^{π} : 243.4 E2 γ to 2 ⁺ .		
705.95 [‡] 24	6+	4.4 ps 8	ABCD	J^{π} : 349.5 E2 γ to 4 ⁺ .		
1138.9 [‡] <i>3</i>	8+	2.6 ps 3	ABC	J^{π} : 433.0 E2 γ to 6 ⁺ .		
1364.7 [@] 4	(4 ⁻)	17 ps 10	AB	J^{π} : 1008.3 d γ to 4 ⁺ .		
1401.3 [#] 4	(5 ⁻)	9.0 ps 35	AB	J^{π} : 695.1 γ to 6 ⁺ , 1046 γ to 4 ⁺ .		
1628.5 [@] 3	(6) ⁻	13 ps 2	AB	J^{π} : 922.4 E1+M2 γ to 6 ⁺ .		
1637.5 [‡] 4	10^{+}	1.9 ps 3	ABC	J^{π} : 498.6 E2 γ to 8 ⁺ .		
1672.0 5		≥187 ns	Α			
1676.3 [#] 3	(7-)	4.9 ps 15	AB	J^{π} : 537.5 γ to 8 ⁺ , 275.0 γ to (5 ⁻).		
1705.5 5 1919.7 5		187 ^a ns 25	A A			
1963.2 [@] 3	(8 ⁻)	11 ps <i>I</i>	AB	J^{π} : 334.5 (E2) γ to (6) ⁻ , 824.2 γ to 8 ⁺ .		
1999.1 [#] 3	9-	3.0 ps 6	AB	J^{π} : 860.2 E1 γ to 8 ⁺ , 361.4 γ to 10 ⁺ .		
2189.4 [‡] 4	12+	1.1 ps 2	ABC	J^{π} : 551.9 E2 γ to 10 ⁺ .		
2329.9 [@] 4	(10^{-})	3.5 ps 10	AB	J^{π} : 366.7 (E2) γ to (8 ⁻).		
2396.4 [#] 4	(11 ⁻)	1.7 ps 3	AB	J^{π} : 397.3 (E2) γ to 9 ⁻ , 759.0 (E1) γ to 10 ⁺ .		
2751.8 [@] 5	(12 ⁻)	1.9 ps 3	AB	J^{π} : 421.9 (E2) γ to (10 ⁻).		
2785.2 [‡] 5	14+	0.6 ps 1	ABC	J^{π} : 595.8 E2 γ to 12 ⁺ .		
2861.8 [#] 4	(13 ⁻)	1.4 ps 5	AB	XREF: A(2861.8). J^{π} : 465.4 (E2) γ to (11 ⁻).		
3242.6 [@] 5	(14 ⁻)	1.7 ps 3	AB	J^{π} : 490.8 (E2) γ to (12 ⁻).		
3388.6 [#] 5	(15 ⁻)	0.9 ps 5	AB	J^{π} : 526.8 (E2) γ to (13 ⁻).		
3397.3 [‡] 6	16+	0.5 ps 2	AB	XREF: A(3397.3).		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁷⁴W Levels (continued)

E(level) [†]	Jπ <mark>b</mark>	T _{1/2} &	XREF	Comments		
				J^{π} : 612.1 E2 γ to 14 ⁺ .		
3799.4 [@] 7	(16 ⁻)		AB	J^{π} : 556.8 γ to (14 ⁻).		
3968.6 [#] 6	(17 ⁻)	≤30 ^{<i>a</i>} ns	AB	J^{π} : 580.0 (E2) γ to (15 ⁻).		
3977.7 [‡] 6	18^{+}		AB	J^{π} : 580.4 E2 γ to 16 ⁺ .		
4415.6 [@] 10	(18-)		AB	J^{π} : 616.2 γ to (16 ⁻).		
4588.6 [#] 9	(19 ⁻)	≤30 ^{<i>a</i>} ns	AB	J^{π} : 620.0 γ to (17 ⁻).		
4606.2 [‡] 7	(20^{+})		AB	J^{π} : 628.5 (E2) γ to 18 ⁺ .		

[†] From 162 Dy(16 O,4n γ) (1978Dr04).

[‡] Band(A): $K^{\pi}=0^+$ g.s.-rotational band.

[#] Band(B): $K^{\pi} = (4^{-})$ band, odd-spin members.

^(a) Band(C): K^{π} =(4⁻) band, even-spin members. [&] From recoil distance technique in ¹⁵⁹Tb(¹⁹F,4n γ) (1987Ga14), unless otherwise specified.

^{*a*} From $\gamma\gamma(t)$ in ¹⁶²Dy(¹⁶O,4n γ) (1978Dr04).

^b J^{π} assignments are based on rotational structure, and on γ -ray multipolarities and decay patterns. Specific arguments are given with individual levels.

 $\gamma(^{174}W)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α [#]	Comments
113.0	2+	113.0 1	100	0.0	0+	E2		2.45	B(E2)(W.u.)=135 9
356.4	4+	243.4 <i>1</i>	100	113.0	2+	E2		0.164	B(E2)(W.u.)=235 12
705.95	6+	349.5 2	100	356.4	4+	E2		0.0549	B(E2)(W.u.)=410 80
1138.9	8+	433.0 2	100	705.95	6+	E2		0.0305	B(E2)(W.u.)=240 30
1364.7	(4 ⁻)	1008.3 4	100	356.4	4+	[E1]		0.00177	$B(E1)(W.u.)=1.2\times10^{-5} 8$
1401.3	(5 ⁻)	695.1 4	100 21	705.95	6+	[E1]		0.00360	$B(E1)(W.u.)=4.2\times10^{-5}$ 17
		1046 <i>1</i>	70 18	356.4	4+	[E1]		0.00165	B(E1)(W.u.)=9.E-6 5
1628.5	$(6)^{-}$	263.8 4	25 6	1364.7	(4 ⁻)	[E2]		0.127	B(E2)(W.u.)=120 40
		922.4 2	100 7	705.95	6+	E1(+M2)	≤0.38		δ: from $α$ (K)exp, (¹⁶ O,4nγ). From
1627 5	10+	109 6 2	100	1129.0	0 +	ED		0.0212	RUL one expects $o < 0.1$. P(E2)(W ₁₁)=160.20
1672.0	10	498.0 2	~100	705.05	o 6 ⁺	EZ		0.0215	B(E2)(W.u.) = 100.50
1676.3	(7^{-})	275.0.3	~100	1401 3	(5^{-})	[F2]		0.112	$B(F2)(W_{11}) \le 400$
1070.5	(r)	537 5 2	100 18	1138.9	(J) 8 ⁺	[E2]		0.00612	$B(E1)(W_{III}) = 0.00015.6$
		970 5 3	59 20	705.95	6 ⁺	[E1]		0.00189	$B(E1)(W_{III}) = 1.5 \times 10^{-5} 8$
1705 5		999.8.4	100	705.95	6 ⁺	[121]		0.00102	D(E1)(W.u.)=1.5×10 0
1919.7		214.3 3	100	1705.5	0				
		247.6 3	≤83	1672.0					
1963.2	(8^{-})	287.2 <i>3</i>	≤21	1676.3	(7^{-})	[M1,E2]		0.18 8	
		334.5 6	100 6	1628.5	$(6)^{-}$	(E2)		0.0622	B(E2)(W.u.)=141 18
		824.2 2	32 5	1138.9	8+	[E1]		0.00258	$B(E1)(W.u.)=7.5\times10^{-6}$ 15
1999.1	9-	322.7 <i>3</i>	54 10	1676.3	(7^{-})	(E2)		0.0690	B(E2)(W.u.)=310 90
		361.4 <i>3</i>	≤10	1637.5	10^{+}	[E1]		0.0148	B(E1)(W.u.)=5.E-5 5
		860.2 2	100 6	1138.9	8+	E1		0.00237	$B(E1)(W.u.)=7.0\times10^{-5}$ 15
									Mult.: from $\alpha(K)$ exp.
2189.4	12^{+}	551.9 2	100	1637.5	10^{+}	E2		0.0167	B(E2)(W.u.)=170 40
2329.9	(10^{-})	366.7 2	100 6	1963.2	(8 ⁻)	(E2)		0.0479	B(E2)(W.u.)=400 120
2396.4	(11^{-})	397.3 2	100	1999.1	9-	(E2)		0.0384	B(E2)(W.u.)=390 70
		759.0 <i>3</i>	44 3	1637.5	10+	(E1)		0.00302	$B(E1)(W.u.) = 8.7 \times 10^{-5} 17$
2751.8	(12^{-})	421.9 2	100	2329.9	(10^{-})	(E2)		0.0327	B(E2)(W.u.)=370 60

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{174}W)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α #	Comments
2785.2	14+	595.8 <i>3</i>	100	2189.4 12+	E2	0.0139	B(E2)(W.u.)=210 40
2861.8	(13^{-})	465.4 2	100	2396.4 (11 ⁻)	(E2)	0.0253	B(E2)(W.u.)=310 120
3242.6	(14^{-})	490.8 2	100	2751.8 (12 ⁻)	(E2)	0.0221	B(E2)(W.u.)=200 40
3388.6	(15^{-})	526.8 <i>3</i>	100	2861.8 (13 ⁻)	(E2)	0.0187	B(E2)(W.u.)=260 150
3397.3	16^{+}	612.1 3	100	2785.2 14+	E2	0.0131	B(E2)(W.u.)=230 90
3799.4	(16 ⁻)	556.8 5	100	3242.6 (14-)			
3968.6	(17^{-})	580.0 2	100	3388.6 (15 ⁻)	(E2)	0.0148	
3977.7	18^{+}	580.4 2	100	3397.3 16+	(E2)	0.0148	
4415.6	(18^{-})	616.2 7	100	3799.4 (16 ⁻)			
4588.6	(19 ⁻)	620.0 7	100	3968.6 (17-)	[E2]	0.0127	
4606.2	(20 ⁺)	628.5 <i>3</i>	100	3977.7 18+	(E2)	0.0123	

[†] From (¹⁶O,4n γ).

[‡] From $\gamma(\theta)$, and RUL for transitions with a known half-life, and DCO (directional correlation from oriented nuclei).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Level Scheme

Intensities: Relative photon branching from each level

 $^{174}_{~74}W_{100}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{174}_{~74}\rm{W}_{100}$

 $^{^{174}}_{~74}\rm{W}_{100}$