173 Yb(α ,t),(3 He,d) 1972On02 | History | | | | | | | | | | |-----------------|----------------------|-------------------|------------------------|--|--|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | | | Full Evaluation | E. Browne, Huo Junde | NDS 87, 15 (1999) | 1-Nov-1998 | | | | | | | Target: 95% enriched $^{173}\text{Yb}(J^{\pi}=5/2^{-})$. Spectrometer: magnetic. Results have been interpreted using the Nilsson model with pairing and Coriolis mixing included. The only orbitals considered are those for which the transferred proton is coupled to the 5/2[512] neutron of the target nucleus. See Adopted Levels for evaluator's spin assignments. #### ¹⁷⁴Lu Levels Band(E,Q) $K^{\pi}=3^+$ band member. Proposed Configuration= $(\pi \ 1/2[541])+(\nu \ 5/2[512])$. This band is Coriolis mixed with Configuration= $(\pi \ 1/2[541])+(\nu \ 5/2[512])$. Band(L,M) $K^{\pi}=2^{+}$ band member. Proposed Configuration= $(\pi 9/2[514])-(\nu 5/2[512])$. E(O,Q,R) Observed in (³He,d) only. | E(level) [‡] | J^{π} | T _{1/2} | L [†] | Comments | |----------------------------------|-------------------------------------|------------------|----------------|----------------------------------| | 0.0 [#] 44 [#] | 1- | | (4) | | | 44# | 2- | | (4) | | | 112 [#] | 3- | | (4) | | | 170 [@] | 6- | 142 d 2 | (4) | $T_{1/2}$: from Adopted Levels. | | 202 [#] | 4- | | (-) | -1/2· | | 239 <mark>&</mark> | 3 ⁺ | | | | | 257 <mark>&</mark> | 4+ | | | | | 281 <mark>&</mark> | 2^{+i} | | | | | 300 <mark>&</mark> | 5 ⁺ | | | | | 323 <i>j</i> | - | | | | | 367 <mark>&</mark> | 6+ | | | | | 413 | 3+ | | | | | 428? ^h | | | | | | 455 ^a | 5- | | (2) | | | 506 | 4+ | | | | | 516 ^b | 1- | | (2) | | | 527 ^c | (7 ⁺) | | (2) | | | 553 ^b
561 | 0- | | (2) | | | ≈578 | | | | | | 620 <mark>b</mark> | 3- | | (2) | | | 637 ^b | | | (2) | | | 640 | 2 ⁻
5 ⁺ | | | | | 659 ^c | 8+ | | (5)
5 | | | 692 <mark>8</mark> | 3+ | | 5 | | | $714\frac{gk}{h}$ | | | | | | 723 ^h | | | | | | 746 <mark>&</mark> | (6 ⁺)
4 ⁺ | | ~ | | | 771
809 <mark>8</mark> | 4™ | | 5 | | | 831 | | | | | | 051 | | | | | $^{^{173}}$ Yb(α,t), E=28.5 MeV, FWHM=12 keV, θ=20°, 60°, and 75°. $^{^{173}}$ Yb(3 He,d), E=12 MeV, FWHM=16-20 keV, θ =30°, 38°, and 50°. ### 173 Yb(α ,t),(3 He,d) 1972On02 (continued) ### ¹⁷⁴Lu Levels (continued) | E(level) [‡] | J^{π} | L^{\dagger} | E(level)‡ | \mathbf{J}^{π} | E(level)‡ | J^π | E(level) [‡] | |-----------------------|----------------|---------------|-------------------|--------------------|-------------------|------------------|-----------------------| | 875 | 5 ⁺ | 5 | 1261 ^d | 3 ⁺ | 1535 <i>dl</i> | (6^{+}) | 1829 | | 906 | | | 1286 ^h | | 1558 ^f | (5^{+}) | 1847 | | 923 | | | 1293 ^e | 2+ | 1592 | | 1868 | | 953 | | | 1301 ^h | | 1609 | | 1903 | | 1007 | | | 1328 ^d | 4+ | 1640 | | 1927 | | 1028 | | | 1363 | | 1664 | | 1940 | | 1061 ^h | | | 1379 | | 1689 | | 1979 | | 1108 | | | 1391 | | 1716 ^l | | 2012 | | 1132 | | | 1422 ^d | 5 ⁺ | 1738 | | 2096 | | 1166 | | | 1438 ^f | (4^{+}) | 1753 | | 2120 | | 1209 | | | 1460 ^h | | 1771 | | 2155 | | 1240 ^h | | | 1476 | | 1801 | | | [†] L transfer values have been inferred (within one unit) from comparison of experimental cross section ratios $\sigma(^3\text{He,d})/\sigma(\alpha,t)$ with theoretical values. Spin assignments are based on rotational structure, L transfers, and measured cross sections (fingerprint). L=4 have been assumed by 1972On02 for the g.s., 44, 112, and 170 keV states for normalization of the experimental cross sections. [‡] Average from (3 He,d) and (α ,t). Energy uncertainties are \approx 1 keV except for levels populated by very weak peaks or unresolved doublets. [#] Band(A): $K^{\pi}=1^{-}$ ground-state rotational band member. Proposed Configuration= $(\pi 7/2[404])-(\nu 5/2[512])$. [@] Band(B): $K^{\pi}=6^{-}$ band member. Proposed Configuration= $(\pi 7/2[404])+(\nu 5/2[512])$. [&]amp; Band(C): $K^{\pi}=2^{+}$ band member. proposed Configuration= $(\pi \ 1/2[541])$ - $(\nu \ 5/2[512])$. This band is Coriolis mixed with Configuration= $(\pi \ 1/2[541])$ + $(\nu \ 5/2[512])$ $\nu \ 5/2[512]$. ^a Band(D): $K^{\pi}=5^{-}$ band member. Proposed Configuration= $(\pi 5/2[402])+(\nu 5/2[512])$. ^b Band(E): $K^{\pi}=0^{-}$ band member. Proposed Configuration= $(\pi 5/2[402])-(\nu 5/2[512])$. ^c Band(F): $K^{\pi}=7^{+}$ band member. Proposed Configuration= $(\pi 9/2[514])+(\nu 5/2[512])$. ^d Band(G): $K^{\pi}=3^{+}$ band member. Proposed Configuration= $(\pi \ 1/2[530])+(\nu \ 5/2[512])$. ^e Band(H): $K^{\pi}=2^{+}$ band member. Proposed Configuration= $(\pi \ 1/2[530])$ - $(\nu \ 5/2[512])$. ^f Band(I): $K^{\pi}=(4^+)$ band member. Proposed Configuration= $(\pi 3/2[532])+(\nu 5/2[512])$. ^g Possible unresolved multiplet. ^h Observed in (α,t) only. ⁱ See Adopted Levels for adopted spin. ^j Doublet. ^k Observed in (³He,d) only. ^l Possible unresolved doublet. #### 173 **Yb**(α ,**t**),(3 **He**,**d**) 1972On02 Band(C): $\mathbf{K}^{\pi} = \mathbf{2}^{+}$ band member (6^{+}) 746 > Band(F): $K^{\pi}=7^+$ band member Band(E): $K^{\pi}=0^-$ band member 659 637 620 553 **(7**⁺) 527 516 Band(D): $K^{\pi}=5^-$ band member 367 300 281 257 239 Band(A): K^{π} =1 $^-$ ground-state rotational band member Band(B): $K^{\pi}=6^-$ band 202 member 170 112 44 0.0 $^{174}_{71}\mathrm{Lu}_{103}$ # 173 Yb(α ,t),(3 He,d) 1972On02 (continued) Band(I): $K^{\pi}=(4^+)$ band member (5⁺) 1558 Band(G): $K^{\pi}=3^+$ band member (6⁺) 1535 (4⁺) 1438 <u>5</u>⁺ 1422 4+ 1328 Band(H): $K^{\pi}=2^{+}$ band member 2⁺ 1293 <u>3</u>⁺ <u>1261</u> $^{174}_{71}\mathrm{Lu}_{103}$