170 Er(α ,2n γ) **1981**Cr03,1980Wa15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 75,199 (1995)	31-May-1995

1981Cr03: E=19 MeV. Measured γ , $\gamma\gamma$, $\gamma(\theta)$ (θ =20° to 90°), ce.

1980Wa15 (also 1979Wa18): E=27 MeV. Measured γ , $\gamma\gamma$, $\gamma(t)$, $\gamma(\theta)$, Ag(t) by centroid-shift method.

Other studies:

1983Ko28: E=27 MeV. Measured Ag(t) (centroid-shift method).

1972Li25: E=34 MeV. γ rays in g.s. band (up to 12⁺) reported.

1972Mo44: measured γ , $\gamma\gamma$. 6 γ rays reported in g.s. band.

1969No05: measured γ , ce, Ag(t). Delayed intensities of 15 γ rays associated with the decay of the 3.6- μ s isomer are listed. 1966Mo01: γ rays in g.s. band (up to 10⁺) reported.

¹⁷²Yb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0&	0^{+}		
78.81 ^{&} 7	2+		
260.35 <mark>&</mark> 8	4+		
540.10 ^{&} 8	6+		
912.25 ^{&} 11	8+		
1042.88 ^{#a} 11	0^{+}		
1118.05 ^a 8	2^{+}		
1155.03 ⁱ 8	1-		
1172.41 <mark>8</mark> 8	3+	8.3 ns 4	$T_{1/2}$: 1094 γ (t) (1980Wa15). Other: 8.1 ns 8 from 912 γ (t) (1980Wa15).
1198.65 ¹ 9	2^{-}		
1221.78 ⁱ 9	3-		
1263.058 9	4 ⁺	0.50 ns 10	$T_{1/2}$: 1003 γ (t) (1980Wa15).
1286.64 ^d 9	4		
1330.75° 9	4		
1353.04 12	(5)		
1370.19° 13	10+ 5+	0.21 m 6	T $_{\rm e}$ weighted every a of 0.22 ng 10 (1115a(t) 1000Wc15) and 0.20 ng 7 (1022Kc22)
1375.920 8	0+	0.21 118 0	$1_{1/2}$. weighted average of 0.25 is 70 (1115/(t) 1980 war5) and 0.20 is 7 (1985 K028).
1400.0 4 1466.07 # 6.8	$\frac{0}{2^+}$		
1400.07 + 8 1476.60 + b	2 2+		
$1470.09 \cdot 11$ 1510 13 <mark>8 10</mark>	$\frac{2}{6^{+}}$		
1510.15 10 1537.63 ^{<i>a</i>} 10	6 ⁺		
1540.73 ⁱ 10	6-		
1549.48 ^{#e} 11	3+		
1550.59 ¹ 10	6-	3.6 µs 1	$T_{1/2}$: $\gamma(t)$ (1969No05).
1557.71 ⁱ 10	7^{-}	,	
1600.45 [#] <i>j</i> 19	1-		
1608.61 ^{#f} 10	2+		
1633.23 ^{#b} 11	$(4)^{+}$		
1640.65 ⁿ 11	4-	0.5 ns 2	$T_{1/2}$: Ag(t) (1983Ko28).
1657.49 ^{#e} 14	$(4)^{+}$		
1662.84 ^{#h} 10	3+		
1666.17 <mark>8</mark> 10	(7^{+})		
1670.79 ¹ 13	(7 ⁻)		
1700.53 ^{#f} 9	3+		

¹⁷⁰Er(α ,2n γ) **1981Cr03,1980Wa15** (continued)

¹⁷²Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments	
1706.46 ⁿ 10	5-			
1707.9? [#] 3				
1711.44 [#] <i>j</i> 18	3(-)			
1749.38 ^{#h} 13	4+			
1757.33 ^{#k} 15	$(2)^{-}$			
1779.16? [#] 13	5+			
1795.5 ^{#c} 3	0^{+}			
1802.39 ^{@n} 16	6-			
1802.78 ^{<i>f</i>} 10	4+			
1809.84 ¹ 16	(8 ⁻)			
$1821.5^{\#k}$ 2	3-			
1828.87 ^{<i>i</i>} 17	8-			
1839.92 ⁱ 14	9-			
1841.80 ^g 12	(8+)			
1849.44 ^{#c} 14	2+			
1853.59 ^a 13	8+			
1862.89 ^{#h} 18	$(5)^{+}$			
1869.62 23	$(4,5)^{-}$			
1899.39?" 22				
1907.60 [°] 17	(12^{+})			
1919.91 [#] 11	(5,6)			
1921.74 ^{<i>wn</i>} 17	(7 ⁻)			
1926.97 ^{#J} 16	5+			
1956.85 ^{#a} 17	2+			
1967.78? ¹ 17	(9 ⁻)			
1975.73 ^{#C} 15	(4^{+})			
2007.91 [#] <i>n</i> 16	(6^{+})			
2010.39 [#] <i>m</i> 25	1+			
2039.38 ⁸ 24	(9+)			
2048.1^{mn} 10	$(2)^{+}$			
2063.95 [©] ⁿ 20	(8 ⁻)			
2073.23 [#] 19	4+			
2075.37 [#] 13	(6 ⁺)			
2084.91?" 22				
2100.34 ^{ma} 19	(4 ⁺)			
2144.59 25	(10^{-})			
2154.42 ^e 22	(7)	0.17 ns 10	$T_{1/2}$: 604 γ (t) (1980Wa15).	
2156.6?"** 4	(6 ⁺)			
2174.99 [#] 18	3+			
2193.14 25	(10^{-})			
2193.24 [#] 15	(4^{+})			
2199.59 23	(11 ⁻)			
2212.64 ^{@u} 25	(10^{+})			
2225.18 ^w ⁿ 25	9-			
2248.33" 16				
2256.3 8 4	(10^{+})			
2299.10 ^w 24		0.15 ns 10	$T_{1/2}$: 628 γ (t) (1980Wa15).	
2340.2 ^{wl} 3	(11 ⁻)			

Continued on next page (footnotes at end of table)

¹⁷⁰Er(α ,2n γ) **1981Cr03,1980Wa15** (continued)

¹⁷²Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
2392.3? [#] 4			
2411.4 ⁿ 3	(10^{-})	0.12 ns. 10	$T_{\rm eff} = 704 r_{\rm eff} (1080 W_{\rm e} 15)$
2403.18 23 2492.2 ⁸ 4	(7,0) (11^+)	0.15 118 10	$11/2$. 794 $\gamma(t)$ (1980 wats).
2518.8 ^{&} 4	(14 ⁺)		
2553.8 ¹ 3	(12 ⁻)		
2607.4^{a} 4	(12^+)		
$2609.1^{n} 4$	(11)		
2029.9 4 2636 2 ^{<i>i</i>} 3	(12) (13^{-})		
2653.0 3	(15)		
2689.8 ⁰ 4	(9 ⁻)	0.7 ns 1	$T_{1/2}$: 225 γ (t) (1983Ko28).
2746.58 5	(12^+)		
$2786.4^{\iota} 4$ 2840.8 ⁿ 5	(13^{-}) $(12)^{-}$		
2856.4° 5	(12) (10^{-})		
3020.0 ^g 5	(13 ⁺)		
3033.8 ¹ 4	(14^{-})		
3044.0° 5 3044.5 ⁰ 6	(14^{+}) (11^{-})		
3134.7 ^{<i>i</i>} 5	(11^{-})		
3198.5 ^{&} 5	(16 ⁺)		
3252.9 ⁰ 7	(12 ⁻)		
3309.58 6 3481.60 8	(14^+) (13^-)		
5401.0 0	(15)		
[†] From leas	st-squares	s fit to $E\gamma'$ s. A	above 2400, levels are from 1980Wa15 only.
* From Ad	opted Lev	vels.	
^(a) Level from	m 1981C m 1980W	r03. /a15.	
& Band(A):	$K^{\pi} = 0^{+} g$	g.s. band.	
^a Band(B):	$K^{\pi} = 0^{+} \mu$	3 band. Config	guration= $((v 5/2(512))(v 5/2(512)))(44\%) + ((v 1/2[521]) (v 1/2[521]))(18\%) + ((v 1/2(512)))(18\%)$
7/2[633])(v 7/2[63	3]))(13%) (qu	oted by 1980Wa15 from calculation by Grigoriev and Soloviev).
^{v} Band(C):	$K^{\pi} = 0^{+} t$	band.	
d Band(D):	$K^{\pi} = 0^{+} t$ $K^{\pi} = 0^{+} t$	band.	
^{e} Band(F):	$K^{\pi}=2^{+}$ b	and.	
f Band(G):	$K^{\pi}=2^{+}$ ł	band.	
^g Band(H):	$K^{\pi}=3^{+}$ l	oand. Configu	$\operatorname{ration} = ((\nu \ 5/2(512))(\nu \ 1/2(521)))(81\%) + ((\nu \ 7/2[404])(\pi \ 1/2[411])) \ (19\%)$
(1980Wal)	5,1972O	n01,1967Bu21). From (p, α); 1982Bu23 suggest 27% 10 admixture of the latter configuration.
i Band(1):	$K^{n}=3^{+}$ b $K^{\pi}=1^{-}$ o	ana. ctupole band	Configuration= $((\gamma 7/2)(633))(\gamma 5/2(512)))$ (94%) (medicted value quoted by 1980Wa15)
j Band(K):	$K^{\pi} = 0^{-}$	octupole band.	
^k Band(L):	$K^{\pi} = 2^{-} c$	octupole band.	
^l Band(M):	$K^{\pi} = 6^{-1}$	band. probabl	e Configuration=(($\nu 7/2(633)$)($\nu 5/2(512)$)) (quoted by 1980Wa15 from 1972O ν 01).
^m Band(N):	$K^{\pi} = 1^{+} l$	oand.	
^{<i>n</i>} Band(O):	$K^{\pi} = 4^{-1} l$	band. probable	e Configuration= $((v 7/2(633))(v 1/2(521)))$ (1980Wa15).
[°] Band(Р):	<u>к</u> =(д)	band. probab	= (v //2(055))(v 11/2(055))) (1980 wals).

 A_2 and A_4 values are from 1980Wa15 unless otherwise stated. Iy's for levels above 2400 are available from 1980Wa15 only. These are given under comments.

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^C	α^{f}	Comments
$65.8^{@} 3$	0.12 6 e	1706.46	5-	1640.65	4-			I _γ : from Iγ(66γ)/Iγ(330γ)=2 1/34 3 (1980Wa15).
78.7 [#] 1		78.81	2+	0.0	0+	E2	8.4	Mult.: from adopted gammas. I _y : 24.1 <i>12</i> . $A_2=0.040$ 8, $A_4=-0.020$ <i>10</i> .
^x 84.93 ^e 20	4.33 ^e 24							
90.82 12	4.42 ^{&} 24	1263.05	4+	1172.41	3+			$A_2 = -0.321 \ I5, \ A_4 = -0.003 \ 20.$
95.9 [@] 3		1802.39	6-	1706.46	5-			I_{γ} : 0.3 <i>I</i> (1980Wa15). A ₂ =-1.09 <i>9</i> , A ₄ =0.19 <i>12</i> .
^x 105.80 ^e 25	0.82 ^e 4							
112.85 10	3.33 10	1375.92	5+	1263.05	4+			$A_2 = -0.305 \ 19, \ A_4 = 0.05 \ 3.$
119.3 ^{⁶⁰ 3}	0 (0 15	1921.74	(7^{-})	1802.39	6-			I_{γ} : 0.4 <i>I</i> (1980Wa15).
120.21 10	2.60 15	16/0./9	(/)	1550.59	6			$A_2 = -0.530 \ 11, \ A_4 = 0.021 \ 15.$
132.2 3	0.4° 2	1330.75	4- 6+	1198.65	2- 5+			I_{γ} : from $I_{\gamma}(132\gamma)/I_{\gamma}(10/0\gamma)=2/1/28/2$ (1980Wa15).
134.5 5	0.55 5	1000.04	0	1575.92	5			$A_2 = -0.70$ 6, $A_4 = -0.08$ 10.
139.1" 1	0.51 5	1809.84	(8)	16/0./9	(/)			$A_2 = -0.566 \ I0, \ A_4 = -0.013 \ I4.$
142.3 [@] 3		2063.95	(8 ⁻)	1921.74	(7 ⁻)			I_{γ} : 0.5 <i>I</i> (1980Wa15). $A_2 = -0.7$ <i>3</i> , $A_4 = 0.1$ <i>3</i> .
155.99 8	0.47 5	1666.17	(7^{+})	1510.13	6+			$A_2 = -0.776, A_4 = -0.068.$
157.92 8	0.66 6	1967.78?	(9 ⁻)	1809.84	(8 ⁻)			$A_2 = -0.573 \ 10, \ A_4 = 0.020 \ 12.$
161.3 [@] 3		2225.18	9-	2063.95	(8-)			I_{γ} : 0.4 <i>I</i> (1980Wa15). For 162 doublet: A ₂ =-0.41 <i>II</i> , A ₄ =0.25 <i>I5</i> .
161.8 [@] 3		1802.39	6-	1640.65	4-			I_{γ} : 0.2 <i>I</i> (1980Wa15).
162.20 ^e 25	0.31 ^e 5	1802.78	4+	1640.65	4^{-}			
166.6 3		2856.4	(10 ⁻)	2689.8	(9-)			I _y : 1.0 <i>I</i> . A ₂ =-0.78 <i>5</i> , A ₄ =0.18 <i>7</i> .
174.74 10	7.9 <i>3</i>	1550.59	6-	1375.92	5+	(E1)		Mult.: from $ce(K)(175\gamma)/ce(K)(182\gamma,mult=E2)=0.6 \ 1 \ (1969No05).$
175.2 ^e 3	е	1841.80	(8+)	1666.17	(7^{+})			
176.9 [@] 3		2144.59	(10 ⁻)	1967.78?	(9 ⁻)			I_{γ} : 3.8 3 (1980Wa15). A ₂ =-0.59 4, A ₄ =0.00 5.
181.6 [#] 1	100 5	260.35	4+	78.81	2+	E2		Mult.: from $A_2=0.242$ 4, $A_4=-0.047$ 5 (1981Cr03) and adopted gammas. Additional information 1.
186.2 3		2411.4	(10^{-})	2225.18	9-			I_{γ} : 0.2 <i>1</i> .
187.5 ^{@h} 3	0.14 7	1540.73	6-	1353.04	(5 ⁻)			I_{γ} : from $I_{\gamma}(187\gamma)/I_{\gamma}(1001\gamma)=2 \ 1/38 \ 4 \ (1980Wa15)$.

$\gamma(^{172}$ Yb) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^C	Comments
188.1 3		3044.5	(11 ⁻)	2856.4	(10 ⁻)		I_{γ} : 0.4 <i>1</i> . A ₂ =-0.46 <i>12</i> . A ₄ =0.09 <i>17</i> .
195.7 [@] 3		2340.2	(11 ⁻)	2144.59	(10 ⁻)		I_{γ} : 2.5 2 (1980Wa15). A ₂ =-0.61 6, A ₄ =0.01 7.
196.3 [@] 3	0.37 12	1706.46	5-	1510.13	6+		I_{γ} : from $I_{\gamma}(196\gamma)/I_{\gamma}(330\gamma)=6\ 2/34\ 3\ (1980Wa15)$.
197.2 ^{ea} 3	0.20 ^e 10	2039.38	(9^{+})	1841.80	(8^{+})		
197.6 [@] 3	0.57 <mark>&</mark> 12	1550.59	6-	1353.04	(5-)		I_{γ} : from Iγ(198γ)/Iγ(175γ)=15 3/209 10 (1980Wa15).
202.45.6	10 (2.20)	1275.00	~ +	1170.41	2+		$A_2 = -0.04 \ I8.$
203.45 0	10.63 20	13/5.92	5'	11/2.41	3'	(E2)	$A_2=0.154 \ 8, \ A_4=-0.045 \ 10.$
208.4 3	0.67.0	3252.9	(12)	3044.5	(11)		$I_{\gamma}: 0.3 I.$
209.96 10	0.6/3	1540.73	6	1330.75	4	(E2)	$A_2=0.38 \ 8, \ A_4=-0.02 \ 11.$
213.6 3		2553.8	(12)	2340.2	(11)		I_{γ} : 1.4 2.
^x 215.10 ^e 25	0.26 ^e 3						$R_2 = -0.05$ 6, $R_4 = -0.01$ 70.
215.4 [@] 3		1921.74	(7 ⁻)	1706.46	5-		I_{γ} : 1.2 2 (1980Wa15). A ₂ =0.27 6, A ₄ =0.07 8.
224.6 3		2689.8	(9 ⁻)	2465.18	(7,8)		I_{γ} : 1.8 2. $A_2 = -0.20$ 6, $A_4 = 0.04$ 8.
228.7 3	&	3481.6	(13^{-})	3252.9	(12^{-})		I_{γ} : 0.2 1.
228.97 20	1.31 11	1869.62	$(4,5)^{-}$	1640.65	4-		
232.7 3		2786.4	(13^{-})	2553.8	(12^{-})		I_{γ} : 0.5 1.
^x 233.87 ^e 20	1.37 ^e 11						
247.2 [#] 1	5.53 22	1510.13	6+	1263.05	4+	E2	$A_2=0.310 \ 8, \ A_4=-0.073 \ 10 \ (1980Wa15).$ Additional information 14.
247.4 3		3033.8	(14 ⁻)	2786.4	(13-)		I_{γ} : 0.2 1.
251.43 ^b 12	0.22 ^b 5	1537.63	6+	1286.64	4+		E_{γ} : poor fit. Level energy difference is 250.98.
253.75 ^e 10	0.27 ^e 5	1919.91	(5,6)	1666.17	(7^{+})		7 1 00
255.7 ^{@b} 3	b	1921.74	(7 ⁻)	1666.17	(7 ⁺)		I_{γ} : 0.5 <i>1</i> (1980Wa15). A ₂ =0.22 <i>10</i> .
259.3 [@] 3	0.056 7	1809.84	(8-)	1550.59	6-		I_{γ} : from $I_{\gamma}(259\gamma)/I_{\gamma}(139\gamma)=8$ 1/73 4 (1980Wa15). A ₂ =0.24 9.
261.6 [@] 3		2063.95	(8-)	1802.39	6-	(E2)	I_{γ} : 1.8 2 (1980Wa15). A ₂ =0.37 5, A ₄ =-0.17 7.
264.73 8 ^x 272.11 ^e 10	0.58 <i>4</i> 4.8 ^e <i>3</i>	1640.65	4-	1375.92	5+		$A_2 = -0.18 \ 25.$
279.70 6	47.4 8	540.10	6+	260.35	4+	(E2)	$A_2=0.317$ 6, $A_4=-0.073$ 7 (1981Cr03). Additional information 2.
282.3 [@] 3	0.07 3	1839.92	9-	1557.71	7-		I_{γ} : from $I_{\gamma}(282\gamma)/I_{\gamma}(928\gamma)=3 \ 1/40 \ 3 \ (1980Wa15)$.
287.2 ^e 5	0.45 ^e 20	1406.0	0^{+}	1118.05	2+		
288.0 <i>3</i>	0.45 20	1828.87	8-	1540.73	6-	(E2)	$A_2=0.35 \ 3, \ A_4=-0.07 \ 4.$

S

$^{172}_{70} \rm Yb_{102}\text{--}5$

From ENSDF

 $^{172}_{70} \mathrm{Yb}_{102}$ -5

$\gamma(^{172}$ Yb) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^C	Comments
290.28 6 x292.03 ^e 8	3.03 <i>15</i> 0.78 ^e <i>10</i>	1666.17	(7 ⁺)	1375.92	5+	(E2)	$A_2 = 0.334 \ 14, \ A_4 = -0.097 \ 18.$
292.2 [@] 3		1802.39	6-	1510.13	6+		I_{γ} : 1.8 2 (1980Wa15). A ₂ =0.30 9, A ₄ =-0.07 11.
297.1 [@] 3	0.19 2	1967.78?	(9 ⁻)	1670.79	(7 ⁻)		I_{γ} : from $I_{\gamma}(297\gamma)/I_{\gamma}(158\gamma)=16\ 2/55\ 3\ (1980Wa15)$.
303.4 [@] 3		2225.18	9-	1921.74	(7 ⁻)		I_{γ} : 1.6 3 (1980Wa15). For 303 doublet: A ₂ =0.11 6, A ₄ =-0.07 8.
^x 303.8 [@] 3							I_{γ} : 1.0 3. 1980Wa15 suggest placement above 2690 level.
310.6 3		2465.18	(7,8)	2154.42	(7)		I_{γ} : 1.2 2. $A_2 = -0.20 \ 9, \ A_4 = -0.03 \ 12.$
^x 315.90 ^e 25	0.31 ^e 2						
316.3 [@] 3	0.25 6	1853.59	8+	1537.63	6+		I_{γ} : from $I_{\gamma}(316\gamma)/I_{\gamma}(941\gamma)=8\ 2/23\ 2\ (1980Wa15)$.
330.47 6	2.09 10	1706.46	5-	1375.92	5 ⁺	D	$A_2 = 0.35 4, A_4 = -0.09 5.$
331.67 8	1.47 6	1841.80	(8')	1510.13	6'	(E2)	$A_2=0.273\ 20,\ A_4=-0.073\ 25.$
334.8 ^{°°} 3		2144.59	(10 ⁻)	1809.84	(8-)	(E2)	I_{γ} : 1.8 2 (1980Wa15). A ₂ =0.34 5, A ₄ =-0.14 7.
x339.5 [@] 3							I_{γ} : 0.6 2. A ₂ =-0.13 <i>13</i> . 1980Wa15 suggest placement below 2465 level.
347.4 3		2411.4	(10 ⁻)	2063.95	(8 ⁻)		I_{γ} : 1.6 2. A ₂ =0.59 6, A ₄ =0.02 8.
350.65 ^e 20	0.92 ^e 10	2007.91	(6^{+})	1657.49	$(4)^+$		
353.9 <i>3</i>		2653.0		2299.10			I_{γ} : 0.5 2.
358.7 ^e 3	0.70^{e} 4	1476.69	2+	1118.05	2+		
358.9 3		2212.64	(10+)	1853.59	8+		I_{γ} : 1.3 2 (1980Wa15). A ₂ =0.14 7, A ₄ =-0.06 10.
359.9 [@] 3		2199.59	(11 ⁻)	1839.92	9-		I _y : 0.7 2 (1980Wa15). A ₂ =0.27 <i>1</i> 2.
364.2 [@] 3		2193.14	(10 ⁻)	1828.87	8-	(E2)	I_{γ} : 2.7 2 (1980Wa15). A ₂ =0.31 3, A ₄ =-0.12 4.
372.06 10	9.94 10	912.25	8+	540.10	6+	E2	Mult.: from adopted gammas. $A_2=0.350$ 7, $A_4=-0.113$ 9 (1981Cr03). Additional information 3.
372.3 [@] 3		2340.2	(11 ⁻)	1967.78?	(9 ⁻)		I _v : 1.5 2 (1980Wa15).
373.6 [#] 3		2039.38	(9+)	1666.17	(7+)	(E2)	I_{γ} : 5.4 4. A ₂ =0.372 22, A ₄ =-0.14 3.
377.7 [#] 3	4.44 18	1640.65	4-	1263.05	4+		$A_2=0.27$ 5, $A_4=0.04$ 7.
383.9 <i>3</i>		2609.1	(11-)	2225.18	9-	(E2)	I_{y} : 1.8 2. A_{2} =0.29 3, A_{4} =-0.12 5.

6

					170	E r (α ,2n γ)	1981Cr03,1980Wa15 (continued)
							$\gamma(^{172}\text{Yb})$ (continued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^C	Comments
394.7 3		2607.4	(12 ⁺)	2212.64	(10 ⁺)		I_{γ} : 0.8 2. A ₂ =0.40 15.
397.7 [@] 3 409.3 3		2063.95 2553.8	(8 ⁻) (12 ⁻)	1666.17 2144.59	(7 ⁺) (10 ⁻)		I_{γ} : 0.3 <i>l</i> (1980Wa15). I_{γ} : 1.4 2. A_2 =0.29 <i>l</i> 2.
410.8 ^{eb} 3	0.29 ^{eb} 3	1919.91	(5,6)	1510.13	6+		E_{ν} : level energy difference is 409.8.
411.4 [@] 3		1921.74	(7 ⁻)	1510.13	6+		I_{γ} : 1.1 2 (1980Wa15). A_{2} =-0.31 9, A_{4} =-0.16 12.
414.5 [@] 3		2256.3	(10+)	1841.80	(8+)		I_{γ} : 2.9 3 (1980Wa15). A ₂ =0.31 9, A ₄ =-0.10 12.
426.5 [@] 3		1802.39	6-	1375.92	5+		I_{γ} : 0.9 2 (1980Wa15). A ₂ =-0.44 6, A ₄ =-0.03 8.
426.62 ^{eb} 10	0.66 <mark>eb</mark> 7	1802.78	4+	1375.92	5+		E_{γ} : level energy difference is 426.86.
429.4 3	&	2840.8	(12)-	2411.4	(10 ⁻)	(E2)	I_{γ} : 0.8 2. A ₂ =0.42 6, A ₄ =-0.15 8.
436.7 <mark>8</mark> <i>3</i>	8	2636.2	(13 ⁻)	2199.59	(11^{-})		$I_{\gamma}: 0.5 2.$
436.7 <mark>8</mark> 3	8	3044.0	(14^{+})	2607.4	(12^{+})		I'_{γ} : 0.5 2.
436.8 3		2629.9	(12 ⁻)	2193.14	(10 ⁻)		I_{y} : 1.6 3. For 436 triplet, A ₂ =0.38 2, A ₄ =-0.05 3.
443.60 10	0.54 3	1706.46	5-	1263.05	4+		
446.0 3		2786.4	(13-)	2340.2	(11-)		I_{γ} : 1.0 2. A ₂ =0.31 6, A ₄ =0.01 8.
452.8 3	0.50.5	2492.2	(11+)	2039.38	(9 ⁺)		A_{γ} : 2.3 2. A_{2} =0.36 4, A_{4} =-0.01 5.
457.86 10	2.52 /	1370.19	10,	912.25	8 ·	(E2)	Additional information 13. $A_2=0.363 \ 10, \ A_4=-0.093 \ 14 \ (1980Wa15).$
469.75 20	0.15 5	1839.92	9 (14^{-})	13/0.19	10^{-1}		$1 \cdot 052$
400.0 J	a rach r	5055.8	(14)	2555.6	(12)		$A_2 = 0.24 \ 10.$
483.26 ^{cb} 12	0.5200 5	1853.59	8'	1370.19	10 '		
483.6 ^{@0} 3	U	2154.42	(7)	1670.79	(7 ⁻)		I_{y} : 1.4 3.
489.2 ^{<i>w</i>} 3	0	2299.10		1809.84	(8-)		I_{γ} : 0.5 2 (1980Wa15).
490° 1	e	1821.5	3-	1330.75	4-		
490.2 <i>3</i>	0.000 5	2/46.5	(12 ⁺)	2256.3	(10 ⁺)		$A_{2}=0.39$ 4, $A_{4}=-0.05$ 6.
490.32° 10	0.80° 3	1662.84	5'	11/2.41	5'		1.062
504.8 5		3020.0	(14) (13^+)	2029.9 2492.2	(12) (11^+)		1_{γ} . 0.0 2. I \cdot 1 1 2
521.0 5		5620.0	(15)	- 172.2	(11)		$A_2 = 0.26 \ 8. \ A_4 = 0.01 \ I2.$
528.25 ^e 6	1.19 ^e 6	1700.53	3+	1172.41	3+		E_{γ} : from ¹⁷² Lu ε decay (1970Se05).

From ENSDF

 $^{172}_{70} Yb_{102}$ -7

L

$\gamma(^{172}$ Yb) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	Comments
537.4 [#] 1	0.41 4	1907.60	(12+)	1370.19	10+	(E2)	$A_2=0.365 \ 13, \ A_4=-0.068 \ 18.$
551.07 <mark>°</mark> 20	0.30 ^e 5	1926.97	5+	1375.92	5+		
558.6 ^e 2	0.57 ^e 4	1757.33	(2)	1198.65	2-		
563.0 3	0	3309.5	(14^{+})	2746.5	(12^{+})		I_{γ} : 0.5 2.
x564.1° 3	0.75 ^e 20		(c +)		<pre>c+</pre>		
$565.6^{e} 3$ $x_{601.1^{e}} 2$	$0.75^{e} 20$ $0.44^{e} 7$	2075.37	(6 ⁺)	1510.13	6-		
602.4 ^e 2	0.45 ^e 10	1757.33	$(2)^{-}$	1155.03	1-		
603.7 [@] 3		2154.42	(7)	1550.59	6-		I_{γ} : 1.0 2 (1980Wa15). A ₂ =-0.40 14, A ₄ =0.13 19.
611.2 3		2518.8	(14 ⁺)	1907.60	(12 ⁺)	(E2)	I_{γ} : 2.6 2. A ₂ =0.29 5, A ₄ =-0.12 6.
625.1 ^e 5	0.25 ^e 5	1537.63	6+	912.25	8+		
628.4 [@] 3		2299.10		1670.79	(7 ⁻)		I_{γ} : 0.9 2 (1980Wa15). A ₂ =-0.84 J7. A ₄ =0.03 22.
630.57 ^e 16	0.60 ^e 4	1802.78	4+	1172.41	3+		
645.41 10	0.98 14	1557.71	7-	912.25	8+		$A_2 = -0.07 \ 12, \ A_4 = 0.03 \ 17.$
656.0 <i>3</i>		2465.18	(7,8)	1809.84	(8-)		$I_{\gamma}: 0.8 2.$
							\dot{E}_{γ} : level energy difference is 655.3. A ₂ =-0.16 <i>12</i> , A ₄ =-0.19 <i>16</i> .
679.7 <i>3</i>		3198.5	(16^{+})	2518.8	(14^{+})		$I_{\gamma}: 0.2 \ l.$
685.2 <i>3</i>		2653.0		1967.78?	(9 ⁻)		I_{γ} : 0.5 2. A ₂ =-0.53 18.
708.99 <mark>e</mark> 20	0.38 ^e 5	2084.91?		1375.92	5+		-
722.89 ^e 20	0.38 ^e 6	1263.05	4+	540.10	6+		
728.6 3		2636.2	(13 ⁻)	1907.60	(12 ⁺)		I_{y} : 1.2 2. A_{2} =-0.28 10, A_{4} =0.00 13.
747.01 ^{eb} 14	1.34 ^{eb} 5	1286.64	4+	540.10	6+		E_{γ} : poor fit. Level energy difference is 746.54.
^x 767.15 ^e 20	0.72 ^e 5						
793.9 3		2465.18	(7,8)	1670.79	(7 ⁻)		I_{γ} : 1.3 3. A ₂ =-0.21 13. A ₄ =-0.02 17.
809.8 ^e 3	0.22 ^e 4	2073.23	4+	1263.05	4+		
812.98 10	2.14 10	1353.04	(5 ⁻)	540.10	6+		$A_2 = -0.26 \ 10, \ A_4 = 0.00 \ 14.$
816.95 ^e 25	0.12 ^e 4	2193.24	(4^{+})	1375.92	5+		
823.0 [@] 3		2193.14	(10 ⁻)	1370.19	10^{+}		I_{γ} : 0.6 2 (1980Wa15). A ₂ =0.38 20, A ₄ =0.17, 27.
829.2 [@] 3		2199.59	(11-)	1370.19	10^{+}		$I_{y}: 3.6.3 (1980Wa15).$
835 0 ^e 4	0.9 ^e 2	1375 92	5+	540 10	6+		$A_2 = 0.20 J, A_4 = 0.00 U.$
$842.6^{@b}$ 3	$\frac{b}{b}$	2212.64	(10^{+})	1370.19	10 ⁺		I _v : 1.6 3 (1980Wa15).

From ENSDF

					¹⁷⁰ Er (α ,2 n γ)	1981Cr03,19	80Wa15 (continued)					
	$\gamma(^{172}\text{Yb})$ (continued)											
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^C	δ^d	Comments					
^x 843.5 ^e 3 857.67 6	0.4 ^e 2 2.97 12	1118.05	2+	260.35 4+	(E2)		α (K)exp=0.0059 9. A ₂ =0.09 2, A ₄ =0.04 3 (1981Cr03). α (K)exp gives δ (E2/M1)=1.4 +9-4. Additional information 4.					
$x_{881.2}^{e} 3$ $x_{898.43}^{e} 20$	$0.44^{e} 5$ $0.42^{e} 4$	2072 22	4+	1170 41 0								
901.0° 2 912.10 6	9.7 <i>5</i>	2073.23 1172.41	4 · 3 ⁺	260.35 4 ⁺	E2+M1	-3.7 +1-3	Additional information 8. δ : -0.18 4 allowed by $\gamma(\theta)$ is inconsistent with $\alpha(K)$ exp. $\alpha(K)$ exp=0.0037 4. A ₂ =0.057 9, A ₄ =-0.016 13 (1981Cr03). A ₂ =0.044 14. A ₄ =0.033 20 (1980Wa15)					
916.66 <i>16</i>	0.52 4	1828.87	8-	912.25 8+	E1		$A_2=0.047$ 14, $A_4=0.05320$ (1960 wars). $A_2=0.42$ 7, $A_4=0.01$ 9. α (K)exp=0.0023 10 (1980 Wars) gives δ (M2/E1)<0.3.					
927.68 10	0.98 5	1839.92	9-	912.25 8+	E1		A ₂ =-0.21 3, A ₄ =-0.01 4. α (K)exp=0.0020 6 (1980Wa15) gives δ (M2/E1)<0.3.					
930.13 ^e 16 941.37 10	0.52 ^e 4 0.71 4	2193.24 1853.59	(4 ⁺) 8 ⁺	1263.05 4 ⁺ 912.25 8 ⁺	(M1)		A ₂ =0.41 4, A ₄ =0.00 6. α (K)exp=0.0055 28 (1981Cr03) gives M1,E2. α (K)exp=0.0103 15 (1980Wa15) is larger by≈40% than that for M1. Additional information 17. Mult : from 1980Wa15					
961.43 6	3.84 24	1221.78	3-	260.35 4+	E1		A ₂ =0.15 <i>I</i> 5, A ₄ =0.25 <i>20</i> . α (K)exp=0.0013 <i>8</i> (1981Cr03) gives δ (M2/E1)<0.2. Additional information 10.					
964.06 ^e 8	1.44 ^e 10	1042.88	0^{+}	78.81 2+								
969.81 ^e 18	0.38 ^e 3	1510.13	6+	540.10 6+								
997.42 6	2.67 11	1537.63	6+	540.10 6+	M1+E2	+0.63 7	A ₂ =0.48 3, A ₄ =-0.15 4 (1981Cr03). Additional information 15. $\alpha(K)\exp=0.0070 \ 10 \ (1980Wa15). \ ce(K)$ line is poorly resolved triplet. 1001γ is assumed as E1.					
1000.62 6	2.78 11	1540.73	6-	540.10 6+	[E1]		$A_2=0.25$ 6, $A_4=0.12$ 7.					
1002.8 1	5.11 20	1263.05	4+	260.35 4+	M1+E2		A ₂ =-0.07 4, A ₄ =-0.09 5. α (K)exp=0.0040 5 (1980Wa15) gives δ (E2/M1)=1.5 +9-4 but ce(K) line is a poorly resolved triplet.					
1010.45 6	2.75 11	1550.59	6-	540.10 6+	E1+M2	-0.38 5	A ₂ =0.20 2, A ₄ =-0.07 3 (1981Cr03). A ₂ =-0.06 3, A ₄ =0.05 4 (1980Wa15). δ : α (K)exp=0.0037 9 (1981Cr03) gives δ (M2/E1)=0.47 11 or δ (E2/M1)>1. α (K)exp=0.0014 3 (1980Wa15) gives E1. δ =+1.0 2 allowed by $\gamma(\theta)$ is ruled out by α (K)exp. Additional information 16					
1017.63 6	2.19 9	1557.71	7-	540.10 6+	E1		$A_2 = -0.22$ 6, $A_4 = 0.04$ 7. $\alpha(K) = x_1 = 0.018$ 5 (1980 Wa15) gives $\delta(M2/F1) < 0.3$					
1026.32 6	3.27 10	1286.64	4+	260.35 4+	E2+M1(+E0)	+0.87 13	$A_2=0.44$ 4, $A_4=-0.14$ 5 (1981Cr03).					

From ENSDF

 $^{172}_{70} Yb_{102} -9$

I

						¹⁷⁰ Er (α ,2 n γ)	1981Cr03,1980W	a15 (continued)				
	$\gamma(^{172}$ Yb) (continued)											
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E _f J	J_f^{π}	Mult. ^C	δ^d	Comments				
1039.27 ^e 8	е	1118.05	2+	78.81 2	2+	E2+M1(+E0)	+5.0 +25-16	Additional information 11. $\alpha(K)\exp=0.0048 \ 8(1981Cr03), \ 0.0080 \ 30 \ (1980Wa15). \ \alpha(K)\exp(1981Cr03) \ is consistent with mult=M1+E2, \ \delta=0.7 + 6 - 4.$ $\alpha(K)\exp=0.0044 \ 9. \ A_2=0.06 \ 3, \ A_4=-0.02 \ 2 \ (1981Cr03). \ \alpha(K)\exp(3) \ \alpha(K)\exp(3)$				
1070.39 6	5.63 8	1330.75	4-	260.35 4	4+	E1		δ: γ(θ) gives δ=0.0 + 9-3; α(K)exp (1981Cr03) gives δ<0.1. A ₂ =0.24 2, A ₄ =0.00 3 (1981Cr03). Additional information 12. (K) $a_{2} = 0.0008 4 (1080W_{2}) = 0.0020 4 (1080W_{2})$				
1076.21 6	3.49 8	1155.03	1-	78.81 2	2+	E1(+M2)	<0.25	α (K)exp=0.0008 4 (1981Cr03), 0.0020 10 (1980wa15). Mult., δ : from α (K)exp=0.0013 5 (1981Cr03). Additional information 7.				
1092.27 25	3.8 11	1353.04	(5^{-})	260.35 4	4+							
1093.62 6	41.7 14	1172.41	3+	78.81 2	2+	E2(+M1)	-14.6 +21-26	Additional information 9. $\alpha(K)\exp=0.0025$ 2. $A_2=-0.006$ 6, $A_4=0.090$ 9 (1981Cr03).				
1115.55 12	1.05 4	1375.92	5+	260.35 4	4+			$A_2 = -0.24 \ 14.$				
1118.14 ^e 22	е	1118.05	2+	0.0 ()+			α (K)exp=0.0009 5 (1981Cr03) gives E1 but ΔJ^{π} requires E2. Additional information 6.				
1119.83 6	4.80 21	1198.65	2-	78.81 2	2+			$A_2=0.14 \ 10, \ A_4=0.03 \ 13.$				
1142.96 10	3.71 11	1221.78	3-	78.81 2	2+							
1155.10 ^e 16	0.98 ^e 6	1155.03	1-	0.0 0)+							
1166.58 ^e 20	0.50^{e} 4	1706.46	5-	540.10 6	5+							
1184.12 ^e 20	0.56 ^e 5	1263.05	4+	78.81 2	2+							
1215.9 ^e 4	0.07^{e} 5	1476.69	2^{+}	260.35 4	4+							
^x 1238.61 ^e 25	0.75 ^e 8											
1262.2 ^{eb} 3	0.28 ^{eb} 5	1802.78	4+	540.10 6	5+							
1288.97 ^e 14	0.75 ^e 6	1549.48	3+	260.35 4	4+							
1323.11 ^e 25	0.23 ^e 3	1862.89	$(5)^{+}$	540.10 6	5+							
1327.6 ^{eh} 4	0.25 ^e 10	1406.0	0^{+}	78.81 2	2+							
1336.06 ^e 12	0.98 ^e 11	2248.33		912.25 8	3+							
^x 1360.32 ^e 20	0.43 ^e 7											
1372.88 ^e 8	1.64 ^e 8	1633.23	$(4)^{+}$	260.35 4	1 ⁺							
1379.76 ^e 14	0.70 ^e 8	1919.91	(5,6)	540.10 6	5+							
1387.25 ^e 6	2.41 ^e 7	1466.07	2+	78.81 2	2+							
1397.3 ^e 3	e	1657.49	$(4)^+$	260.35 4	4+							
1398.4 ^e 4	e Constant	1476.69	2+	78.81 2	2+			I_{γ} : 2.1 2 (from adopted gammas).				
1402.2° 3	0.24^{e} 4	1662.84	3+	260.35 4	1⁺ <±							
1435.23° 25	0.19° 3	1975.73	(4^{+})	540.10 6	5 ⁺							
1440.35° 25	$0.21^{e} 3$	1700.53	3+	260.35 4	1 ⁺							
1447.51° 25	$0.29^{\circ} 3$	1707.9?	2(-)	260.35 4	+ ' 4 +							
1451.33° 24	0.78° 4	1/11.44	3	260.35 4	+ '							

From ENSDF

					¹⁷⁰ Er (α ,2 n γ)	1981Cr03,19	80Wa15 (continued)
						$\gamma(^{172}$ Yb) (cont	nued)
${\rm E_{\gamma}}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. ^C	δ^d	Comments
1466.11 ^e 14	1.90^{e} 7	1466.07	2^+	$0.0 0^+$			
$1468.42^{\circ} 25$ $1470.74^{\circ} 10$	$0.74^{\circ} 6$ 2.47 ^e 8	2007.91 1549.48	(6^+) 3^+	$540.10 6^{+}$ 78.81 2 ⁺	(M1+E2)	-11.4 +26-8	E_{γ} : level energy difference is 1467.80. A ₂ =-0.017 11, A ₄ =0.035 15 (1981Cr03).
1476.66 ^e 12	0.79 ^e 4	1476.69	2+	0.0 0+	· · · ·		2 ···· , 4 ···· (··· ··).
1489.09 ^e 12	0.80^{e} 4	1749.38	4+ 5+	$260.35 4^+$	D(+Q)	0.0 + 13 - 3	$A_2=0.30 8, A_4=0.11 10 (1981Cr03).$
1518.81° 10 1521.69° 20	$1.38^{\circ} 5$ 0.73 ^e 6	1/79.16?	5' 1 ⁻	$260.35 4^{\circ}$ 78.81 2 ⁺			
1529.63 ^e 14	1.24 ^e 11	1608.61	2^{+}	78.81 2 ⁺			
1535.18 ^e 12	1.04 ^e 10	2075.37	(6^+)	540.10 6+			
1542.91° 18 1554.44° 20	0.64° 7 0.45 [°] 6	1802.78	4^+ (4) ⁺	260.35 4 ⁺ 78.81 2 ⁺			E_{γ} : level energy difference is 1542.42.
1560.09 ^e 20	$0.45 \ 0.10^{e} \ 4$	2100.34	(4^+)	540.10 6+			
1578.77 ^e 16	0.59 ^e 3	1657.49	$(4)^+$	78.81 2+			170
1584.17 <i>10</i>	1.14 4	1662.84	3^+	$78.81 \ 2^{+}$			E_{γ} : from ^{1/2} Lu ε decay (1970Se05).
$1589.21^{\circ} 20$ $1600.2^{\circ} 4$	$0.31^{\circ} 3$ $0.36^{\circ} 8$	1849.44 1600.45	2" 1	$260.35 4^{+}$ 0.0 0 ⁺			
1602.32 ^e 20	0.95 ^e 9	1862.89	$(5)^+$	260.35 4+			
1608.72 ^e 12	0.96 ^e 4	1608.61	2+	0.0 0+			
1616.5° 3	0.76° 12	2156.6?	(6^+)	540.10 6+			
1621.22^{eb} 12 1632.42^{e} 22	0.82^{ee} 5 0.95 ^e 6	1700.53	3' 3(-)	78.81 2 ⁺ 78.81 2 ⁺			E_{γ} : poor fit. Level energy difference is 1621./1.
1634.78 ^e 20	$0.95 \ 0.83^{e} \ 5$	2174.99	3+	540.10 6 ⁺			
1639.03 ^e 20	0.61 ^e 5	1899.39?		260.35 4+			
^x 1646.6 ^e 3	$0.39^{e} 5$						
1653.64° 25	0.39^{eb} 7	2193.24	(4 ⁺)	540.10 6+			E_{γ} : level energy difference is 1653.12.
1658.86° 25 1666.38° 20	$0.26^{ev} 8$ $0.31^{e} 7$	1919.91 1926 97	(3,6) 5 ⁺	$260.35 4^{+}$ $260.35 4^{+}$			E_{γ} : level energy difference is 1659.5.
1670.37 ^e 20	0.31^{e} 7	1749.38	4 ⁺	78.81 2+			
1678.5 ^e 3	0.19 ^e 4	1757.33	(2)-	78.81 2+			
1696.56° 25	$0.24^{\circ} 4$ 0.53 ^e 10	1956.85	2^+ (4 ⁺)	$260.35 4^{+}$ 260.35 4 ⁺			
1716.7 ^e 3	0.33 10 $0.41^{e} 10$	1795.5	$(4)^{+}$	78.81 2+			
1724.5 ^e 3	0.34 ^e 3	1802.78	4+	78.81 2+			
1742.7° 2	0.68^e 4	1821.5	3-	78.81 2+			
1/46.58 ^{co} 25 1770.55 ^e 15	$0.35^{\circ\circ} 4$ $0.58^{\circ} 4$	2007.91 1849.44	(6') 2+	260.35 4 ⁺ 78.81 2 ⁺			E_{γ} : level energy difference is 1/4/.55.
1788.75 ^{eb} 20	0.33 ^{eb} 3	2048.1	$(2)^{+}$	260.35 4+			
1815.2 ^e 3	0.39 ^e 6	2075.37	(6^+)	260.35 4+			
1840.3 ^e 3	0.21 ^e 4	2100.34	(4^{+})	260.35 4+			

From ENSDF

 $^{172}_{70} \rm Yb_{102} \text{--} 11$

 $^{172}_{70} \mathrm{Yb}_{102}$ -11

L

¹⁷⁰Er(α ,2n γ) **1981Cr03,1980Wa15** (continued)

 $\gamma(^{172}\text{Yb})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
1852.2 ^e 4	0.33 ^e 5	2392.3?		540.10 6+	
^x 1858.9 ^e 3	0.22 ^e 4				
1878.01 ^e 20	0.32 ^e 3	1956.85	2+	$78.81 \ 2^+$	
1897.42 ^{eb} 20	0.28 ^{eb} 3	1975.73	(4^{+})	78.81 2+	E_{γ} : level energy difference is 1896.91.
1914.77 ^e 25	0.29 ^e 10	2174.99	3+	260.35 4+	E_{γ} : from ¹⁷² Lu ε decay (1970Se05).
1931.5 ^e 3	0.24 ^e 10	2010.39	1^{+}	78.81 2+	,
1956 ^e 1	0.10 ^e 5	1956.85	2^{+}	$0.0 0^+$	
1968.31 <mark>eb</mark> 20	0.75 ^{eb} 10	2048.1	$(2)^{+}$	78.81 2+	
2010.5 ^e 4	0.25 ^e 10	2010.39	1^{+}	$0.0 0^+$	

[†] From 1981Cr03 except as noted. Transitions for levels above 2400 are from 1980Wa15 only.

[‡] From 1981Cr03 at E α =19 MeV. Intensities at 27 MeV are given by 1980Wa15. In adopted gammas, both sets of intensities are considered in deducing branching ratios. For levels above 2400, transitions are from 1980Wa15 only. The intensities (relative to 100 for 182 γ) for these γ rays are given under comments.

[#] From 1980Wa15.

[@] γ reported by 1980Wa15 only. Intensity (relative to I γ (182 γ)=100) is given under comments.

[&] Poorly resolved from a transition in an impurity.

^{*a*} From $\gamma\gamma$ (1981Cr03).

12

 b Energy considerations suggest that this γ ray is contaminated.

^{*c*} From $\gamma(\theta)$ and ce data, unless otherwise stated. 1981Cr03 normalized ce data to 372 γ , mult=E2. 1980Wa15 used $\alpha(K)\exp(912\gamma)=0.0051$ 2 and $\alpha(K)\exp(1094\gamma)=0.0026$ *I* for calibration. $\alpha(K)\exp$ values given by 1980Wa15 (normalized to 912 γ) may be systematically higher by \approx 20% since adopted $\alpha(K)\exp(912\gamma,\delta(E2/M1)=2.36)=0.0043$; but those normalized to 1094 γ should be correct. $\Delta J=2$ transitions from $\gamma(\theta)$ data are assumed as E2 from RUL for E2 and M2.

^{*d*} From $\gamma(\theta)$ (1981Cr03), unless otherwise stated.

 e γ reported by 1981Cr03 only.

 f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*g*} Multiply placed with undivided intensity.

^{*h*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

13

 $^{172}_{70} \rm{Yb}_{102}$

 $^{172}_{70} Yb_{102} \\$

 $^{172}_{70} \rm{Yb}_{102}$

 $^{172}_{70} \rm Yb_{102} \text{--} 17$

 $^{172}_{70} \rm Yb_{102} \text{--} 17$

From ENSDF

 $^{172}_{70} Yb_{102}$

 $^{172}_{70} \rm{Yb}_{102}$

 $^{172}_{70} \rm{Yb}_{102}$

 $^{172}_{70} {\rm Yb}_{102}$