History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	V. S. Shirley	NDS 75,377 (1995)	1-Oct-1993								

Parent: ¹⁷³Ta: E=0.0; $J^{\pi}=5/2^{-}$; $T_{1/2}=3.14$ h 13; $Q(\varepsilon)=2790$ SY; $\%\varepsilon+\%\beta^{+}$ decay=100.0

The decay scheme and most data are from 1973Re03 (sources from 165 Ho(12 C,4n) (E(12 C)=76-83 MeV, metallic holmium targets); measured E β (anthracene), E γ , I γ (Ge(Li) with FWHM \approx 1.1 keV at 120 keV and 2.0 keV at 660 keV, Si(Li) with FWHM=600 eV at 67 keV, surface-barrier Si with FWHM=5 keV at 624 keV, NaI), prompt and delayed $\gamma\gamma$ and ce γ coin, $\gamma\beta$ coin). Some intensity values differ from those in 1973Re03 because of computation errors therein.

Reference citations are given with data from other sources. Others: 1960Fa03, 1960Ha18, 1963Sa14, 1971Na28, 1972An04, 1983Ed01.

¹⁷³Hf Levels

Band structure: see Adopted Levels.

E(level)	J^{π}	$T_{1/2}^{\dagger}$	E(level)	J^{π}
0.0	1/2-	23.6 h <i>1</i>	811.7 <i>1</i>	5/2-
69.73 <i>4</i>	3/2-		927.5 1	3/2-,5/2,7/2-
81.49 5	5/2-		942.9 <i>2</i>	7/2-
107.15 5	5/2-	180 ns 8	958.3 <i>1</i>	3/2,5/2-
197.3 <i>1</i>	7/2-		1020.1 <i>1</i>	5/2-,7/2-
197.4 <i>1</i>	7/2+	160 ns 40	1111.5 <i>1</i>	7/2+
241.9 <i>1</i>	7/2-		1126.9 <i>1</i>	5/2-
255.4 1	$9/2^{+}$		1192.7 2	3/2-,5/2,7/2
262.1 <i>1</i>	9/2-		1248.5 <i>1</i>	7/2-
312.3 <i>I</i>	9/2-		1450.2 <i>1</i>	9/2+
451.6 2	$11/2^{-}$		1574.1 2	3/2-,5/2-
508.8 1	$11/2^{-}$		1655.5 2	5/2-,7/2-
635.7 2	5/2+,7/2,9/2+		1667.3 2	5/2-,7/2-
775.4 2	5/2-,7/2		1694.5 2	5/2-,7/2
785.2 2	(7/2,9/2)-		2263.6? 3	5/2-,7/2

[†] Delayed ceγ coin (1971BoZG,1973Re03). Other: 1972An04.

ε, β^+ radiations

 $\varepsilon + \beta^+$ feedings are from intensity imbalance at each level (g.s. feeding not expected ($\Delta J^{\pi} = {}^{2}$.No). Values are approximate because of large number of unplaced transitions.

1973Re03 report Q+=3670 200, deduced from $E\beta$ +=2480 200 (172.2 γ - β coin). This value, which is considerably higher than Q+=2790 (syst) adopted by 1993Au05, would result in log *ft* values ranging from 0.3 to 0.9 larger.

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments								
(526 SY)	2263.6?	≈0.18	≈7.4	≈0.18	εK=	0.8; εL=	0.15; εM+=	0.049					
(1095 SY)	1694.5	≈ 1.0	≈7.3	≈1.0	εK=	0.8; <i>E</i> L=	0.14; <i>ε</i> M+=	0.043					
(1122 <i>SY</i>)	1667.3	≈0.63	≈7.5	≈0.63	$\varepsilon K =$	0.8; ε L=	0.14; εM+=	0.043					
(1134 <i>SY</i>)	1655.5	≈1.4	≈7.2	≈1.4	$\varepsilon K =$	0.8; ε L=	0.14; εM+=	0.043					
(1215 SY)	1574.1	≈0.61	≈7.6	≈0.61	$\varepsilon K=$	0.8; ε L=	0.14; εM+=	0.043					
(1339 <i>SY</i>)	1450.2	≈4.1	≈6.9	≈4.1	$\varepsilon K =$	0.8; εL=	0.14; εM+=	0.043					
(1541 <i>SY</i>)	1248.5	≈1.1	≈7.6	≈1.1	$\varepsilon K=$	0.8; ε L=	0.14; εM+=	0.042					
(1597 SY)	1192.7	≈0.56	≈7.9	≈0.56	$\varepsilon K =$	0.8; ε L=	0.14; εM+=	0.042					
(1663 SY)	1126.9	≈0.79	≈7.8	≈0.79	$\varepsilon K=$	0.8; <i>E</i> L=	0.14; <i>ε</i> M+=	0.042					

Continued on next page (footnotes at end of table)

$^{173}{\rm Ta}~\varepsilon$ decay 1973Re03 (continued)

E(decay)	E(level)	$I\beta^+$	Ιε	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$			Comme	ents	
(1678 SY)	1111.5		≈2.2	≈7.4	≈2.2	εK=	0.8; εL=	0.14; εM+=	0.042	
(1769 SY)	1020.1		≈1.2	≈7.7	≈1.2	$\varepsilon K=$	0.8; εL=	0.14; εM+=	0.041	
(1831 <i>SY</i>)	958.3		≈1.2	≈7.7	≈1.2	$\varepsilon K =$	0.8; ε L=	0.13; εM+=	0.041	
(1847 SY)	942.9		≈2.1	≈7.5	≈2.1	$\varepsilon K=$	0.8; εL=	0.13; εM+=	0.041	
(1862 SY)	927.5	≈0.01	≈0.85	≈7.9	≈0.86	av Eβ=	= 390; εK=	0.8; εL=	0.13; εM+=	0.041
(1978 SY)	811.7	≈0.03	≈1.52	≈7.7	≈1.55	av $E\beta =$	= 440; <i>E</i> K=	0.8; ε L=	0.13; εM+=	0.041
$(2004^{\ddagger} SY)$	785.2	≈0.01	≈0.66	≈8.0	≈0.67	av E β =	= 450; εK=	0.8; <i>E</i> L=	0.13; <i>ε</i> M+=	0.041
(2014 SY)	775.4	≈0.01	≈0.38	≈8.3	≈0.39	av $E\beta =$	= 460; εK=	0.8; εL=	0.13; εM+=	0.041
(2154 SY)	635.7	≈0.01	≈0.34	≈8.4	≈0.35	av $E\beta =$	= 500; εK=	0.8; <i>E</i> L=	0.13; <i>ε</i> M+=	0.040
(2534 SY)	255.4	≈0.05	≈2.25	$\approx 9.1^{1u}$	≈2.30	av $E\beta =$	= 700; εK=	0.8; <i>E</i> L=	0.14; <i>ε</i> M+=	0.042
(2548 SY)	241.9	≈2.3	≈27.3	≈6.6	≈29.6	av $E\beta =$	= 700; εK=	0.8; <i>E</i> L=	0.12; <i>ε</i> M+=	0.038
(2592 SY)	197.4	≈0.3	≈3.5	≈7.5	≈3.8	av $E\beta =$	= 700; εK=	0.8; <i>E</i> L=	0.12; <i>ε</i> M+=	0.037
(2592 SY)	197.3	≈0.03	≈0.37	≈8.5	≈0.40	av $E\beta =$	= 700; εK=	0.8; <i>E</i> L=	0.12; <i>ε</i> M+=	0.037
(2682 SY)	107.15	≈1.1	≈9.8	≈7.1	≈10.9	av $E\beta =$	= 800; <i>E</i> K=	0.7; εL=	0.12; <i>ε</i> M+=	0.037
(2720 <i>SY</i>)	69.73	≈3	≈28	≈6.7	≈31	av Eβ=	= 800; <i>E</i> K=	0.7; ε L=	0.12; <i>ε</i> M+=	0.036
						$I(\varepsilon + \beta^+)$): combined fe	eding to 69.7 a	nd 81.5 levels (1	$(\gamma + ce)$ for

 ϵ, β^+ radiations (continued)

 $\varepsilon + \beta^{+}$): combined feeding to o connecting 11.9 γ not known). $(I(\gamma -$ -ce)

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

From ENSDF

 $\gamma(^{173}\text{Hf})$

I γ normalization: from total I(γ +ce) to g.s.=100%. I γ normalization=0.196 9, as deduced from the growth of 123.7 γ in ¹⁷³Hf decay relative to the decay of 172.2 γ in ¹⁷³Ta decay (1986S205), is larger than, but consistent with, the present decay-scheme value.

E_{γ}	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	$E_f = J_f^{\pi}$	Mult. [†]	δ	α^{C}	Comments
11.9 ^{&} 2		81.49	5/2-	69.73 3/2-				Level intensity balance requires $Ti(11.9\gamma)$ between 54 and 230.
20.3 ^{&} 1		262.1	9/2-	241.9 7/2-				
^x 22.2 1	0.20 5							
25.70 5	0.8 2	107.15	5/2-	81.49 5/2-	M1 [#]		37.7	$\alpha(L)=$ 29.0; $\alpha(M)=$ 6.53
37.40 5	7.1 8	107.15	5/2-	69.73 3/2-	M1+E2 [#]	0.029 [#] +8-11	12.6	α (L)= 9.71; α (M)= 2.19
58.05 5	2.8 7	255.4	9/2+	197.4 7/2+	M1+E2	0.21 10	4.7 14	$\alpha(L) = 3.6 \ 8; \ \alpha(M) = 0.84 \ 20; \ \alpha(N+) = 0.24 \ 8 \ \delta: \ \text{from } \alpha(L) \exp = 3.6 \ 7.$
69.70 <i>5</i>	34 4	69.73	3/2-	0.0 1/2-	M1+E2#	0.88 [#] 20	13.4 5	$\begin{array}{rrrr} \alpha(\mathrm{K})= & 6.1 \ 9; \ \alpha(\mathrm{L})= & 5.6 \ 8; \ \alpha(\mathrm{M})= & 1.37 \ 19; \\ \alpha(\mathrm{N}+)= & 0.39 \ 7 \\ \%\mathrm{I}\gamma=5.95 \ 24. \end{array}$
81.5 <i>I</i>	8.4 9	81.49	5/2-	0.0 1/2-	E2 [#]		8.13	$\alpha(K)$ = 1.33; $\alpha(L)$ = 5.16; $\alpha(M)$ = 1.28; $\alpha(N+)$ = 0.364
90.1 2	2.2 6	197.3	7/2-	107.15 5/2-	M1+E2	0.23 2	5.56	$\alpha(K) = 4.46; \ \alpha(L) = 0.849; \ \alpha(M) = 0.195; \ \alpha(N+) = 0.0575$
								Properties of analogous transitions in ¹⁶⁹ Yb and ¹⁷¹ Yb were used to separate the complex 90-keV peak ($E\gamma$ =90.3 <i>I</i> , $I\gamma$ =31 <i>3</i> , α (K)exp=0.68 <i>12</i>) into an E1 component ($E\gamma$ =90.3 <i>I</i> , $I\gamma$ =28.8 <i>29</i>) and an M1+E2 component ($E\gamma$ =90.1 <i>2</i> , $I\gamma$ =2.2 <i>6</i> , δ =0.23 <i>2</i>). $E\gamma$ =90.1 <i>2</i> , as determined from ce data (1968Ha39), is attributed to the M1+E2 component, and $E\gamma$ =90.3 <i>I</i> (1973Re03), to the E1 component.
90.3 1	28.8 29	197.4	7/2+	107.15 5/2-	E1		0.472	$\alpha(K) = 0.386; \ \alpha(L) = 0.0666; \ \alpha(M) = 0.0150; \ \alpha(N+) = 0.00427$
107.08.2		107 15	5/2-	0.0 1/0-	(T2) [#]		0.70	See comment with 90.1 γ .
107.200 2		107.15	5/2	0.0 1/2	(E2)"		2.13	$\alpha(K)$ = 0.859; $\alpha(L)$ = 1.43; $\alpha(M)$ = 0.357; $\alpha(N+)$ = 0.102 Very weak transition seen in ce spectrum only (Ice(K) (unresolved doublet)≤9, relative to Ice(K)=280 for 90.1 γ +90.3 γ).
115.0 <i>I</i>	2.2 6	312.3	9/2-	197.3 7/2-	M1+E2 [#]		2.4 ^{<i>a</i>} 3	$\alpha(K) = 1.5 \ 8; \ \alpha(L) = 0.7 \ 4; \ \alpha(M) = 0.17 \ 9; \\ \alpha(N+) = 0.049 \ 25$
139.4 <i>3</i>	0.19 10	451.6	11/2-	312.3 9/2-	M1+E2	+0.09 2	1.59	$\alpha(K) = 1.32; \ \alpha(L) = 0.208; \ \alpha(M) = 0.0470; \ \alpha(N+) = 0.0140$ I _Y ,Mult., δ : from (HI,xn γ).
160.4 <i>1</i>	28 <i>3</i>	241.9	7/2-	81.49 5/2-	M1+E2 [#]	0.69 [#] +40-30	0.93 8	$\alpha(K) = 0.7 \ 1; \ \alpha(L) = 0.17 \ 3; \ \alpha(M) = 0.040 \ 7; \ \alpha(N+) = 0.0116 \ 13$

					173	Γa $ε$ decay	1973Re03 (c	ontinued)	
						$\gamma(^{173}H)$	If) (continued)		
Eγ	I_{γ}^{b}	E _i (level)	J^{π}_i	\mathbf{E}_{f}	J_f^π	Mult. [†]	δ	α ^{<i>c</i>}	Comments
172.2 1	100	241.9	7/2-	69.73	3/2-	E2 [#]		0.484	$\alpha(K) = 0.255; \alpha(L) = 0.174; \alpha(M) = 0.0427;$
180.6 <i>1</i>	12.7 3	262.1	9/2-	81.49	5/2-	E2		0.41	$\begin{array}{llllllllllllllllllllllllllllllllllll$
205.4 1	0.9 3	312.3	9/2-	107.15	5/2-	(E2)		0.266	
^x 214.3 <i>I</i>	0.30 8				o / o –				
246.8 1	0.70 18	508.8	11/2-	262.1	9/2-	[M1+E2]		0.24 ^{<i>u</i>} 9	$\alpha(K) = 0.18 \ 9; \ \alpha(L) = 0.041 \ 16; \ \alpha(M) = 0.009 \ 4;$ $\alpha(N+) = 0.00273 \ 7$
254.4 1	0.20 5	451.6	$11/2^{-}$	197.3	7/2-	[E2]		0.133	$\alpha(M = 0.0866; \alpha(L) = 0.0352; \alpha(M) = 0.00852; \alpha(M) = 0.00852;$
267.0 1	1.9 5	508.8	11/2-	241.9	7/2-	E2		0.114	$\alpha(N+)= 0.0758; \ \alpha(L)= 0.0292; \ \alpha(M)= 0.00706; \ \alpha(N+)= 0.00199$ Mult: from (HI xnz)
x277.0 1 x285.2 5 x305.6 5 x315.0 6	0.15 <i>4</i> 0.9 [@] 2								
x338.8 6 380.3 2 x382.5 2 x398.3 7 x413.3 1	0.30 8 0.10 <i>3</i> 0.50 <i>13</i>	635.7	5/2+,7/2,9/2+	255.4	9/2+				
x419.2 7 x425.7 2 x427.6 2 x428.9 2 434.3 <i>I</i> 438.3 <i>I</i> 463.4 <i>I</i> 520.8 2	<0.1 <0.2 <0.1 0.30 8 1.7 5 0.15 4 2.6 7	942.9 635.7 775.4 785.2	7/2 ⁻ 5/2 ⁺ ,7/2,9/2 ⁺ 5/2 ⁻ ,7/2 (7/2 9/2) ⁻	508.8 197.4 312.3 255.4	11/2 ⁻ 7/2 ⁺ 9/2 ⁻ 9/2 ⁺	F1		0.00583	$\alpha(K) = 0.00480; \alpha(L) = 0.000707$
x530.2 2 549.6 2 x557.1 2 x559.0 2	2.0 7 1.0 3 2.1 6 0.4 1 0.60 15	811.7	(1/2,9/2) 5/2 ⁻	262.1	9/2 ⁻	EI		0.00383	$u(\mathbf{K}) = 0.00469, u(\mathbf{L}) = 0.000707$
569.6 2 569.6 2 577.6 2 587.8 2	0.30 8 0.4 <i>1</i> 0.20 5 1.2 <i>3</i>	811.7 775.4 785.2	5/2 ⁻ 5/2 ⁻ ,7/2 (7/2,9/2) ⁻	241.9 197.3 197.3	7/2 ⁻ 7/2 ⁻ 7/2 ⁻	M1+E2	1.9 +31-7	0.017 4	$\alpha(K)$ = 0.014 3; $\alpha(L)$ = 0.0025 4 δ : from $\alpha(K)$ exp=0.014 3.

4

L

	¹⁷³ Ta ε decay 1973							1973Re03 (continued)				
						$\gamma(^{173})$	Hf) (continued	<u>)</u>				
Eγ	I_{γ}^{b}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α ^{<i>c</i>}	Comments			
^x 615.3 2	0.9 3											
^x 618.0 [@] 11	$0.7^{@} 2$											
^x 631.2 ^{&} 15												
^x 635.4 2	< 0.3											
^x 640.9 2	< 0.3											
^x 648.7 [@] 8	$0.5^{\textcircled{0}}$ 1											
660.0 ^e 2	0.20 5	1111.5	7/2+	451.6	$11/2^{-}$							
^x 662.7 2	1.1 3											
667.7 2	1.9 5	775.4	5/2-,7/2	107.15	5/2-							
*675.1 2	3.2 8	0.42.0	7 10-	0(0.1	0/2-							
680.2 2	0.50 13	942.9	7/2	262.1	9/2							
$x_{601.6.2}$	134	921.5	5/2 ,5/2,7/2	241.9	112							
700.6.2	665	942.9	7/2-	241.9	7/2-	M1+E2	19 + 34 - 7	0 0114 24	$\alpha(K) = 0.0093.19; \alpha(L) = 0.00159.28$			
700.0 2	0.0 5	712.7	1/2	211.9	172	1411 112	1.9 131 7	0.011127	I_{γ} : average of 7.1 8 (1973Re03) and 6.1 4 (1986Sz05). δ : from α (K)exp=0.0093 <i>19</i> .			
^x 702.6 2	1.7 5											
707.9 2	0.30 8	1020.1	5/2-,7/2-	312.3	9/2-							
730.6 2	3.4 9	811.7	5/2-	81.49	5/2-	M1		0.0188	$\alpha(K) = 0.0157; \alpha(L) = 0.00234$			
739.6 4	≈0.6	1248.5	7/2-	508.8	$\frac{11}{2}$							
742.0 4 X744 7 4	≈0.6	811.7	5/2	69.73	3/2							
$x^{-1}/44.74$	≈0.4 ~0.6											
x749 5 4	~0.0 ≈0.6											
x754.0.2	0.70.18											
x771.4 2	0.4 1											
778.2 2	2.9 8	1020.1	$5/2^{-},7/2^{-}$	241.9	$7/2^{-}$							
x783.4 2	0.4 1											
^x 789.1 2	1.2 3											
x795.2 2	1.2 3											
799.1 2	2.5 7	1111.5	7/2+	312.3	9/2-							
*801.4 2	1.2 3	011 7	5/2-	0.0	1/0-							
811.72 x014.5.2	2.3 0	811.7	5/2	0.0	1/2							
^{**} 814.5 2	0.50 13	1020 1	5/2- 7/2-	107.3	7/2-							
x836.2.2	1.0 J 1 A A	1020.1	3/2 ,1/2	197.3	112							
x842.8.2	0.60.15											
846.1 2	2.6.7	927.5	3/25/2.7/2-	81.49	$5/2^{-}$							
851.0 2	0.70 18	958.3	3/2,5/2-	107.15	5/2-							
857.6 2	1.6 4	927.5	3/2-,5/2,7/2-	69.73	3/2-							
861.7 2	0.50 13	942.9	7/2-	81.49	5/2-							
864.6 2	1.9 5	1126.9	5/2-	262.1	9/2-							
873.0 2	4.0 10	942.9	7/2-	69.73	3/2-							

From ENSDF

 $^{173}_{72}\mathrm{Hf}_{101}\mathrm{-}5$

L

					¹⁷³	$a \varepsilon decay$	1973Re	03 (continued)
						$\gamma(^{173}$	Hf) (contin	ued)
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α ^{c}	Comments
876.6 2	2.0 5	958.3	3/2,5/2-	81.49	5/2-			
^x 883.8 2	1.2 3	050.0	2 12 5 12-	(0.50	2/2-			
888.72	1.05 27	958.3	3/2,5/2	69.73	3/2			
x905 7 2	0.105 041							
914.0 2	1.6 4	1111.5	$7/2^{+}$	197.3	$7/2^{-}$			
x917.4 2	0.20 5		• / =	-,	.,_			
^x 931.6 2	0.30 8							
^x 935.5 [@] 15	$0.8^{\textcircled{0}}2$							
938.7 2	0.60 15	1020.1	5/2-,7/2-	81.49	$5/2^{-}$			
942.0 ^e 2	1.0 3	1450.2	9/2+	508.8	$11/2^{-}$			
^x 947.2 2	0.20 5	1000 1	5 /2- 7 /2-	(0.72	2/2-			
950.4 2	1.4 4	1020.1	5/2, $1/23/2 5/2^{-1}$	69.73	3/2			
936.0 2	2.98	938.5	3/2,3/2 7/2 ⁻	262.1	$\frac{1}{2}$ 9/2 ⁻			
x989.6 2	0.50 13	1210.5	1/2	202.1	7/2			
995.4 2	1.5 4	1192.7	3/2-,5/2,7/2	197.3	$7/2^{-}$			
1006.6 2	3.2 8	1248.5	7/2-	241.9	7/2-	M1	0.00848	$\alpha(K) = 0.00709; \ \alpha(L) = 0.00104$
^x 1009.9 2	0.60 15							
^x 1013.1 2	0.4 1	1111 5	7/0+	01.40	5/0-	F 1	0.00156	$(\mathbf{X}) = 0.00122$ $(\mathbf{I}) = 0.000102$
1030.0 2	8.1 10	1111.5	1/2	81.49	5/2	EI	0.00156	$\alpha(\mathbf{K}) = 0.00132; \ \alpha(\mathbf{L}) = 0.000183$
1045.2.2	175	1126.9	5/2-	81 49	$5/2^{-}$			1_{γ} . average of 5.0 5 (1975Re05) and 7.1 4 (19005205).
^x 1052.4 2	0.70 18	11200	0/=	01119	0/=			
1057.3 2	0.30 8	1126.9	5/2-	69.73	$3/2^{-}$			
^x 1067.5 2	0.60 15							
^x 1070.3 2	0.60 15	1100 5		107.15	5/0-			
1085.5 2	1.7 5	1192.7	3/2-,5/2,7/2	107.15	5/2-			
x1104.8.2	0.00 13 0.4 1							
1127.0 2	0.60.15	1126.9	5/2-	0.0	$1/2^{-}$			
1166.9 2	0.50 13	1248.5	7/2-	81.49	5/2-			
^x 1176.1 2	0.8 2							
1178.7 2	1.5 4	1248.5	7/2-	69.73	3/2-			
x1194.9 2	< 0.3	1 4 5 0 0	0.12	0 4 1 0			0.00115	
1208.2 2	15.3 16	1450.2	9/21	241.9	1/2	EI	0.00117	$\alpha(\mathbf{K})=0.000988; \ \alpha(\mathbf{L})=0.000136$
x1213.2 12	≈0.4 [™]							
x1210.2 2	0.70.18							
1220.92 $x_{1047,1}@15$	$^{0.2}$							
1247.1 = 13 1253 0 2	0.0 - 2	1450.2	9/2+	107 3	7/2-			
x1277.0 4	≈0.3	1750.2	712	171.3	112			
^x 1279.6 4	≈0.4							

 $^{173}_{72}\mathrm{Hf}_{101}\mathrm{-}6$

L

 $^{173}_{72}\mathrm{Hf}_{101}\mathrm{-}6$

From ENSDF

						¹⁷³ Ta ε decay	1973Re03 (c	continued)			
						γ (¹⁷³ Hf	(continued)	<u>.</u>			
Eγ	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Eγ	Ι _γ ^{<i>b</i>}	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}
^x 1285.6 4	‡					^x 1589.1 [@] 17	≈0.4 [@]				
^x 1301.0 4	‡					1597.6 <i>3</i>	1.6 4	1667.3	5/2-,7/2-	69.73	3/2-
^x 1323.5 4	‡					1613.2 <i>3</i>	2.7 7	1694.5	5/2-,7/2	81.49	$5/2^{-}$
^x 1327.1 4	0.4 1					^x 1622.3 [@] 16	$0.7^{@} 2$				
1332.4 4	0.50 13	1574.1	$3/2^{-}, 5/2^{-}$	241.9	$7/2^{-}$	^x 1625.4 [@] 15	$0.7^{\textcircled{0}}{2}$				
^x 1337.2 4	‡		1 / 1		,	^x 1633.9 3	0.30 8				
^x 1340.2 4	‡					^x 1648.2.3	0.60 15				
$1343.2^{d}.2$	1.0^{d} 3	1450.2	$9/2^{+}$	107 15	$5/2^{-}$	x1691.0.3	041				
$1343.2^{de}.2$	1.0^{d} 3	1655.5	5/2-7/2-	312.3	$9/2^{-}$	x1692.9.5	‡				
x1349.3 <i>A</i>	0.4.7	1000.0	5/2 ,7/2	512.5	712	x1697.2.5	‡				
x1350.7.4	‡					x1702.9.5	0.20.5				
x1357.6.4	‡					x1700 7 5	0.20 5				
1368.2.2	2.2.6	1450.2	$9/2^{+}$	81.49	5/2-	x1717.2.5	0.30.8				
x1375.3 2	1.4 4	110012	>/=	01117	0/2	^x 1757.8 5	0.4 1				
1380.3 2	3.1 8	1450.2	$9/2^{+}$	69.73	$3/2^{-}$	^x 1836.1 5	‡				
^x 1390.4 4	0.60 15		,		,	^x 1882.2 5	0.20 5				
1393.5 <i>3</i>	4.1 11	1655.5	5/2-,7/2-	262.1	9/2-	^x 1892.2 5	‡				
1405.3 <i>3</i>	0.60 15	1667.3	5/2-,7/2-	262.1	9/2-	^x 1913.3 5	0.20 5				
x1409.2 3	0.30 8	1655 5		041.0	7/0-	x1960.6 5	0.20 5	22(2,6)	5/0- 7/0	2(2.1	0/2-
1413.5 3	0.70 18	1655.5	5/2 ,1/2	241.9	1/2	2001.3 5	0.60 15	2263.6?	5/2 ,1/2	262.1	9/2
*1420.2 5	T 0 8 2	1667.2	5/2-7/2-	241.0	7/2-	2022.7 6 ×2048 5 5	÷ 0.20.8	2263.6?	5/2 ,7/2	241.9	7/2
1425.2 5	328	1694 5	5/2, $7/25/2^{-} 7/2$	241.9	$9/2^{-}$	x2066 7 5	0.30 8				
^x 1434.7 5	0.50 13	1071.5	5/2 ,//2	202.1	>12	x2077.3 5	0.30 8				
^x 1445.6 3	1.1 3					^x 2086.9 5	0.20 5				
1452.7 5	‡	1694.5	5/2-,7/2	241.9	$7/2^{-}$	^x 2161.5 4	0.70 18				
^x 1467.4 5	< 0.5					2182.0 4	0.4 1	2263.6?	5/2-,7/2	81.49	5/2-
^x 1481.2 5	< 0.3					^x 2188.3 4	0.60 15				
~1486.7 3 1402 5 3	1.0 3	1574-1	3/2- 5/2-	<u>81.40</u>	5/2-	$x_{2199.84}^{x_{2199.84}}$	0.60 15				
x1492.0 3	1.2.3	13/4.1	5/2 ,5/2	01.49	5/2	x2258.1 4	0.20.5				
1504.3 3	0.4 1	1574.1	3/2-,5/2-	69.73	$3/2^{-}$	^x 2269.4 4	0.70 18				
^x 1537.7 5	‡					^x 2281.0 5	0.20 5				
^x 1547.6 3	1.7 5					x2293.6 5	0.20 5				
^x 1568.2 5	‡					^x 2319.9 5	0.20 5				
1574.2 ^{de} 3	1.9 ^d 5	1574.1	3/2-,5/2-	0.0	1/2-	x2328.3 5	0.20 5				
1574.2 ^d 3	1.9 ^d 5	1655.5	5/2-,7/2-	81.49	$5/2^{-}$	^x 2360.2 5	0.30 8				
1585.7 ^d 3	0.60 ^d 15	1655.5	$5/2^{-},7/2^{-}$	69.73	3/2-	^x 2460.2 4	0.30 8				
1585.7 ^d 3	0.60 ^d 15	1667.3	5/2-,7/2-	81.49	5/2-	^x 2475.0 4	0.50 13				

 $^{173}_{72}\mathrm{Hf}_{101}\mathrm{-7}$

$\gamma(^{173}\text{Hf})$ (continued)

Eγ	I_{γ}^{b}	E _i (level)	Eγ	I_{γ}^{b}	E _i (level)	Eγ	I_{γ}^{b}	E _i (level)	Eγ	I_{γ}^{b}	E _i (level
^x 2493.0 5	0.20 5		^x 2585.7 5	0.20 5		x2656.6 5	0.30 8		x2722.3 5	0.10 3	
^x 2526.5 5	0.30 8		^x 2595.3 5	0.10 3		^x 2674.9 5	0.20 5		^x 2736.7 5	0.10 3	
^x 2557.5 5	0.10 3		^x 2638.1 5	0.4 1		^x 2680.1 4	0.50 13		^x 2749.1 5	0.10 3	
x2567.8 5	0.20 5		^x 2644.1 5	0.70 18		^x 2694.1 5	0.10 3		^x 2784.6 5	0.04 1	

[†] From $\alpha(\exp)$ except where noted. To normalize the Ice and I γ intensity scales, Ice values were multiplied by a factor of 0.064 5, as deduced from a fit of $\alpha(K)$ and/or $\alpha(L)$ (theory) for 69.7 γ , 81.5 γ , 160.4 γ , and 172.2 γ . For E γ >500, I γ and Ice values from 1971BoZG were also considered, and a different normalization factor deduced.

[‡] Weak.

[#] From ce subshell ratios (1968Ha39).

[@] From 1971BoZG.

[&] From ce data (1968Ha39); uncertainty implied by spectrometer resolution.

^a Brackets combined range for M1 and E2.

^b For absolute intensity per 100 decays, multiply by 0.175 18.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

^e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 ∞

Decay Scheme (continued)

 $^{173}_{\ 72} Hf_{101}$