173 Er β^- decay **1972Pu02**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	V. S. Shirley	NDS 75,377 (1995)	1-Oct-1993							

Parent: ¹⁷³Er: E=0.0; $J^{\pi}=(7/2^{-})$; $T_{1/2}=1.4 \text{ min } I$; $Q(\beta^{-})=2600 SY$; % β^{-} decay=100.0

Sources from ¹⁷⁶Yb(n, α) (E(n)=14-15 MeV, natural and enriched (96.43%) Yb oxide targets); measured E γ , I γ (Ge(Li), FWHM=650 eV at 60 keV and 3.5 keV at 1333 keV), prompt and delayed $\gamma\gamma$ and $\gamma\beta$ coin (combinations of Ge(Li), NaI and

f w HM=050 eV at 00 keV and 5.5 keV at 1555 keV), prompt and delayed $\gamma\gamma$ and γp com (combinations of Ge(L1), tvar and plastic detectors).

Some sequences of transitions in cascades are undetermined; decay scheme shows choices dictated by structure considerations.

¹⁷³Tm Levels

Band structure: see Adopted Levels.

E(level)	J^{π}	T _{1/2}	Comments
0.0 2.46 14 118.60 14 124.86 15 317.73 20	$\begin{array}{c} 3 \\ \hline (1/2^{+}) \\ (3/2^{+}) \\ (5/2^{+}) \\ (7/2^{+}) \\ (7/2^{-}) \end{array}$	11/2 8.24 h 8	$T_{1/2}$: from $\gamma\beta(t)$.
411.9 <i>3</i> 1212.9 <i>4</i>	(9/2 ⁻) (9/2 ⁻)		

β^- radiations

 β^{-} feedings are from intensity imbalance at each level and absence of feeding to g.s. band.

E(decay)	E(level)	Ιβ ^{-†}	Log ft			Comments
(1387 <i>SY</i>) (2188 <i>SY</i>) (2282 <i>SY</i>)	1212.9 411.9	63 5 13 6	4.5 5.9	av $E\beta =$ av $E\beta =$	490 800	

[†] Absolute intensity per 100 decays.

173 Er β^- decay 1972Pu02 (continued)

 $\gamma(^{173}\text{Tm})$

to g.s. b	and, cons	istent wi ely deteri	th $\Delta K=3$). nined by the	With ne	this
		C	omments		
$\alpha(M) =$	702				
E_{γ} : de	duced from	m energy	difference	betwe	een
116.	14γ and 1	18.6γ.			
$I_{(\gamma+ce)}$:	deduced $\frac{1}{1}$	from int	ensity bala	nce at	2.5 level
(no) (AK	(-3))	leeding I	or decay to) g.s. 1	band
L: dec	uced from	n I(γ+ce) and α .		
$\alpha(K) =$	3.16;	$\alpha(L) =$	0.479; α (N	A)=	0.106;
a(N	+)=	0.0310			,
(***)	207				

Iy normalization: from total I(y+ce) from 317.7 level=100% ($\gamma\beta$ coincidence data show absence of direct feeding normalization, however, the total transitions to the 173 Tm g.s. is 114% 11; the 1/2[411] rotational structure is o coincidence results. Band parameters support the proposed level sequence.

 $I\gamma$ (Tm K x ray)=140 30 (exp) and 134.6 (from decay scheme), relative to $I\gamma$ =100 for 199.2 γ .

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	δ	$\alpha^{\texttt{\#}}$	$I_{(\gamma+ce)}$ ‡	Comments	
(2.46 20)	0.24 3	2.46	(3/2+)	0.0	(1/2 ⁺)	[M1]		933	223 22	$\begin{aligned} \alpha(M) &= 702 \\ E_{\gamma}: \text{ deduced from energy difference between} \\ 116.14\gamma \text{ and } 118.6\gamma. \\ I_{(\gamma+ce)}: \text{ deduced from intensity balance at } 2.5 \text{ level} \\ \text{ (no direct } \beta^- \text{ feeding for decay to g.s. band} \\ (\Delta K=3)). \end{aligned}$	
94.2 2 ^x 96.1 ^x 101.2	10 2	411.9	(9/2 ⁻)	317.73	(7/2 ⁻)	(M1)		3.78			
^x 111.5											
116.14 4	39 6	118.60	(5/2+)	2.46	(3/2+)	(M1+E2)	0.5 +11-5	2.01 15		$\alpha(K) = 1.5 5; \alpha(L) = 0.4 3; \alpha(M) = 0.08 7; \alpha(N+) = 0.024 19$ $\alpha(K) \exp[1.5 5].$	
118.6 2	5.3 13	118.60	$(5/2^+)$	0.0	$(1/2^+)$	[E2]		1.64		$\alpha(\mathbf{K}) = 0.702; \ \alpha(\mathbf{L}) = 0.717; \ \alpha(\mathbf{M}) = 0.174; \ \alpha(\mathbf{N}+) = 0.0485$	
122.40 4	43 5	124.86	(7/2 ⁺)	2.46	(3/2 ⁺)	(E2)		1.46		$\alpha(\mathbf{K}) = 0.647; \ \alpha(\mathbf{L}) = 0.622; \ \alpha(\mathbf{M}) = 0.151; \\ \alpha(\mathbf{N}+) = 0.0420 \\ \alpha(\mathbf{K}) \exp [-1.1.9]$	
192.8 2	97 10	317.73	(7/2 ⁻)	124.86	(7/2+)	(E1)		0.0594		$\alpha(K)=0.0498; \alpha(L)=0.00748; \alpha(M)=0.00166; \alpha(N+)=0.000463$ $\alpha(N+)=0.000463$ %Iy=46.6 24. Mult.: deduced from $\alpha(total)=0.09$ 17, required by decay-scheme intensity balance; $\alpha(K)\exp<0.9$ is consistent with E1, but does not rule out M1 and/or E2	
199.2 2	100	317.73	(7/2 ⁻)	118.60	(5/2+)	(E1)		0.0545		and/or E2. $\alpha(K) = 0.0457; \ \alpha(L) = 0.00685; \ \alpha(M) = 0.00152; \ \alpha(N+) = 0.000424$ Mult.: E1, M1, or E2 from $\alpha(\text{total})=0.31$ 20. Decay scheme requires E1. Intensity balance; $\alpha(K)\exp<0.9$ is consistent with E1, but does not	
315.2		317.73	(7/2 ⁻)	2.46	$(3/2^+)$					Observed by 1973DrZK; no ΔE or I γ reported.	

From ENSDF

 $\gamma(^{173}\text{Tm})$ (continued)

Eγ	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
800.8 <i>6</i>	20 7	1212.9	(9/2 ⁻)	411.9	(9/2 ⁻)
895.2 <i>4</i>	112 8	1212.9	(9/2 ⁻)	317.73	(7/2 ⁻)

[†] From α (K)exp, as deduced from I(Tm K x ray)/I γ in coincidence spectra, except where noted. [‡] For absolute intensity per 100 decays, multiply by 0.480 24.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

$\frac{173}{173}$ Er β^{-} decay 1972Pu02

¹⁷³₆₉Tm₁₀₄