(HI,xnγ) **1991Ju02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Tuli	ENSDF	15-Aug-2015

¹⁷³Ir Levels

¹⁴⁴Sm(³²S,p2n), E(³²S)=163 MeV, enriched ¹⁴⁴Sm targets (95%); ¹¹⁸Sn(⁵⁸Ni,p2n), E(¹¹⁸Sn)=270 MeV, recoil-mass separation. Measured excitation functions, $E\gamma$, $I\gamma$ (28 Compton-suppressed germanium detectors in multidetector array), $X\gamma$ coin, $\gamma\gamma$ coin, γ -ray angular distributions and angular correlations; used cranked-shell model to interpret level structure.

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0+y		1605.1+y [#] 12	21/2+	4779.5+y [#] 17	45/2+	1347.1+x [@] 4	21/2-
71.1+y <i>14</i>		1635.9+y [‡] <i>13</i>	$21/2^{-}$	4890.3+y [‡] 25	$45/2^{-}$	1347.3+x <i>4</i>	
155.4+y 10		1981.5+y [#] 12	$25/2^+$	5497.9+y [#] 20	49/2+	1592.0+x [@] 4	$23/2^{-}$
374.6+y 19		2219.3+y [‡] 14	$25/2^{-}$	5589+y [‡] 3	49/2-	1648.3+x 4	19/2
424.4+y [‡] <i>13</i>	9/2-	2420.8+y [#] 12	$29/2^+$	6254+y [#] 2	$(53/2^+)$	1853.2+x [@] 5	$25/2^{-}$
516.4+y <i>16</i>		2796.5+y [‡] 15	$29/2^{-}$	0.0+x [@]	$11/2^{-}$	2124.0+x [@] 5	$27/2^{-}$
580.3+y 11		2922.9+y [#] 12	33/2+	374.5+x [@] 1	$13/2^{-}$	2409.4+x [@] 6	29/2-
686.8+y [‡] 13	13/2-	3258.5+y [‡] 18	33/2-	567.0+x [@] 1	$15/2^{-}$	2702.7+x [@] 6	31/2-
789.5+y 13		3486.4+y [#] 13	$37/2^+$	764.8+x 5	$(15/2^{-})$	2999.9+x [@] 7	33/2-
1095.0+y [#] 12	$13/2^{+}$	3720.5+y [‡] 20	37/2-	875.0+x [@] 2	$17/2^{-}$	3287.3+x [@] 9	35/2-
1109.3+y [‡] <i>13</i>	$17/2^{-}$	4107.1+y [#] 14	$41/2^{+}$	1099.6+x [@] 3	19/2-	3577.4+x [@] 10	37/2-
1295.3+y [#] 12	$17/2^{+}$	4262.3+y [‡] 23	$41/2^{-}$	1177.4+x 6		3881+x [@] 2	(39/2 ⁻)

[†] From γ-ray multipolarities, coincidence data, and analysis of band structure. Bandhead assignments were based on systematics for neighboring odd-Z nuclei. See ¹⁷³Ir Adopted Levels for evaluator's assignments.

 $\gamma(^{173}\mathrm{Ir})$

[‡] Member of $h_{9/2}$, $\omega = 1/2$ (1/2[541]) band.

[#] Member of $i_{13/2}$, $\omega = 1/2$ (1/2[660]) band.

[@] Member of $h_{11/2}$, $\omega = 11/2$ (11/2[505]) band.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]
^x 111.2 ^{&} 10	20 6					
$x_{134.8}^{@} 10$	<89					
141.8 10	22 5	516.4+y		374.6+y		
155.4 10	57 11	155.4+y		0.0+y		
^x 175.3 ^{&} 10	71 14					
^x 176.0 [@] 10	33 7					
185.9 5	107 10	1295.3+y	$17/2^{+}$	1109.3+y	$17/2^{-}$	
192.6 5	240 30	567.0+x	$15/2^{-}$	374.5+x	$13/2^{-}$	D
200.3 1	820 40	1295.3+y	$17/2^{+}$	1095.0+y	$13/2^{+}$	
224.4 5	330 40	1099.6+x	$19/2^{-}$	875.0+x	$17/2^{-}$	D
244.7 5	230 50	1592.0+x	$23/2^{-}$	1347.1+x	$21/2^{-}$	
247.5 5	360 70	1347.1+x	$21/2^{-}$	1099.6+x	$19/2^{-}$	D
^x 249 ^{&} 1	<40					
^x 260 ^{&} 1	<40					
261.3 5	185 20	1853.2+x	$25/2^{-}$	1592.0+x	$23/2^{-}$	(D)
262.4 1	1000	686.8+y	13/2-	424.4+y	9/2-	. /

(HI,xnγ) **1991Ju02** (continued)

$\gamma(^{173}\text{Ir})$ (continued)

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]
270.7 5	180 20	2124.0+x	$27/2^{-}$	1853.2+x	$25/2^{-}$	D
273.1 10	95 10	789.5+v	. /	516.4+v	- 1	
x274 3 & 10	30 10	5		5		
28555	135 30	$2409.4 \pm x$	29/2-	2124 0+x	27/2-	D
287.6.10	80.15	$3287.3 \pm x$	35/2-	2124.01x 2000 0±x	33/2-	D
$x_{100} \frac{8}{20}$	110 40	5207.5 TX	55/2	2777.71X	55/2	
200 7 10	57 11	2577 4	27/2-	2207 2	25/2-	
290.7 10	37 11 114 14	3377.4+x	31/2 21/2-	3287.3+X 2400.4+x	20/2-	D
293.3 5	114 14	$2702.7 \pm x$	31/2 22/2-	$2409.4 \pm x$	29/2	D
297.2 5	100 15	$2999.9 \pm x$	33/2 10/2	2/02.7 + x	$\frac{51}{2}$	D
204 1	41 0	$1048.3 \pm X$	$\frac{19}{2}$	1347.1+X	21/2	
205 5 5	42 10	$1005.0 \pm w$	(39/2) 12/2 ⁺	790 5 L	51/2	D
207.0.1	610.60	1093.0+y	13/2	769.3+y	15/2-	D
200 8 1	800 50	6/3.0+x	$\frac{1}{2}$	307.0+x	$\frac{15}{2}$	
309.01	150 20	1003.1+y	$\frac{21}{2}$	1293.3+y	1//2	$(\mathbf{E2})$
333.5 J	130 20	424.4+y	9/2	71.1+y	0/2-	(E2)
365.2 10	42 11	789.5+y	12/2-	424.4+y	9/2	
374.5 1	$1.04 \times 10^{-5} 10$	3/4.5+x	13/2	0.0+x	11/2	
3/6.4 1	/50.60	1981.5+y	25/2	1605.1+y	21/2	(E2)
390.3 5	180 20	/64.8+x	(15/2)	3/4.5+x	13/2	
408.3 5	390 20	1095.0+y	13/21	686.8+y	13/2	
412.3 10	60 20	1177.4+x		764.8+x	(15/2)	
$x_{415.4}^{\alpha}$ 5	112 12					
422.5 1	600 <i>30</i>	1109.3+y	$17/2^{-}$	686.8+y	$13/2^{-}$	(E2)
424.9 5	450 50	580.3+y		155.4+y		D
^x 430 [@] 1	90 20					
439.3 1	700 50	2420.8+y	$29/2^{+}$	1981.5+y	$25/2^{+}$	(E2)
462 1	340 40	3258.5+y	33/2-	2796.5+y	29/2-	E2
462 1		3720.5+y	$37/2^{-}$	3258.5+y	$33/2^{-}$	
471 ^a 1	<77	1648.3+x	19/2	1177.4+x		
472.3 5	290 30	1347.1+x	$21/2^{-}$	875.0+x	$17/2^{-}$	
492.3 5	250 30	1592.0+x	$23/2^{-}$	1099.6+x	19/2-	E2
501.0 5	310 30	875.0+x	$17/2^{-}$	374.5+x	$13/2^{-}$	(E2)
502.1 <i>1</i>	520 40	2922.9+y	$33/2^{+}$	2420.8+y	$29/2^{+}$	(E2)
506.1 5	240 20	1853.2+x	$25/2^{-}$	1347.1+x	$21/2^{-}$	(E2)
514.7 5	450 50	1095.0+y	$13/2^{+}$	580.3+y		
^x 518 [@] 1	72 10					
526.6 1	540 40	1635.9+v	$21/2^{-}$	1109.3+v	$17/2^{-}$	(E2)
532.0 5	270 50	2124.0+x	$27/2^{-}$	1592.0+x	$23/2^{-}$	È2
532.7 5	330 60	1099.6+x	$19/2^{-}$	567.0+x	$15/2^{-}$	
541.8 10	66 11	4262.3+y	$41/2^{-}$	3720.5+y	37/2-	
556.3 5	190 20	2409.4+x	$29/2^{-}$	1853.2+x	$25/2^{-}$	E2
563.5 5	340 20	3486.4+y	$37/2^+$	2922.9+y	$33/2^{+}$	E2
567.0 1	720 60	567.0+x	$15/2^{-}$	0.0+x	$11/2^{-}$	
577 1	100 30	3577.4+x	$37/2^{-}$	2999.9+x	33/2-	E2
577.2 5	280 30	2796.5+y	29/2-	2219.3+y	$25/2^{-}$	E2
578.5 5	280 40	2702.7+x	$31/2^{-}$	2124.0+x	$27/2^{-}$	E2
583.4 5	370 <i>30</i>	2219.3+y	$25/2^{-}$	1635.9+y	$21/2^{-}$	
585.0 10	80 20	3287.3+x	$35/2^{-}$	2702.7+x	$31/2^{-}$	E2
590.3 5	210 20	2999.9+x	33/2-	2409.4+x	29/2-	E2
$x_{610}^{@}$ 1	70 20					
620.7 5	180 20	4107.1+v	$41/2^{+}$	3486.4+v	$37/2^{+}$	E2
628 1	48 20	4890.3+y	45/2-	4262.3+v	$41/2^{-}$	
672.4 10	86 10	4779.5+v	$45/2^{+}$	4107.1+v	$41/2^{+}$	E2
^x 697 [@] 1	25.5	5		5		

Continued on next page (footnotes at end of table)

$(HI,xn\gamma)$ 1991Ju02 (continued)

$\gamma(^{173}]$	Ir)	(continue	ed)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#
699 1	20 11	5589+y	49/2-	4890.3+y	45/2-	
718.4 10	33 13	5497.9+y	$49/2^{+}$	4779.5+y	$45/2^{+}$	E2
756 ^a 1	199	6254+y	$(53/2^+)$	5497.9+y	49/2+	
773.3 5	260 40	1648.3+x	19/2	875.0+x	$17/2^{-}$	D
803.3 10	55 10	1177.4+x		374.5+x	$13/2^{-}$	
^x 807 [@] 1	30 15					
^x 857 [@] 1	56 10					
^x 898 [@] 1	48 9					
972.9 5	112 11	1347.3+x		374.5+x	$13/2^{-}$	

[†] ΔE not explicitly stated, but authors report variation from 0.1 keV to 1 keV, depending on intensity. Evaluator estimated 0.1 keV for I γ >500, 0.5 keV for I γ =100-500, and 1 keV for I γ <100. [‡] Arbitrary units for ¹⁴⁴Sm(³²S,p2n), relative to I γ (262.4 γ)=1000.

[#] Inferred from γ -ray angular distributions (A₂ only reported). Stretched E2 assignments were based on A₂>+0.25, and dipole, on A₂ negative or <+0.05.

[@] In coincidence with 200.3γ .

[&] In coincidence with 374.5γ .

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

1991Ju02 (HI,xnγ) Legend $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$ Level Scheme Intensities: Relative I γ for ¹⁴⁴Sm(³²S,P2N), E(³²S)=163 MeV ----1 304 22 (39/2-) 3881+x $\frac{1}{29_{0,5}} \frac{5_{7,5}}{10}$ 37/2-3577.4+x $\frac{1}{3^{8_{5_0}}} \frac{3_{8_{5_0}}}{2^{8_{2_0}}} \frac{1}{2^{8_{2_0}}} \frac{3_{8_{5_0}}}{8_{6_0}}$ $= \frac{3 9_{0,3}}{3 9_{7,2}} \frac{5 2_{0,3}}{2 9_{1,2}}$ 35/2 3287.3+x $= \frac{3_{3_5}}{3_{2_5}} \frac{5_{2_5}}{5_{2_{30}}}$ 33/2-2999.9+x $= \frac{3_{\delta_{5,3}}}{3_{\delta_{5,5}}} \frac{1_{\delta_{5,3}}}{1_{\delta_{5,5}}} + \frac{1_{\delta_{5,5}}}{1_{\delta_{5,5}}} + \frac{1_$ 31/2-2702.7+x $\Big| \frac{{}^{3_{2,0}}}{{}^{2_{2,0}}} \Big| \frac{{}^{5_{2,0}}}{{}^{2_{2,0}}} \Big|$ 29/2 2409.4+x $\left\| \frac{3_{k_1}}{3_{k_1}} (e_{j})_{k_2} \right\|_{k_2}$ 27/2-2124.0+x $\left| \frac{4}{2} \frac{1}{2} \frac$ 25/2 1853.2+x + 301.4 41 <u>19/2</u> 23/2 1648.3+x | 2/1 0:56 + 24,23,290 1592.0+x $= \frac{33_{1}^{3}}{32_{1}^{3}}$ 1347.3+x 21/2 803.35 412.3 -1347.1+x $\left| \begin{array}{c} x_{0,0} \\ x_{0,0$ 1177.4+x 19/2-1099.6+x + ³90| 1³180 $\frac{\int_{0}^{5_{0}} \int_{0}^{2_{0}} \int_{0}^{1}}{\int_{0}^{2_{0}} \int_{0}^{2_{0}} \int_{0}^{1}}$ 17/2-875.0+x $(15/2^{-})$ 764.8+x 15/2-567.0+x 13/2-374.5+x 11/2-0.0+x $^{173}_{77}$ Ir₉₆

1991Ju02 (HI,xnγ) Legend $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$ Level Scheme (continued) Intensities: Relative I γ for ¹⁴⁴Sm(³²S,P2N), E(³²S)=163 MeV ----+ 374.5 1.04+103 13/2-374.5+x 35 19 $\frac{11/2^{-}}{(53/2^{+})}$ 0.0+x 6254+y 218.4 E2 33 ⁴ 690 20 5589+y 5497.9+y $\frac{49/2^{-}}{49/2^{+}}$ 1 % & & 1 028 xg $\frac{45/2^{-}}{45/2^{+}}$ 4890.3+y 4779.5+y + 54,8 66 426<u>2.3+y</u> 41/2-4107.1+y $41/2^{+}$ + 563,1 123,40 ç, 3720.5+y 37/2-3486.4+y 37/2+ + 302, 14 3258.5+y 33/2 + *39.3 (20) 200 2922.9+y 33/2+ 2796.5+y 29/2 + 383 | 833 | 970 + 375,4 242<u>0.8+y</u> 29/2+ 2219.3+y 25/2 + 326,6 + 1981.<u>5+y</u> 25/2+ 000 900 1 1635<u>.9+y</u> $\frac{21/2^{-}}{21/2^{+}}$ -1005 + 200,3 + |<òr |<òr 1605.1+y 305 0171 514 | 514 | 450 1295.3+y $17/2^+$ 1109.3+y 17/2-+ ³65,2 + 1095.0+y $13/2^{+}$ 05k0 65-1 789.5+y 13/2 686.8+y S 580.3+y 516.4+y 424.4+y 9/2 155.4+y

¹⁷³₇₇Ir₉₆

5

