¹⁷⁸Pt α decay **1998Ak04**

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, Huo Junde	NDS 87, 15 (1999)	1-Nov-1998				

Parent: ¹⁷⁸Pt: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=21.1$ s 6; $Q(\alpha)=5573$ 3; $\%\alpha$ decay=4.6 31

- The measured half-lives are 22 s 2 (1993Me13), 21 s *I* (1982Bo04), 19 s 2 (1970Ha18), 21.2 s 8 (1968De01) and 21.3 s *I*5 (1966Si08). $T_{1/2}$ (¹⁷⁸Pt)=21.1 s 6, the weighted average of the measured values is adopted in 1994Br18, and used here.
- The intensities of $I\alpha(5446\alpha)=1.3\%$ and $I\alpha(5284\alpha)=0.07\%$ were obtained by 1966Si08 from the relative α intensities and the relative (¹⁶O,xn) production cross-sections of platinum isotopes for ¹⁶⁸Yb-¹⁷⁴Yb enriched targets. It was assumed that the ratios of maximum cross sections for x=6,7, and 8 are the same for all ytterbium targets.
- The α intensities of I α (5446 α)=7.2% 8 and I α (5284 α)=0.20% 7, reported by 1970Ha18, give α -decay branching=7.4% 9. The isotope was produced in the ¹⁸²Hg α decay, and α branching was obtained by comparing parent and daughter α activities. The 5284-keV α peak was obscured in the singles spectrum by ²¹⁰Po contamination; its assignment was based on α - γ coincidences. The reported I α (5446 α)/I α (5284 α) ratio was obtained by assuming 10% of the 5284-keV α peak was from ¹⁸²Au, produced in the β decay of ¹⁸²Hg.
- The α branching was reported by 1980Sc09 as 7.5% 3, presumably for the main α group. In this case, the 5284 α intensity should be added. The isotope ¹⁷⁸Pt was produced by 1980Sc09 in ¹⁸⁶Pb α decay. The α branching of ¹⁷⁸Pt was determined from comparison of intensities of parent and daughter activities in the same spectrum. The considered activities of ¹⁷⁸Ir and ¹⁷⁴Os (β and α daughters of ¹⁷⁸Pt) and their intensities are not given in 1980Sc09.
- $\%\alpha$ =7.7 *3* is adopted in 1994Br18 from I α (5440 α)=7.5% 3 (1980Sc09) and I α (5284 α)/I α (5440 α)=0.028 *10* (1970Ha18). Adoption of the ratio I α (5284 α)/I α (5440 α)=0.07/1.3=0.054 (1966Si08) would give $\%\alpha$ =7.9 *4*.
- The calculated radius parameters are $r_0=1.570 \ 3$ and $r_0=1.484$, for $\%\alpha=7.7 \ 3$ and $\%\alpha=1.4$, respectively. The r_0 systematics suggests $r_0=1.540$ from which the partial α half-life of the 5446 α is calculated as 4.6×10^2 s, yielding an absolute value of $I\alpha(5446\alpha)=4.6\%$ and therefore, the α branching of $\%\alpha=4.8$.
- Based on the uncertainties of the experimental branchings due to the assumptions had been made and based on the r_0 systematics, $\%\alpha=4.6$ 31, an average value with a large uncertainty in order to cover all values is suggested here.

 $Q(\alpha)(^{178}Pt)=5573.4\ 26\ is\ from\ 1995Au04.\ E\alpha=5446\ 3\ gives\ Q(\alpha)=5571\ 3.$

¹⁷⁴Os Levels

E(level)	J^{π}
0.0	0^{+}
158.7 <i>3</i>	2^{+}

 α radiations

Eα	E(level)	$\mathrm{I}\alpha^{\dagger \#}$	HF [‡]	Comments
5291 4	158.7	5.1 24	3.3 16	$E\alpha$: calculated from E(level)=158.7 3 and $E\alpha$ (g.s.)=5446 3.
5446 <i>3</i>	0.0	94.9 24	1.0	E α : the measured α energies (adjusted, as recommended by 1991Ry01, for the changes in
				the calibration energies) are 5440 10 (1966Si08), 5443 10 (1978Fa16), 5458 5
				(1979Ha10), 5445 3 (1982Bo04), $E\alpha = 5446$ 3 is recommended by 1991Rv01.

[†] α intensity per 100 α decays. Relative α intensities of I α (to 2⁺)/I α (to 0⁺)=7/130=0.054, measured by 1966Si08, is recommended here, since the α peaks in the spectrum of 1966Si08 were not obscured. I α (to 2⁺)/I α (to 0⁺)=0.028 *10* was measured by 1970Ha18. This ratio gives I α (5446 α)=97.3, I α (5284 α)=2.7 per 100 α decays. Uncertainties on I α (no Δ I α 's are reported in 1966Si08) are assigned here such that I α 's of 1970Ha18 will be covered.

 $\frac{1}{7}$ r₀(¹⁷⁴Os)=1.54 *3* is calculated by requiring Hf(5446 α)=1.0.

[#] For absolute intensity per 100 decays, multiply by 0.046 31.