176 Yb(p, α) 1978Ta10

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	V. S. Shirley	NDS 75,377 (1995)	1-Oct-1993			

E(p)=16 MeV, $\theta=15^{\circ}$, 20° , 25° , 30° ; enriched (96.4%) targets; measured E(level) (quadrupole-quadrupole-dipole mag spect, FWHM(maximum)=20 keV for $E(\alpha)=21-24$ MeV), angular distributions, differential cross sections.

¹⁷³Tm Levels

E(level)‡	J^{π} †	L#	Comments
0.0 15		0+2	E(level) and L values are for unresolved 0.0 and 2.5 levels.
(2.46 14)			E(level) from Adopted Levels.
118.60 <i>14</i>		2+4	E(level) from Adopted Levels, L values are for unresolved 118.6 and 124.9 levels.
(124.86 15)			E(level) from Adopted Levels. See comment with 118.6 level.
319.0 [@] 18	(7/2 ⁻)	(3+4+6)	L=(3) component is probably for 319.0 level; L=(4) and L=(6) components might be for unresolved $9/2^+$ and $11/2^+$ members of g.s. band (E(level) expected at 333.8 for $9/2^+$ and 343.5 for $11/2^+$).
339.8 25			See comment with 319.0 level.
410.4 [@] 18	$(9/2^{-})$	5	
526.0 [@] 18	$(11/2^{-})$	5	
609.5 17	$(1/2^{-})$	1	
669.5 [@] 17	$(13/2^{-})$	2+7	
749.8 18		1,4	
817.9 <i>18</i>		4,5	
856.1 <i>18</i>			
983.0 18			
1137.0 22 1186.9 <i>31</i>			
1210.6 30			
1243.5 27			
1335.6 18			
1361.5 29			
1414.1 <i>18</i>			
1439.4 29			
1514.4 25			
1588.2 <i>18</i> 1672.2 <i>18</i>			
1703.3 26			
1901.2 18			
2005.9 25			
2038.5 25			
2069.0 23			
2095.8 23			
2126.7 23			
2150.6 25			
2192.0 28			

 $^{^\}dagger$ From analysis of angular distributions; see 173 Tm Adopted Levels for comments on individual assignments.

 $^{^{\}ddagger}$ Weighted average from all four angles, unless otherwise specified. Energies would have to be increased by 2.5 keV if the first α group is found to correspond to the 2.5 level rather than the 0.0 level.

[#] DWBA analysis of angular distributions.

[@] 7/2[523] band member.