	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	31-Dec-2015

2003Zh38, 2010Zh26: E=130-150 MeV. Measured E γ , I γ , $\gamma\gamma$, γ (anisotropy) using Gemini array of 12 HPGe detectors each with BGO anti-Compton shield.

¹⁷²Re Levels

 $\pi 1/2[541]$ from $\pi 1h_{9/2}$ spherical orbital; $\pi 9/2[514]$ from $\pi 1h_{11/2}$ orbital; $\nu 1/2[521]$ from $\nu 3p_{3/2}$ orbital. A, B, C and D correspond to first, second, third and fourth lowest $i_{13/2}$ quasineutrons.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0+z#	(3^{+})	E(level): this level corresponds to $194.0+z$, (4^+) in Adopted Levels.
98.0+z [#] 5	(5 ⁺)	
306.4+z [#] 7	(7^{+})	
611.5+z [#] 9	(9+)	
1001.5+z [#] 10	(11^{+})	
1455.3+z [#] 12	(13 ⁺)	
1933.2+z [#] 13	(15 ⁺)	
1980.6+z <i>13</i>	(15 ⁺)	
2423.1+z [#] 14	(17^{+})	
2513.4+z <i>14</i>	(17^{+})	
2979.6+z [#] 15	(19 ⁺)	
3599.2+z# 15	(21^+)	
42/5.8+z" 16	(23 ⁺)	
5008.0+z" 17	(25 ⁺)	
$0+u^{\alpha}$	(6^{-})	
$90.9+u^{-5}$	(7)	
$267.9 + u^a 5$	(0^{-})	
311.8+u ^{&} 6	(10^{-})	
525.4+u ^a 6	(11 ⁻)	
609.8+u ^{&} 7	(12 ⁻)	
871.6+u ^a 7	(13 ⁻)	
1016.5+u ^{&} 8	(14 ⁻)	
1304.7+u ^{<i>a</i>} 8	(15 ⁻)	
$1518.2 + u^{4}9$	(16^{-})	
1010.2 + u 9	(17)	
$2392.9 + u^{a}$ 10	(10^{-})	
$2737.7 + u^{\&} 10$	(20^{-})	
$3019.5 + u^a 10$	(21^{-})	
3422.4+u ^{&} 11	(22 ⁻)	
3684.3+u ^a 11	(23 ⁻)	
4159.2+u ^{&} 13	(24-)	
4385.3+u ^{<i>a</i>} 13	(25 ⁻)	
4929.7+u ^{<i>x</i>} 14	(26^{-})	
5128.8+u ⁴ 14	(27)	

¹⁷²Re Levels (continued)

E(level) [†]	J ^π ‡	Comments
$0+v^d$	(7^{+})	Additional information 1.
193.7+v ^e 4	(8+)	
413.1+v ^d 4	(9^+)	
$658.8 + v^{e} 5$	(10^+)	
845.1+v ⁷	(10^{+})	
$898.3 + v^{a} 0$ 1020 1 + v ⁸ 8	(11^+) (11^+)	
$1133.1 + v^e 6$	(11^{-}) (12^{+})	
1216.5+v ^f 8	(12^{+})	
1365.3+v ^d 6	(13 ⁺)	
1433.3+v ^g 9	(13+)	
$1626.4 + v^e 7$	(14^+)	
$16/5.8 + v^{j}$ 9	(14 ⁺)	
$1883.2 + v^{a}$ 7 1943 5+ v^{g} 9	(15') (15^+)	
$2161.9 + v^e 9$	(15^{+})	
2237.5+v ^f 10	(16 ⁺)	
2445.7+v ^d 9	(17^{+})	
2552.9+v ^g 10	(17^{+})	
$2890.8 + v^{f}$ 10	(18^+)	
3244.1+v ⁸ 10	(19')	
$0+W^{-}$	(4^{+})	Additional information 2.
$100.2 \pm w^{0}$ 7	(0)	
$768.6 \pm w^{(0)}9$	(0^{+})	
$1185.9 \pm w^{(0)}$ 10	(10^{+})	
1647.2+w [@] 12	(14^+)	
2136.1+w [@] 13	(16 ⁺)	
2652.4+w [@] 14	(18 ⁺)	
3222.8+w [@] 15	(20^{+})	
0+s	(8^+)	
$185.5 + s^2 5$	(9)	
$420.0+s^{c}9$	(10^{-})	
605.6+s ^b 10	(12^{-})	
820.3+s ^c 10	(13 ⁻)	
1072.3+s ^b 10	(14-)	
1340.7+s ^c 10	(15 ⁻)	
$1637.1 + s^{\circ} 11$	(16^{-})	
$1742.0+8^{\circ} 11$ 2262 6+8 ^b 11	(17)	
$2589.1 + s^{C} 11$	(10^{-})	
2914.9+s ^b 12	(20 ⁻)	
3241.4+s ^c 12	(21 ⁻)	
3554.5+s ^b 12	(22-)	
3874.6+s ^c 12	(23 ⁻)	

¹⁷²Re Levels (continued)

[†] From least-squares fit by evaluator to $E\gamma$ values.

- [‡] Based on in-band electromagnetic transition probabilities, level spacing systematics, angular distributions for selected transitions, and systematics of neighboring nuclei. The assignments are tentative.
- [#] Band(A): $\pi 1/2[541] \otimes \nu 1/2[521], \alpha=1$. Band crossing at $\hbar \omega \approx 0.24$ MeV, proposed in 2003Zh38 as due to pair of AB neutrons. Spins are one unit lower here as compared to those in Adopted Levels and band structure given in 2014Ha22. For energy matching with the Adopted Levels and 2014Ha22, add 194.0 keV to each value.
- ^(e) Band(a): $\pi 1/2[541] \otimes v 1/2[521], \alpha=0$. Proposed as possible signature partner of band 3. Spins are one unit lower here as compared to those in Adopted Levels and band structure given in 2014Ha22. For energy matching with the Adopted Levels and 2014Ha22, 0+w is equivalent to 223.4+z.
- [&] Band(B): $\pi 1/2[541] \otimes v_{13/2}, \alpha = 0$. Band crossing at $\hbar \omega \approx 0.2$ MeV, proposed in 2003Zh38 as due to pair of BC(AD) neutrons. For energy matching with the Adopted Levels and 2014Ha22, add 96 keV to each value.
- ^{*a*} Band(b): $\pi 1/2[541] \otimes \nu i_{13/2}, \alpha = 1$. See comment for its signature partner. For energy matching with the Adopted Levels and 2014Ha22, add 96 keV to each value.
- ^b Band(C): $\pi 9/2[514] \otimes vi_{13/2}, \alpha = 0$. Band crossing at $\hbar \omega \approx 0.3$ MeV, proposed in 2003Zh38 as due to pair of BC neutrons. For energy matching with the Adopted Levels and 2014Ha22, 0+s is equivalent to 0+u.
- ^{*c*} Band(c): $\pi 9/2[514] \otimes v_{13/2}, \alpha = 1$. See comment for its signature partner. For energy matching with the Adopted Levels and 2014Ha22, 0+s is equivalent to 0+u.
- ^d Band(D): $\pi 9/2[514] \otimes v 5/2[512], \alpha = 1$. Band proposed in 2010Zh26.
- ^{*e*} Band(d): π9/2[514]⊗ν5/2[512],α=0. Band proposed in 2010Zh26.
- ^{*f*} Band(E): π 5/2[402]⊗*v*i_{13/2},α=0. Band proposed in 2010Zh26.
- ^g Band(e): $\pi 5/2[402] \otimes vi_{13/2}, \alpha = 1$. Band proposed in 2010Zh26.

 $\gamma(^{172}\text{Re})$

 $R(\theta)$ =angular asymmetry ratio. The data were obtained with detectors positioned at 32° (or 148°), 58° (or 122°) and 90° relative to the beam direction. Expected values are 1.30 *15* for ΔJ =2, quadrupole (E2) transitions, and much less than 1 for ΔJ =1, dipole transitions. Some ΔJ =1 transitions in band 1 have $R(\theta)>1$, typical of stretched quadrupole transitions, these have been assigned as D+Q by the evaluator, implying significant quadrupole admixture.

Eγ‡	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
90.9 5	≥13.7	90.9+u	(7-)	0+u	(6 ⁻)	D+Q [@]	$R(\theta)=0.97\ 20.$
95.6 5	≥22.5	281.1+s	(10 ⁻)	185.5+s	(9 ⁻)	D+Q [@]	$R(\theta)=1.50$ 15. $\alpha(exp)=5.1$ 9 (from intensity balance, if 138.9 γ is M1).
98.0 5	≥10.0	98.0+z	(5^{+})	0+z	(3^{+})		
118.0 5	≥17.5	118.0+u	(8 ⁻)	0+u	(6 ⁻)	Q	$R(\theta) = 1.8 \ 3.$
138.9 5	56.5	420.0+s	(11^{-})	281.1+s	(10^{-})	D+Q@	$R(\theta) = 1.20 \ 12.$
149.9 5	27.0	267.9+u	(9 ⁻)	118.0+u	(8 ⁻)	D	$R(\theta)=0.75 \ 8.$
166.2 5		166.2+w	(6^{+})	0+w	(4^{+})		
174.8 5		1020.1+v	(11^{+})	845.1+v	(10^{+})		
177.0 5	7.4	267.9+u	(9-)	90.9+u	(7^{-})		$I\gamma(177.0)/I\gamma(149.9)=0.25$ 3.
185.5 <mark>&</mark> 5	≥250.0 <mark>&</mark>	185.5+s	(9 ⁻)	0+s	(8 ⁺)	D	$R(\theta)=0.85 \ 8.$
185.5 ^{&} 5	≤101.6 ^{&}	605.6+s	(12 ⁻)	420.0+s	(11 ⁻)	D+Q [@]	$R(\theta)=0.97$ 10. $\alpha(exp)=0.042$ 6 (from intensity balance, if 138.9 γ is M1).
186.3 5		845.1+v	(10^{+})	658.8+v	(10^{+})		
193.5 5		193.7+v	(8^{+})	0+v	(7^{+})		
193.8 <i>5</i>	94.6	311.8+u 1216 5+v	(10^{-}) (12^{+})	118.0+u 1020.1+v	(8^{-}) (11^{+})	Q	$R(\theta) = 1.53 \ 15.$
208.4.5	>28.3	306.4+z	(7^{+})	98 0+z	(5^+)	0	$R(\theta) = 1.48.15$
213.8 5	30.2	525.4+u	(11^{-})	311.8+u	(10^{-})	Ď	$R(\theta) = 0.64 \ I0.$

Continued on next page (footnotes at end of table)

$\gamma(^{172}\text{Re})$ (continued)

E_{γ}^{\ddagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	Comments
214.6 5	64.0	820.3+s	(13^{-})	605.6+s	(12^{-})	D+Q [@]	$R(\theta) = 1.09 \ 10.$
216.7 5		1433.3+v	(13^{+})	1216.5+v	(12^{+})		
219.1 5		413.1+v	(9+)	193.7+v	(8^{+})		
232.3 5		1365.3+v	(13^{+})	1133.1+v	(12^{+})		
234.7 5		1133.1+v	(12^{+})	898.3+v	(11^{+})		
239.2 5		898.3+v	(11^{+})	658.8+v	(10^{+})		
242.5 5		1675.8+v	(14^{+})	1433.3+v	(13^{+})		
245.6 5		658.8+v	(10^{+})	413.1+v	(9+)	0	
251.9 5	54.0	1072.3+s	(14^{-})	820.3+s	(13 ⁻)	D+Q 🥙	$R(\theta)=0.98 \ 10.$
256.4 5		422.6+w	(8^{+})	166.2+w	(6^{+})		
256.6 5		1883.2+v	(15^{+})	1626.4+v	(14^{+})		
257.5 5	11.4	525.4+u	(11 ⁻)	267.9+u	(9 ⁻)	Q	$ \begin{array}{l} R(\theta) = 1.36 \ 15. \\ I\gamma(257.5)/I\gamma(213.8) = 0.51 \ 5. \end{array} $
260.9 5		1626.4+v	(14^{+})	1365.3+v	(13^{+})		
261.7 5	18.5	871.6+u	(13^{-})	609.8+u	(12^{-})	D	$R(\theta) = 0.65 \ 10.$
267.7 5		1943.5+v	(15^{+})	1675.8+v	(14^{+})		
268.4 5	36.0	1340.7+s	(15^{-})	1072.3+s	(14^{-})	D+Q [@]	$R(\theta)=1.30$ 15.
281.7 5	5.0	3019.5+u	(21^{-})	2737.7+u	(20^{-})		
288.1 5	15.7	1304.7+u	(15^{-})	1016.5+u	(14^{-})	D	$R(\theta)=0.48 \ 10.$
293.8 5		2237.5+v	(16^{+})	1943.5+v	(15^{+})		
294.8 5	≥ 8.0	2392.9+u	(19 ⁻)	2098.1+u	(18^{-})	-	
296.4 5	24.3	1637.1+s	(16 ⁻)	1340.7+s	(15 ⁻)	D+Q [@]	$R(\theta)=0.98 \ 10.$
298.0 5	121.0	609.8+u	(12^{-})	311.8+u	(10^{-})	Q	$R(\theta)=1.31$ 13.
298.0 5	≤15.0	1816.2+u	(17^{-})	1518.2+u	(16 ⁻)		
305.1 5	63.6 <i>32</i>	611.5+z	(9 ⁺)	306.4+z	(7^{+})	Q	$R(\theta) = 1.38 \ 10.$
305.5 5	22.0	1942.6+s	(17^{-})	1637.1+s	(16 ⁻)		
313.0 5	8.6	3554.5+s	(22-)	3241.4+s	(21^{-})		
315.3 5		2552.9+v	(17^{+})	2237.5+v	(16^+)		
320.0 5	22.0	2262.6+s	(18^{-})	1942.6+s	(17^{-})		
320.0 5	7.0	38/4.6+s	(23)	3554.5+s	(22)		
324.5 5	15.0	605.6+s	(12)	281.1+s	(10)		E_{γ} : from figure 4 of 2003Zh38.
325.8 5	15.0	2914.9+s	(20)	2589.1+s	(19)		
320.3 J 326 5 5	20.0	2369.1+8	(19)	2202.0+8	(10)		
320.5 5	10.0	3241.4 ± 8 2800 8± y	(21) (18^+)	2914.9+8 2552 0±v	(20) (17^+)		
346.0.5		$2690.0 \pm v$ 768.6±w	(10^+)	$422.9 \pm \sqrt{10}$	(17) (8^+)		
346.2.5	14.2	708.0+w 871.6+u	(10^{-})	525 4+11	(11^{-})	0	$R(\theta) = 1.20.15$
510.25	11.2	071.01u	(15)	525.11 u	(11)	×	$I_{\chi}(346.2)/I_{\chi}(261.7)=0.76.7$
353.1.5		3244.1+v	(19^{+})	2890.8+v	(18^{+})		
371.5 5		1216.5+v	(12^+)	845.1+v	(10^+)		
390.0 5	61.5 <i>31</i>	1001.5+z	(11^+)	611.5+z	(9 ⁺)	Q	$R(\theta) = 1.35 \ 10.$
400.3 5	17.6	820.3+s	(13-)	420.0+s	(11-)	Q	$R(\theta) = 1.27 \ I5.$ $I_{2}(400 \ 3)/I_{2}(214 \ 6) = 0.39 \ 4$
406.7 5	100.0	1016.5+u	(14^{-})	609.8+u	(12^{-})	0	$R(\theta)=1.47$ 15.
413.2 5		1433.3+v	(13^{+})	1020.1+v	(11^+)		
413.3 5		413.1+v	(9 ⁺)	0+v	$(7^{+})^{-}$		
417.3 5		1185.9+w	(12^{+})	768.6+w	(10^{+})		
433.1 5	21.6	1304.7+u	(15 ⁻)	871.6+u	(13 ⁻)	Q	$\begin{array}{l} R(\theta) = 1.32 \ 13. \\ I_{\gamma}(433.1)/I_{\gamma}(288.1) = 1.68 \ 20. \end{array}$
453.8 5	82.1 41	1455.3+z	(13^{+})	1001.5+z	(11^{+})	Q	$R(\theta)=1.35 \ 10.$
459.5 5		1675.8+v	(14^{+})	1216.5+v	(12^{+})	-	
461.3 5		1647.2+w	(14^{+})	1185.9+w	(12^{+})		
465.1 5		658.8+v	(10^{+})	193.7+v	(8+)		
466.7 5	20.0	1072.3+s	(14 ⁻)	605.6+s	(12 ⁻)	Q	$\begin{array}{l} R(\theta) = 1.29 \ 13. \\ I\gamma(466.7)/I\gamma(251.9) = 0.59 \ 6. \end{array}$

Continued on next page (footnotes at end of table)

¹⁴⁹ Sm(²⁷ Al,4n γ)	2003Zh38,2010Zh26 (continued)
---	-------------------------------

$\gamma(^{172}\text{Re})$ (continued)

E _γ ‡	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	Comments
467.0.5		1365.3+v	(13^{+})	898.3+v	(11^{+})		
474.4.5		1133.1 + v	(12^+)	658.8+v	(10^{+})		
477.9 5	43.0 22	1933.2 + z	(15^+)	1455.3+z	(13^+)	0	$R(\theta) = 1.28 \ 10.$
485.3.5		898.3+v	(11^+)	413.1+v	(9^+)	×	
488.9.5		2136.1+w	(16^+)	1647.2+w	(14^+)		
489.9.5	36.0 18	2423.1+z	(17^{+})	1933.2+z	(15^+)	0	$R(\theta) = 1.30 \ 10.$
493.3 5		1626.4+v	(14^+)	1133.1+v	(12^+)		
501.7 5	78.6	1518.2+u	(16 ⁻)	1016.5+u	(14 ⁻)	0	$R(\theta) = 1.30 \ 15.$
510.0 5		1943.5+v	(15^{+})	1433.3+v	(13^{+})		
511.5 5	>29.6	1816.2+u	(17^{-})	1304.7+u	(15^{-})		
516.3 5		2652.4+w	(18^{+})	2136.1+w	(16^+)		
518.1 5		1883.2+v	(15^{+})	1365.3+v	(13^{+})		
520.5 5	24.0	1340.7+s	(15^{-})	820.3+s	(13^{-})	0	$R(\theta) = 1.10 \ 10.$
							$I_{\gamma}(520,5)/I_{\gamma}(268,4)=0.79$ 8.
525.3 5	16.0 24	1980.6+z	(15^{+})	1455.3+z	(13^{+})	0	$R(\theta) = 1.30 \ I0.$
532.8 5	8.0 24	2513.4+z	(17^{+})	1980.6+z	(15^+)		
535.5 5		2161.9+v	(16^+)	1626.4+v	(14^+)		
556.5 5	22.0 33	2979.6+z	(19^{+})	2423.1+z	(17^{+})	0	$R(\theta) = 1.20 \ 20.$
561.8 5		2237.5+v	(16^{+})	1675.8+v	(14^+)		
562.5 5		2445.7+v	(17^{+})	1883.2+v	(15^+)		
564.8 5	22.0	1637.1+s	(16^{-1})	1072.3 + s	(14^{-})	0	$R(\theta) = 1.50 \ 20.$
			· /				$I_{\gamma}(564.8)/I_{\gamma}(296.4)=0.93$ 9.
570.4 5		3222.8+w	(20^{+})	2652.4+w	(18^{+})		
576.7 5	≥34.4	2392.9+u	(19-)	1816.2+u	(17^{-})	Q	$R(\theta) = 1.38 \ 15.$
579.9 5	48.5	2098.1+u	(18 ⁻)	1518.2+u	(16^{-})	Q	$R(\theta) = 1.38 \ 15.$
601.9 5	30.0	1942.6+s	(17^{-})	1340.7+s	(15^{-})	-	$I\gamma(601.9)/I\gamma(305.5)=1.42$ 15.
609.5 5		2552.9+v	(17^{+})	1943.5+v	(15^{+})		
619.6 5	18.0 27	3599.2+z	(21^{+})	2979.6+z	(19^{+})		
625.6 5	21.0	2262.6+s	(18^{-})	1637.1+s	(16^{-})		$I\gamma(625.6)/I\gamma(320.0)=0.94$ 10.
626.7 5	19.1	3019.5+u	(21^{-})	2392.9+u	(19^{-})		
633.3 5	5.0	3874.6+s	(23^{-})	3241.4+s	(21^{-})		
639.5 5	32.0	2737.7+u	(20^{-})	2098.1+u	(18^{-})		
639.5 5	12.0	3554.5+s	(22^{-})	2914.9+s	(20^{-})		
646.5 5	16.0	2589.1+s	(19 ⁻)	1942.6+s	(17^{-})		
652.3 5	13.5	2914.9+s	(20^{-})	2262.6+s	(18^{-})		
652.3 5	13.5	3241.4+s	(21^{-})	2589.1+s	(19 ⁻)		
653.3 5		2890.8+v	(18^{+})	2237.5+v	(16^{+})		
664.8 5	≥22.5	3684.3+u	(23^{-})	3019.5+u	(21^{-})		
676.6 5	12.0 36	4275.8+z	(23^{+})	3599.2+z	(21^{+})		
684.7 5	16.3	3422.4+u	(22^{-})	2737.7+u	(20^{-})		
691.4 5		3244.1+v	(19^{+})	2552.9+v	(17^{+})		
701.0 5	≥13.0	4385.3+u	(25^{-})	3684.3+u	(23-)		
732.2 5	7.0 21	5008.0+z	(25^{+})	4275.8+z	(23^{+})		
736.8 5	8.0	4159.2+u	(24 ⁻)	3422.4+u	(22^{-})		
743.5 5	≥6.0	5128.8+u	(27 ⁻)	4385.3+u	(25^{-})		
770.5 5	≥4.0	4929.7+u	(26 ⁻)	4159.2+u	(24 ⁻)		

[†] Values are from 2003Zh38, divided here by a factor of 10. Uncertainties are stated by 2003Zh38 as 5-30%. Evaluator assigns as follows: 5% for I γ >30, 15% for I γ =15-30, and 30% for I γ <15.

^{\ddagger} $\Delta E\gamma = 0.5$ keV assigned in 2003Zh38.

[#] From angular asymmetry measurement in ¹⁴⁹Sm(²⁷Al,4n γ) (2003Zh38). Mult=Q indicates Δ J=2 (most likely E2) and mult=D indicates Δ J=1, dipole (most likely M1 or M1+E2 in a coupled band).

$\gamma(^{172}\text{Re})$ (continued)

[@] $R(\theta)$ value is ≥ 1 , typical of stretched quadrupole transitions, but band structure suggests $\Delta J=1$ transition. The evaluator interprets such a transition as $\Delta J=1$, D+Q, with a significant quadrupole admixture.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

	Legend
Level Scheme Intensities: Relative I _γ @ Multiply placed: intensity suitably divided	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$
	2074 (
	3874.0+8
	2241.415
	3241.4+8
$(10^{-}) \qquad \qquad$	<u> 2914.9+s </u>
	2589.1+s
	2262.6+s
	1942.6+s
	1637.1+s
	1340.7+8
	820.3+s
$(12^{-}) \qquad \qquad$	605.6+s
	<u>281.1+s</u> 185.5+a
$\frac{(3+)}{(20^+)}$	<u> </u>
	<u> </u>
	2652.4+w
	2136.1+w
	1647.2+w
	1185.9+w
	768.6+w_
$\underbrace{\frac{(6^+)}{(4^+)}}$	<u>×</u> <u>⊗</u> <u>-</u> <u>∞</u> <u>-</u> <u>166.2+w</u> <u>↓</u> <u>⊗</u> <u>-</u> <u>∞</u> <u>-</u> <u>0+w</u>
(19 ⁺)	<u>3244.1+v</u>
(18,)	<u>↓ 2890.8+v</u>
(17 ⁺)	▼ 2552.9+v

¹⁷²₇₅Re₉₇

7

Legend

¹⁴⁹Sm(²⁷Al,4nγ) 2003Zh38,2010Zh26

Level Scheme (continued)

¹⁷²₇₅Re₉₇

8

Level Scheme (continued)

Legend

Intensities: Relative I_{γ} — @ Multiply placed: intensity suitably divided —

 $\begin{array}{c|c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

Band(a): π1/2[541]⊗v1/ 2[521],α=0					
(20 ⁺)	3222.8+w				
(18 ⁺)	570 2652.4+w				
(16+)	⁵¹⁶ 2136.1+w				
(14+)	⁴⁸⁹ 1647.2+w				
(12+)	⁴⁶¹ 1185.9+w				
(10+)	⁴¹⁷ 768.6+w				
(8+)	346 422.6+w				
(6+)	256 166.2+w				
(4+) >	166 0+w				

	Band(b): π	1/2[541]⊗vi _{13/2} ,
Band(B): $\pi 1/2[541] \otimes v_{13/2}$	2,	α=1
α=0		
	(27-)	5128.8+u
(26 ⁻) 4929.7+u		
	7	44
770	(25-)	4385.3+u
(24 ⁻) 4159.2+u		
	7	01
737	(23-)	3684.3+u
(22 ⁻) 3422.4+u		
	6	65
685	(21)	3019.5+u
(20 ⁻) 2737.7+u	/	
	(19 ⁻) 6	2392.9+11
(18^{-}) 2008 1 m		
(10) 2098.1+u	5	77
580	(17)	1816.2+u
(16 ⁻) 1518.2+u	5	12
502	(15 ⁻)	1304.7+u
(14 ⁻) 1016.5+u	(13-) 4	³³ 871 6+1
(12^{-}) 407 609.8+u	(11 ⁻)	671.01u
(10 ⁻) 311.8+u	(11) 3	$\frac{40}{267.040}$
(8 ⁻) 298/118.0+u	(7^{-}) 2	58 <u>207.9+u</u>
(6^{-}) <u>194</u> 0+u	$(1)^{-1}$	77 90.9+u

Band(A): $\pi 1/2[541] \otimes v 1/2[521], \alpha=1$

(25+)	5008.0+z
(23+)	732 4275.8+z
(21+)	677 3599.2+z
(19+)	620 2979.6+z
(17+)	556 2423.1+z
(15+)	⁴⁹⁰ 1933.2+z
(13+)	⁴⁷⁸ 1455.3+z
(11+)	⁴⁵⁴ 1001.5+z
$\frac{(9^+)}{(7^+)}$	$\frac{390}{\sqrt{306.4+7}}$
(5 ⁺)	305 98.0+z
(3 ⁺) ∖	208 0+z

¹⁷²₇₅Re₉₇

Band(e): $\pi 5/2[402] \otimes vi_{13/2}$, $\alpha = 1$

¹⁷²₇₅Re₉₇