161 **Dy**(16 **O**,4**n** γ) **1978Wa16**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	V. S. Shirley	NDS 75,377 (1995)	1-Oct-1993

¹⁷³W Levels

 $E(^{16}O)=89$ MeV; Dy targets enriched to 96% in ^{161}Dy ; measured γ -ray yields at 7 angles between 0° and 90° (large-volume Ge(Li)) and at 5 angles between 0° and 90° (small-volume intrinsic germanium), $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, γ -ray angular distributions, $\gamma\gamma(t)$; constructed level scheme consisting of 3 rotational bands built on probable single-particle configurations.

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$
0.0	5/2-		555.46+x 24	$(13/2^{-})$	1843.5 8	$25/2^{-}$
0.0+x	$(1/2^{-})$		715.76 17	$15/2^{-}$	1852.6 4	$29/2^+$
85.37 10	$7/2^{+}$	14 ns 4	763.20 20	$19/2^{+}$	2099.7 7	$27/2^{-}$
89.74+x 20	$(5/2^{-})$		867.23 22	$21/2^+$	2213.4+x 6	$(29/2^{-})$
95.23 9	$7/2^{-}$		896.7+x 3	$(17/2^{-})$	2320.8 4	$31/2^{+}$
127.91 <i>13</i>	$9/2^{+}$		918.19 <i>19</i>	$17/2^{-}$	2462.2 4	$33/2^{+}$
200.04 14	$11/2^{+}$		1134.7 4	19/2-	2643.0 8	$31/2^{-}$
216.85 10	9/2-		1203.6 <i>3</i>	$23/2^{+}$	2719.3+x 8	$(33/2^{-})$
273.84 16	$13/2^{+}$		1292.5+x 3	$(21/2^{-})$	2972.1 5	$35/2^+$
280.71+x 22	$(9/2^{-})$		1316.3 <i>3</i>	$25/2^+$	3130.5 5	$37/2^{+}$
362.26 15	$11/2^{-}$		1362.4 5	$21/2^{-}$	3271.5+x 8	$(37/2^{-})$
423.95 16	$15/2^{+}$		1600.5 4	$23/2^{-}$	3675.1 7	$39/2^{+}$
517.87 19	$17/2^{+}$		1727.6 3	$27/2^+$	3834.5 6	$41/2^{+}$
529.34 15	$13/2^{-}$		1734.6+x 4	$(25/2^{-})$	3887.9+x 9	$(41/2^{-})$

[†] From γ -ray multipolarities, coincidence data, and analysis of rotational structure. Authors assigned bandhead configurations on the basis of the similarity of ¹⁷³W bands to known structure in ¹⁷⁵W. A single-quasiparticle Coriolis mixing calculation reproduces ¹⁷³W structure up to very high spin. See ¹⁷³W Adopted Levels for band structure and evaluator's assignments.

 $\gamma(^{173}W)$

[‡] $\gamma\gamma(t)$.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
42.49 10	12 4	127.91	9/2+	85.37	7/2+			E_{γ} , I_{γ} : overlap with Dy x rays affects measurements.
72.11 10	92	200.04	$11/2^{+}$	127.91	$9/2^{+}$	(M1+E2)		
73.83 10	10 2	273.84	$13/2^{+}$	200.04	$11/2^{+}$			
85.37 10	100	85.37	7/2+	0.0	5/2-	E1		Mult.: transition intensity establishes α <3, consistent only with E1.
89.74 20	51	89.74+x	$(5/2^{-})$	0.0+x	$(1/2^{-})$,
93.93 10	8 1	517.87	$17/2^{+}$	423.95	$15/2^{+}$			
95.22 10	10 <i>I</i>	95.23	7/2-	0.0	5/2-			
104.07 15	31	867.23	$21/2^{+}$	763.20	$19/2^{+}$			
114.78 15	21	200.04	$11/2^{+}$	85.37	$7/2^{+}$			
121.60 10	11 3	216.85	9/2-	95.23	$7/2^{-}$	M1+E2	-0.30 15	
145.40 25	20 2	362.26	$11/2^{-}$	216.85	9/2-			I_{γ} : for 145.4 γ and 145.5 γ combined.
145.48 40	20 2	273.84	$13/2^{+}$	127.91	9/2+			I_{γ} : see comment with 145.4 γ .
150.12 10	24 2	423.95	$15/2^{+}$	273.84	$13/2^{+}$	M1+E2	$-0.8\ 4$	
167.08 <i>15</i>	19 2	529.34	$13/2^{-}$	362.26	$11/2^{-}$	M1+E2	-0.09 10	
186.38 <i>15</i>	13 2	715.76	$15/2^{-}$	529.34	$13/2^{-}$	M1+E2	+0.02 6	
190.97 <i>10</i>	23 <i>3</i>	280.71+x	$(9/2^{-})$	89.74+x	$(5/2^{-})$	E2		
202.40 15	72	918.19	$17/2^{-}$	715.76	$15/2^{-}$	M1+E2	$-2.0\ 20$	
216.87 15	12 <i>3</i>	216.85	9/2-	0.0	$5/2^{-}$			I_{γ} : includes component from contaminant.

Continued on next page (footnotes at end of table)

161 **Dy**(16 **O,4n** γ) 1978Wa16 (continued)

$\gamma(^{173}W)$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	Comments
223.91 10	30 2	423.95	$15/2^{+}$	200.04	$11/2^{+}$	E2		
243.69 40	22.8	517.87	$17/2^{+}$	273.84	$13/2^{+}$			I_{ν} : includes component from ¹⁷⁴ W.
245.30 25	13 3	763.20	$19/2^{+}$	517.87	$17/2^{+}$	M1+E2	$-0.8\ 4$	
267.07 20	11 3	362.26	$11/2^{-}$	95.23	$7/2^{-}$	E2		
274.75 10	30 <i>3</i>	555.46+x	$(13/2^{-})$	280.71+x	$(9/2^{-})$	E2		
312.48 15	15 2	529.34	$13/2^{-1}$	216.85	9/2-	E2		
336.43 20	10 3	1203.6	$23/2^+$	867.23	$21/2^{+}$	M1+E2	-1.0 10	
339.29 15	34 2	763.20	$19/2^{+}$	423.95	$15/2^{+}$	E2		
341.28 15	36 2	896.7+x	$(17/2^{-})$	555.46+x	$(13/2^{-})$	E2		
349.31 20	55 11	867.23	21/2+	517.87	17/2+			I _{γ} : includes components from ¹⁷² W and ¹⁷⁴ W.
353.51 15	15 <i>3</i>	715.76	$15/2^{-}$	362.26	$11/2^{-}$	E2		
388.88 15	20 3	918.19	$17/2^{-}$	529.34	$13/2^{-}$	E2		
395.80 15	32 <i>3</i>	1292.5+x	$(21/2^{-})$	896.7+x	$(17/2^{-})$	E2		
418.90 35	23 5	1134.7	$19/2^{-}$	715.76	$15/2^{-}$			I_{γ} : includes component from ¹⁷² W.
440.36 25	38 <i>3</i>	1203.6	23/2+	763.20	19/2+	(E2)		I_{γ} : includes component from ²³ Na; $\gamma(\theta)$ also affected by peak from ²³ Na.
442.06 30	27 3	1734.6+x	$(25/2^{-})$	1292.5+x	$(21/2^{-})$	E2		
444.20 45	19 3	1362.4	$21/2^{-}$	918.19	17/2-	E2		
449.08 20	52 2	1316.3	$25/2^+$	867.23	$21/2^{+}$	E2		
465.80 20	19 <i>3</i>	1600.5	$23/2^{-}$	1134.7	$19/2^{-}$	E2		
478.77 40	22 4	2213.4+x	$(29/2^{-})$	1734.6+x	$(25/2^{-})$	E2		
481.10 60	15 4	1843.5	$25/2^{-}$	1362.4	$21/2^{-}$	E2		
499.19 50	93	2099.7	$27/2^{-}$	1600.5	$23/2^{-}$			I_{γ} : includes component from ¹⁷⁴ W.
505.96 50	15 4	2719.3+x	$(33/2^{-})$	2213.4+x	(29/2 ⁻)			I'_{γ} : includes possible component of γ^{\pm} radiation (peaks only partially resolved).
523.94 20	37 4	1727.6	$27/2^+$	1203.6	$23/2^{+}$	E2		
536.25 20	37 2	1852.6	$29/2^+$	1316.3	$25/2^+$	E2		
543.30 35	62	2643.0	$31/2^{-}$	2099.7	$27/2^{-}$			
552.13 25	13 <i>3</i>	3271.5+x	$(37/2^{-})$	2719.3+x	$(33/2^{-})$			I_{γ} : includes component from ¹⁷⁴ W.
593.24 <i>30</i>	10 3	2320.8	$31/2^{+}$	1727.6	$27/2^{+}$, –
609.67 20	26 4	2462.2	$33/2^{+}$	1852.6	$29/2^{+}$	E2		
616.40 32	9 <i>3</i>	3887.9+x	$(41/2^{-})$	3271.5+x	$(37/2^{-})$	E2		
651.32 <i>30</i>	11 2	2972.1	$35/2^+$	2320.8	$31/2^{+}$	E2		
668.31 25	24 4	3130.5	$37/2^{+}$	2462.2	$33/2^{+}$	E2		
703.00 40	13 4	3675.1	39/2+	2972.1	35/2+	(E2)		I_{γ} : combined value for 703.0 γ and 704.0 γ .
703.97 30	13 4	3834.5	$41/2^{+}$	3130.5	$37/2^{+}$	(E2)		I_{γ} : see comment with 703.0 γ .

[†] Arbitrary units relative to $I_{\gamma}(85.4\gamma)=100$. [‡] Inferred from γ -ray angular distributions, except where noted; dipole transitions are assumed to be M1, and quadrupole, to be E2.

 161 **Dy**(16 **O**,4n γ) 1978Wa16 Legend Level Scheme $\begin{array}{l} \bullet \quad I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Relative I_{γ} + 616.40 \$2.9 + + | 203.000 (20) 13 (B) 13 $(41/2^{-})$ 3887.9+x 41/2 3834.5 , 203.00 | 39/2+ 3675.1 + 552,13 + 663,1 $(37/2^{-})$ 3271.5+x 4 651.32 | 22 | 1 37/2+ 3130.5 35/2+ 2972.1 + 505.96 15 1 + جوار ا (33/2-) 2719.3+x \$ 31/2 2643.0 ŵ , 609. (<0.00 + 393.24 + 33/2+ 2462.2 31/2+ 2320.8 | 6 6/. | 668 F (29/2-) 2213.4+x + 336.25 23 + 48,10 E2 15 27/2-2099.7 \$33 $\frac{\frac{29/2^+}{25/2^-}}{(25/2^-)}$ 1852.6 -9--22-1843.5 d' 1734.6+x 465.90 J 27/2+ 1727.6 + 44 30 23 10 23/2-1600.5 ^{3;}80 & 232 | 01 ZA+1 روپ) گر $\frac{\frac{21/2^{-}}{25/2^{+}}}{(21/2^{-})}$ 1362.4 $3_{36[4]}^{33[4]}$ 1316.3 2 06.812 1292.5+x 20 23/2+ 1203.6 341.28 E2 | 1134.7 $\frac{17/2^{-}}{(17/2^{-})}$ 918.19 896.7+x $\frac{21/2^+}{19/2^+}$ 867.23 763.20 15/2 ¥ 715.76 (13/2-) 555.46+x 13/2 529.34 ŧ 5/2-0.0

 $^{173}_{\ 74}W_{99}$

 $^{173}_{~74}W_{99}$