¹⁷³W ε decay **1990Me12,1991KuZN**

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	V. S. Shirley	NDS 75,377 (1995)	1-Oct-1993	

Parent: ¹⁷³W: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=7.5 \text{ min } 3$; $Q(\varepsilon)=4.0\times10^3 3$; $\%\varepsilon+\%\beta^+$ decay=100

The decay scheme is from 1991KuZN; data are from both 1990Me12 and 1991KuZN. Agreement between the two studies of 173 W decay is poor, because 1991KuZN interchanged the order of the 130.2γ - 35.7γ cascade from that used by 1990Me12. Justification for the reversal seems reasonable.

for the reversal seems reasonable. 1990Me12: sources from ¹³⁸Ba(⁴⁰Ar,5n), E(⁴⁰Ar)=165-205 MeV, helium-jet transport; 99.8% target enrichment; measured excitation functions, Eγ, Iγ (Ge(Li), germanium γX detectors), γγ coin.

1991KuZN: sources from ¹⁵⁹Tb(¹⁹F,5n); measured E γ , I γ , $\gamma\gamma$ coin. Authors report very few experimental details, but give plausible conclusions based on analysis of data.

Others: 1963Sa14, 1971Na28, 1973CaYH, 1977An04, 1986Sz05.

¹⁷³Ta Levels

E(level)	J^{π}
0.0	5/2-
0.0+x ^{‡a}	5/2+
83.39 [†] 11	9/2-
130.2+x <mark>#a</mark>	7/2+
166.0+x ^{@a}	9/2-
324.53 11	7/2-
623.6+x ^{&a}	7/2-

- [†] Member of 1/2[541] band.
- [‡] Member of 5/2[402] band.
- [#] Member of 7/2[404] band.
- [@] Member of 9/2[514] band.
- [&] Member of 7/2[523] band.
- ^{*a*} x<10 keV (1991KuZN).

ε, β^+ radiations

 ε feedings are estimates from 1991KuZN.

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
$(1.7 \times 10^{3 \#} 17) \\ (3.68 \times 10^3 30)$	623.6+x 324.53	≈16 ≈2.8	≈72 ≈8	≈5.1 ≈6.1	≈88 ≈11	av $E\beta \ge 1060$; $\varepsilon K = 0.63$ 11; $\varepsilon L = 0.103$ 18; $\varepsilon M + = 0.032$ 5 av $E\beta = 1.20 \times 10^3$ 14; $\varepsilon K = 0.57$ 9; $\varepsilon L = 0.093$ 15; $\varepsilon M + = 0.029$ 5
$(4.00 \times 10^3 \ddagger 30)$	0.0					

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

[#] Estimated for a range of levels.

¹⁷³W ε decay **1990Me12,1991KuZN** (continued)

 $\gamma(^{173}\text{Ta})$

Decay-scheme normalization not possible because of incomplete γ -ray intensity data.

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α &	Comments
(≤10)		0.0+x	$5/2^{+}$	0.0	$5/2^{-}$				
35.67 5	21.8 11	166.0+x	9/2-	130.2+x	7/2+	E1+M2	0.041 12	3.1 13	α (L)= 2.3 7; α (M)= 0.58 17 Mult δ : from α =3 1 11 (1990Me12)
83.43 5		83.39	9/2-	0.0	5/2-	E2		7.82	$\alpha(K) = 1.21; \ \alpha(L) = 5.00; \ \alpha(M) = 1.25; \ \alpha(N+) = 0.360$
130.20 5	31.5 16	130.2+x	7/2+	0.0+x	5/2+	M1		2.11	Mult.: from (HI,xn γ). α (K)= 1.76; α (L)= 0.275; α (M)= 0.0624; α (N+)= 0.0188
166.08 5	13.2 10	166.0+x	9/2-	0.0+x	5/2+	(M2)		6.35	$\alpha(K) = 4.76; \ \alpha(L) = 1.21; \ \alpha(M) = 0.290; \ \alpha(N+) = 0.0879$
$x_{174.8}^{@}$ 4	29.1 <i>13</i>								
$x_{196.9}^{@}$ 4	6.4.3								
241.17 5		324.53	$7/2^{-}$	83.39	9/2-				
324.49 5		324.53	7/2-	0.0	5/2-	M1		0.168	α (K)= 0.140; α (L)= 0.0217; α (M)= 0.00488; α (N+)= 0.00142
457.68 5	100	623.6+x	7/2-	166.0+x	9/2-	M1		0.0675	α (K)= 0.0563; α (L)= 0.00862; α (M)= 0.00194; α (N+)= 0.000569
493.38 5		623.6+x	7/2-	130.2+x	7/2+				
623.48 5	24.2 15	623.6+x	$7/2^{-}$	0.0+x	$5/2^{+}$				

[†] From 1991KuZN except where noted. ΔE not reported, but estimated by evaluator from precision of authors' energies.

[±] Arbitrary units relative to $I\gamma(457.7\gamma)=100$ (1990Me12).

[#] From 1991KuZN except where noted; measurement details not reported.

[@] From 1990Me12.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{173}_{73}{\rm Ta}_{100}$