¹⁷³Lu ε decay **1992Ad08**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	V. S. Shirley	NDS 75,377 (1995)	1-Oct-1993

Parent: ¹⁷³Lu: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=1.37$ y *1*; $Q(\varepsilon)=670.8$ *17*; $\%\varepsilon$ decay=100.0

The decay scheme and all data are from 1992Ad08, except where noted. Sources from spallation of tantalum by 660-MeV protons, chemical, mass separations; measured E_γ, I_γ (high-purity germanium detector, FWHM=500 eV at 122 keV; anti-Compton spect), E(ce), Ice (Si(Li) detector, FWHM=1.5 keV at 150 keV), differential-integral coin (Ge(Li)-NaI). Reference citations are given with data from other sources. Others: 1957Bo61, 1957Go78, 1958Dz96, 1958Go85, 1959Bi11, 1959Di44, 1960Ro14, 1960Wi06, 1961Be34, 1961Va36, 1963Ba28, 1966Ja16, 1979Dz02, 1984Se08.

¹⁷³Yb Levels

See ¹⁷³Yb Adopted Levels for magnetic moments from g-factors measured in ¹⁷³Lu ε decay (1983Ca28).

E(level)	J^{π}	T _{1/2} †	Comments
0.0 [‡]	5/2-	stable	
78.647 [‡] <i>12</i>	7/2-	46 ps 5	T _{1/2} : values from ¹⁷³ Lu ε decay: 38 ps 5 (γ ce(t) (1961Be37)), 52 ps 6 (microwave pulsed beam (1971Da17)).
179.364 [‡] 9	9/2-	32 ps 4	
301.859 [‡] <i>14</i>	$11/2^{-}$	16.7 ps 15	
350.764 [#] 10	7/2+	0.45 ns 2	T _{1/2} : values from ¹⁷³ Lu ε decay: 0.47 ns 3 (X γ (t) (1961Be34)), 0.42 ns 7 (X γ (t) (1961Va36)), 0.43 ns 3 (X γ (t) (1966Ja16)).
412.967 [#] 11	$9/2^{+}$		
636.128 11	7/2-	8.0 ps 26	$T_{1/2}$: see ¹⁷³ Yb Adopted Levels regarding half-life, as measured in ¹⁷³ Lu ε decay.

[†] Adopted values.

[‡] 5/2[512] band member.

7/2[633] band member.

ε radiations

g.s. feeding is from x-ray intensity data (1992Ad08); excited-state feedings, from intensity imbalance at each level.

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments						
(34.7 17)	636.128	2.93 6	6.38 7	εL=	0.65 9; <i>E</i> M+=	= 0.35 4				
(257.8 17)	412.967	3.04 14	8.94 <i>3</i>	$\varepsilon K=$	0.759 <i>13</i> ; εL=	0.183 <i>3</i> ; <i>ε</i> M+=	0.0584 8			
(320.0 17)	350.764	22.1 4	8.30 1	$\varepsilon K =$	0.777 <i>10</i> ; εL=	0.1694 <i>19</i> ; <i>E</i> M+=	0.0534 6			
(491.4 17)	179.364	20.9 7	8.76 2	$\varepsilon K =$	0.801 6; <i>E</i> L=	0.1523 <i>11</i> ; εM+=	0.0472 3			
(592.2 17)	78.647	50 <i>3</i>	8.56 <i>3</i>	$\varepsilon K =$	0.807 5; εL=	0.1475 9; εM+=	0.0454 3			
(670.8 17)	0.0	≤2.2	≥10.0	$\varepsilon K =$	0.811 5; <i>E</i> L=	0.1448 7; <i>ε</i> M+=	0.04443 23			
				$I(\varepsilon + \beta^+)$: estimated from x-ray intensity data (1992Ad08).						

[†] Absolute intensity per 100 decays.

Iy normalization: from total I(γ +ce) to g.s.=98.9% 11 (ε feeding to g.s. \leq 2.2%).

К :	c ray	data (1992Ad08);	intensities	relative to	$I\gamma(272.1\gamma) = 100.0.$
			E(x ray)	I(x ray)	from decay scheme
	Yb	$K\alpha_2$ x ray	51.354	231.0 5	207 6
	Yb	$K\alpha_1$ x ray	52.389	365.0 8	364 10
	Yb	$K\beta_1'$ x ray	59.4	105.3 26	151 5 (K β_1 ' x ray + K β_2 ' x ray)
	Yb	$\mathtt{K}eta_2'$ x ray	61.0	27.6 10	

E_{γ}	$I_{\gamma}^{@}$	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [†]	δ	α &	Comments
62.17 <i>3</i>	0.79 4	412.967	9/2+	350.764 7/2+	M1+E2	0.29 4	13.5	$\alpha(K)$ = 9.81; $\alpha(L)$ = 2.87; $\alpha(M)$ = 0.67; $\alpha(N+)$ = 0.187
								Mult., δ : from α (L)exp=2.7 4 (x-ray and γ intensity data, 1983Va20) and L1:L2:L3=0.83 23:0.34 15:0.41 9 (1970BaYI). δ =0.26 +6-7 from α (L)exp and δ =0.30 5 from L1:L2:L3. δ =0.17 14 (1992Ad08).
78.63 <i>3</i>	56.0 8	78.647	7/2-	0.0 5/2-	M1+E2	-0.224 14	7.01	$\alpha(K) = 5.59; \ \alpha(L) = 1.09; \ \alpha(M) = 0.250; \ \alpha(N+) = 0.0718$
								δ: magnitude from weighted average of 0.232 <i>14</i> (L1:L2:L3, 1959Ha09), 0.256 <i>10</i> (γγ(θ), 1965Ho05), 0.220 9 (L1:L2:L3, 1976KaYV), and 0.187 <i>11</i> (γγ(θ), ceγ(θ), 1982Bu16); sign from nuclear orientation (1975Kr11,1983Kr18). Other values range from -0.14 to -0.26 .
100.724 20	24.7 4	179.364	9/2-	78.647 7/2-	M1+E2	-0.205 10	3.38	$\alpha(K)$ = 2.76; $\alpha(L)$ = 0.481; $\alpha(M)$ = 0.109; $\alpha(N+)$ = 0.0316
								δ: magnitude from weighted average of 0.21 2 (K:L1:L2:L3, 1970BaYI), 0.19 2 (L1:L2:L3, 1969Ka34), 0.22 2 (nuclear orientation, 1983Kr18), and 0.201 19 (γγ(θ), ceγ(θ), 1982Bu16); sign from nuclear orientation (1975Kr11,1983Kr18). Other values range from -0.12 to -0.3
111.109 12	0.252 10	412.967	9/2+	301.859 11/2-	[E1]		0.261	$\alpha(K) = 0.216; \ \alpha(L) = 0.0350; \ \alpha(M) = 0.00777; \ \alpha(N+) = 0.00215$
122.55 3	0.079 <i>3</i>	301.859	11/2-	179.364 9/2-	M1+E2	-0.22 6	1.92	$\alpha(K) = 1.58; \ \alpha(L) = 0.266; \ \alpha(M) = 0.060; \ \alpha(N+) = 0.0169$
								Mult., δ : from Coulomb excitation. Other value for δ : -0.17 <i>11</i> (nuclear orientation (1975Kr11)).
171.393 <i>13</i>	13.7 5	350.764	7/2+	179.364 9/2-	E1+M2	≈-0.026	0.086 4	α(K) = 0.072 3; α(L) = 0.0112 6; α(M) = 0.00250 13; α(N+) = 0.00067 5 δ: magnitude from average of≈0.039 (L1:L2, 1976KaYW),≈0.021 (α(K)exp, 1970BaYI),≈0.031 (K:L1:L2:L3, 1970BaYI), and≈0.015 (γγ(θ), ceγ(θ), 1982Bu16); sign from γγ(θ), ceγ(θ) (1982Bu16). Other measurements indicate pure E1.

2

¹⁷³ Lu					173	Lu ε decay	1992Ad08 (con	tinued)	
Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [†]	δ	α &	Comments
179.365 11	6.49 12	179.364	9/2-	0.0	5/2-	E2		0.392	$\alpha(\mathbf{K}) = 0.227; \ \alpha(\mathbf{L}) = 0.126; \ \alpha(\mathbf{M}) = 0.0305;$
^x 208.78 223.163 ^a 20	≤0.003 0.060 ^{<i>a</i>} 12	301.859	11/2-	78.647	7/2-	E2		0.189	$\alpha(\mathbf{K}) = 0.122; \ \alpha(\mathbf{L}) = 0.0514; \ \alpha(\mathbf{M}) = 0.0123;$ $\alpha(\mathbf{N}+) = 0.00349$
223.163 ^{<i>a</i>} 20	0.66 ^{<i>a</i>} 3	636.128	7/2-	412.967	9/2+	E1		0.0420	Mult.: from Coulomb excitation. $\alpha(K) = 0.0352; \ \alpha(L) = 0.00529; \ \alpha(M) = 0.00118;$ $\alpha(N+) = 0.000343$
233.605 12	2.61 5	412.967	9/2+	179.364	9/2-	E1+M2	≈0.08	0.047 12	$\alpha(K) = 0.039 \ 9; \ \alpha(L) = 0.0063 \ 16; \ \alpha(M) = 0.0014 \ 4; \ \alpha(N+) = 0.00042 \ 13$ δ : average of 0.06 +4-6 ($\alpha(K)$ exp. 1970BaYI) and
272.105 15	100.0 15	350.764	7/2+	78.647	7/2-	E1		0.0254	0.10 3 (K:L, 1976KaYW). $\alpha(K) = 0.0214; \alpha(L) = 0.00317; \alpha(M) = 0.000703;$ $\alpha(N+) = 0.000220$ Mult : pure E1 deduced from ce subsell ratios of
285.362 6	2.88 8	636.128	7/2-	350.764	7/2+	E1(+M2)	<0.026 [‡]	0.0229 12	$\alpha(K) = 0.0192 \ 10; \ \alpha(L) = 0.00285 \ 17; \ \alpha(M) = 0.0192 \ 10; \ \alpha(L) = 0.00285 \ 17; \ \alpha(M) = 0.0192 \ 10; \ \alpha(L) = 0.00285 \ 17; \ \alpha(M) = 0.0192 \ 10; \ \alpha(L) = 0.00285 \ 10; \ \alpha(M) = 0.0192 \ 10; \\alpha(M) = 0.$
									δ: other values: 0.07 + 3-4 (α(K)exp (1970BaYI)), 0.034 25 (γγ(θ), ceγ(θ) (1982Bu16)).
^x 319.4	≤0.0025								
334.2630 15	<0.026	636.128	$7/2^{-}$	301.859	11/2-	E1(+M2)	<0.084 [±]	0.017.7	$\alpha(K) = -0.014.61 \alpha(L) = -0.0021.101 \alpha(M) =$
554.521 11	0.314 20	412.907	9/2	/8.04/	1/2	$E1(\pm 1012)$	<0.084	0.017 7	$\alpha(\mathbf{K}) = 0.0014 \ 0; \ \alpha(\mathbf{L}) = 0.0021 \ 10; \ \alpha(\mathbf{M}) = 0.00047 \ 22; \ \alpha(\mathbf{N}+) = 0.00015 \ 8$
350.774 18	1.42 5	350.764	7/2+	0.0	5/2-	E1+M2	0.090 [‡] 45	0.017 4	$\alpha(K) = 0.014 \ 3; \ \alpha(L) = 0.0021 \ 5; \ \alpha(M) = 0.00048 \ 11; \ \alpha(N+) = 0.00015 \ 4$
412.9	< 0.0008	412.967	9/2+	0.0	5/2-	[M2]		0.236	$\alpha(K) = 0.191; \alpha(L) = 0.0348; \alpha(M) = 0.00795; \alpha(N+.) = 0.00240$
^x 442.08 456.79 <i>3</i>	≤0.002 0.663 22	636.128	7/2-	179.364	9/2-	M1+E2	+0.65 [#] +13-9	0.0440 17	$\alpha(K) = 0.0365 \ 15; \ \alpha(L) = 0.00580 \ 23; \ \alpha(M) = 0.00130 \ 5; \ \alpha(N+) = 0.000395 \ 11$ δ : other value: 0.89 \ 15 (\alpha(K) exp (1992 \ d08))
^x 543.24	≤0.003								0. other value. 0.05 13 (a(R)exp (1992) a000)).
557.497 25	2.45 9	636.128	7/2-	78.647	7/2-	M1+E2	+1.81 [#] 6	0.0180	$\alpha(K) = 0.0146; \alpha(L) = 0.00257$ δ : other value: 2.2 8 ($\alpha(K)$ exp (1992Ad08)).
^x 621.80	≤ 0.0008						щ		
636.11 <i>3</i>	6.85 22	636.128	7/2-	0.0	5/2-	M1+E2	-0.54# 5	0.0199	$\alpha(K) = 0.0166; \alpha(L) = 0.00250$ δ : other value: 0.83 13 ($\alpha(K) \exp(1992Ad08)$).

ω

 $^{173}_{70} \mathrm{Yb}_{103} \text{--}3$

I

¹⁷³Lu ε decay **1992Ad08** (continued)

$\gamma(^{173}\text{Yb})$ (continued)

[†] From $\alpha(K)\exp(1970BaYI,1976KaYW)$ except where noted. The photon and intensity scales were normalized through $\alpha(K)=0.0214$ (E1 theory) for 272.1 γ .

[‡] α (K)exp (1992Ad08).

[#] Nuclear orientation (1992KrZU); ce data give erratic results.

[@] For absolute intensity per 100 decays, multiply by 0.212 7.

 $^{\&}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁷³Lu ε decay 1992Ad08

