¹⁷⁴Lu IT decay (142 d) 1987Va34

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, Huo Junde	NDS 87, 15 (1999)	1-Nov-1998					

Parent: ¹⁷⁴Lu: E=170.83 5; $J^{\pi}=(6^{-})$; $T_{1/2}=142$ d 2; %IT decay=99.38 2

Additional information 1.

Others: 1959Di44, 1962Dz07, 1965Fu01, 1965Ri05, 1967Gi06, 1969Ka19, 1975Ki06. 174 Lu (142 d) produced with 40 Ar (E=304 MeV), 84 Kr (E=714 MeV), and 136 Xe (E=1156 MeV) on tungsten targets (1987Va34). No additional ¹⁷⁴Lu isomers with $T_{1/2}>2$ min were observed (1983Zy02).

Measured γ rays (1975Ki06); conversion electrons (1969Ka19,1967Gi06).

¹⁷⁴Lu Levels

E(level)@	$J^{\pi \#}$	T _{1/2}	Comments
0.0^{\dagger}	(1^{-})	3.31 y 5	$T_{1/2}$: from Adopted Levels, gammas.
44.686 [†] 7	(2 ⁻)		
111.747 [†] 9	(3 ⁻)		
170.83 [‡] 5	(6 ⁻)	142 d 2	$T_{1/2}$: from Adopted Levels, gammas.

[†] $K^{\pi}=(1^{-})$ g.s.-rotational band member. Possible Configuration=(π 7/2[404])-(ν 5/2[512]). Experimental μ =1.94 28 $\gamma(\theta,H,t)$ compares with μ =+1.85 (theory) for this configuration (1975Kr11).

 ‡ K^{π}=(6⁻) rotational band member. Possible Configuration=(π 7/2[404])+(ν 5/2[512]). Experimental μ =1.497 10 compares with μ =+1.76 (theory) for this configuration (1975Kr11).

[#] From Adopted Levels.

[@] Deduced by evaluator from a least-squares fit to γ -ray energies of 1987Va34.

 $\gamma(^{174}Lu)$

Iy normalization: From decay scheme if no ε feeding to ¹⁷⁴Yb g.s. from ¹⁷⁴Lu(142 d), and Ti(273 γ , ε decay)+Ti(1264 γ , ε decay)+Ti(44 γ) + Ti(112 γ)=100%.

Measured x-ray intensities are: $K\alpha_2$ x ray=3840 90, $K\alpha_1$ x ray=6578 134, $K\beta_1$ x ray=2153 117, $K\beta_2$ x ray=574 18 (1987Va34).

E_{γ}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α #	Comments
44.683 3	2291 50	44.686	(2 ⁻)	0.0	(1 ⁻)	M1+E2	≈0.05	6.9 3	$\begin{aligned} \alpha(L) &= 5.33 \ 19; \ \alpha(M) &= 1.20 \ 5 \\ E_{\gamma}: \ \text{other values:} \ 44.7 \ (1967Gi06), \ 44.65 \\ (1960Ha18), \ 44.681 \ 20 \ (1975Ki06), \\ 44.73 \ 2 \ (1969Ka19). \\ I_{\gamma}: \ \text{other value:} \ 2037 \ 44 \ (1975Ki06), \\ \text{Mult.,} \delta: \ \text{from ce}(L1) + \text{ce}(L2)/\text{ce}(L3) \\ &= xp = 37.7 \ 40, \ \text{ce}(L1)/\text{ce}(L3) \ \exp = 28 \ 2 \\ (1969Ka19). \ \text{Other data reported:} \\ &= (L3)/\text{ce}(L) \ \exp = 0.028 \ 3, \\ &= (L1):\text{ce}(M):\text{ce}(N) + \text{ce}(O) \ \exp = 2410 \\ 50:558 \ 11:128 \ 2 \ (1967Gi06). \ \text{Other} \\ &= xalues: \ \text{ce}(L1):\text{ce}(L2):\text{ce}(L3) \ \exp = 580 \\ 10:100:52 \ 2, \ \text{ce}(M1):\text{ce}(M2):\text{ce}(M3): \\ &= (M4) + \text{ce}(M5) \ \exp = 1000 \ 100:100:40 \\ 10:50 \ 10 \ (1969Ka19); \\ &= (L1):\text{ce}(L2):\text{ce}(L3):\text{ce}(M): \ \text{ce}(N) \\ &= xp = 1290:160:\text{ap}5:350:115 \ (1960Ha18). \end{aligned}$
59.08 2	5.3 2	170.83	(6 ⁻)	111.747	(3 ⁻)	M3		3321	$\alpha(L) = 2427; \alpha(M) = 688;$

 $^{174}_{71} Lu_{103} - 2$

			¹⁷⁴ Lu IT decay (142 d)			1987Va3	4 (continue)	
						$\gamma(^{174}Lu)$ (continued)		
Eγ	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α #	Comments
									$\begin{array}{rl} \alpha(\mathrm{N+}) = & 206 \\ \mathrm{E}_{\gamma}: \mbox{ from 1969Ka19, 1987Va34. Other values: 59.1 (1967Gi06); 59.05 \\ (1960Ha18). \\ \mathrm{I}_{\gamma}: \mbox{ from intensity balance, } \\ \mathrm{Ti}(59\gamma) = 17545 \ 614, \mbox{ and } \alpha \\ (theory,\mathrm{M3}) = 3320. \\ \mbox{Mult.: from ce(L1):ce(L2):ce(L3)} \\ \mbox{ exp} = 720 \ 20:100:1630 \ 30 \ (1969Ka19). \\ \mbox{Other data reported: ce(M1)/ce(M3)} \\ \mbox{ exp} = 0.7 \ 1 \ (1969Ka19). \\ \mbox{Other values: ce(L):ce(M):ce(N)} \\ \mbox{ ce(L1):ce(L2):ce(L3):ce(M):ce(N)} \\ \mbox{ ce(L1):ce(L2):ce(L3):ce(M):ce(N)} \\ \mbox{ ce(L1):ce(L2):ce(L3):ce(M):ce(N)} \\ \mbox{ ce(L1):ce(L3):ce(M):ce(N)} \\ \mbox{ ce(L1):ce(L3):ce(M):ce(N)} \\ \mbox{ ce(L3):ce(M):ce(N)} \\ \mbox{ ce(L3):ce(M):ce(N)} \\ \mbox{ ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N)} \\ \mbox{ ce(N):ce(N):ce(N):ce(N):ce(N)} \\ ce(N):ce(N)$
67.058 <i>3</i>	1336 27	111.747	(3 ⁻)	44.686	(2 ⁻)	M1+E2	+0.09 1	12.0	α(K) = 9.88; α(L) = 1.64; α(M) = 0.370; α(N+) = 0.106 E _y : other values: 67.075 25 (1975Ki06), 67.08 2 (1969Ka19), 67.10 (1969Gu15), 67.1 (1967Gi06), 67.05 (1960Ha18). I _y : other value: 1107 (1969Gu15). Other: 1975Ki06. δ: from ce(L1)/ce(L3) exp=20 2 (1969Ka19). Sign from γ(θ,H,t) (1975Kr11). Other data reported: ce(L1)/ce(L2) exp=3-10, ce(M1)/ce(M2) exp=2.7 5 (1969Ka19). Other values: ce(K):ce(L):ce(M) exp=1230-2415:335 10:68 3 (1967Gi06); ce(L1)/ce(L)+ce(M) exp=3.4 s (1960Ha18). δ>0 γ(θ,H,t) (1975Kr11). Mult.: from α(K)exp=10.25 58 (1974Vi05). Other value: 11.01 44 (1975Ki06). This latter measurement was performed using a source produced by ¹⁷⁵ Lu(n,2n). Although authors have corrected the measured K x ray intensity for x-ray fluorescence in the source, the correction may not have completely removed this contribution, causing an≈7% increase in the value of α(K)exp. α(K)exp=10.30 26
111.762 7	55.0 <i>15</i>	111.747	(3 ⁻)	0.0	(1 ⁻)	E2		2.23	(198 / Va34). $\alpha(K) = 0.784; \alpha(L) = 1.10; \alpha(M) = 0.270; \alpha(N+) = 0.0750$ E_{γ} : other values: 111.66 (1969Gu15), 111.7 <i>I</i> (1975Ki06), 111.8 (1967Gi06). I_{γ} : other values: 60 (1969Gu15), 51 <i>3</i> (1975Ki06), 59 <i>2</i> (1984Ke13). Mult.: from $\alpha(L)(\exp) = 1.5 2$, calculated by evaluator assuming 67γ is M1+0.8% E2 using ce(L) from 1067Gi06 and by from 1087Va24
126.2	2.8 20	170.83	(6 ⁻)	44.686	(2 ⁻)	[E4]		266	$\alpha(K) = 5.48; \alpha(L) = 191; \alpha(M) =$

Continued on next page (footnotes at end of table)

¹⁷⁴Lu IT decay (142 d) **1987Va34** (continued)

$\gamma(^{174}Lu)$ (continued)

 E_{γ} E_i (level)

Comments

54.2; α (N+..)=

 E_{γ} : from 1967Gi06, 1987Va34.

 I_{γ} : from intensity balance, Ti(126 γ)=754 529, α (theory, E4)=266.

15.6

[†] Intensities are relative to 100 for 992 γ with ε .

 \ddagger For absolute intensity per 100 decays, multiply by 0.00543 12.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

