Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Tibor Kibedi and Coral M. Baglin	ENSDF	15-Mar-2010

 $Q(\beta^{-}) = -1.173 \times 10^{4} 8$; $S(n) = 1.170 \times 10^{4} 8$; $S(p) = 1.97 \times 10^{3} 4$; $Q(\alpha) = 6464 4$ 2012Wa38

Note: Current evaluation has used the following Q record -11820 syst 11705 89 1960 40 6464 4 2003Au03,2009AuZZ. $Q(\beta^{-})$: Uncertainties: 160 ($Q(\beta^{-})$) (2003Au03, 2009AuZZ)).

S(n),Q(α): From 2009AuZZ; 11700 90 and 6465 4, respectively, from 2003Au03.

Q(\varepsilon p)=5900 22 (2009AuZZ) cf. 5903 23 (2003Au03).

For details about the production and identification of ¹⁷²Pt see ¹⁷²Pt α decay (1981De22,1982En03,1993ToZY). Theory references: 1984Sa16, 1984A136, 2005Mc09, 2007Pe30, 2009Ga15, 2010Ro06.

¹⁷²Pt Levels

Cross Reference (XREF) Flags

- $^{176}\mathrm{Hg}\;\alpha$ decay А
- В

С

 116 Sn(58 Ni,2n γ), 92 Mo(84 Sr,2p2n γ), S(n)(60 Ni,xn γ) D

E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments
0.0#	0+	97.6 ms <i>13</i>	ABCD	%α=94 6 (2004GoZZ); %ε+%β ⁺ =6 6 %α: From 2004GoZZ. Other: 94 +6-32 (1984ScZQ). %ε+%β ⁺ : From 100-%α. J ^π : g.s. of even-even nucleus. T _{1/2} : 97.6 ms <i>13</i> (2003Da06) from 6316α(t). Other data: 104 ms 7 (2002Ro17), 96 ms 3 (1996Pa01), 0.110 s 20 (1993ToZY), 0.09 s <i>1</i> (1982En03), 0.12 s <i>1</i> (1981De22), 0.10 s <i>1</i> (1975Ga25), 0.12 s 5 (1984ScZQ). The weighted average of all data is 97.8 ms <i>12</i> .
457.60 [#] 10	$2^{(+)}$		BCD	J^{π} : stretched Q 458 γ to 0 ⁺ g.s
1069.98 [#] 23	(4 ⁺)		BCD	
1464.7 [@] 8	(3 ⁻) ^{&}		D	
1753.2 [#] 4	(6 ⁺)		BCD	
1839.2 [@] 3 1931.8 4	(5 [−]) ^{&}		BCD CD	
2081.0 [@] 4	(7 ⁻) ^{&}		CD	
2164.0? 5			D	J ^{π} : possible Q (D Δ J=0) 411 γ to 6 ⁺ 1752, so J=(4 ⁺ ,6,8 ⁺).
2405.8 [#] 4	(8 ⁺)		BCD	
2406.3 4			D	
2728.1? 5			D	
2142.04	(10^{\pm})		U CD	
2993.8" U	(10^{+})			
3580.5" 12	(12^{+})		D	
4218.0" <i>12</i>	(14 ⁺)		D	

 † From least-squares fit to Ey.

[‡] From Sn(⁶⁰Ni,xn γ), except as noted. Values for the g.s. band follow from the assumption of a stretched Q γ cascade. Those for the $\pi = (-)$ band are based on the observation that the lowest excited bands in light neighboring Os and Pt isotopes have $\pi = -$ and odd J, and this band connects to the g.s. band at its 2^+ state.

Adopted Levels, Gammas (continued)

¹⁷²Pt Levels (continued)

[#] Band(A): $K^{\pi}=0^+$ g.s. band (2006Jo04).

^(a) Band(B): π =(-), α =1 band (2006Jo04). Possibly has strong octupole component, but a two-quasiparticle structure such as (ν i_{13/2})(ν h9/2) cannot Be ruled out (2003Da06). Possibly analogous to first-excited sidebands in neighboring nuclides. The tentative J^{π} values have been adopted from Sn(⁶⁰Ni,xn γ); note, however, that 2003Da06, in ⁹²Mo(⁸⁴Sr,2p2n γ), suggest values 2 \hbar lower than those shown here.

[&] See comment on $\pi = (-)$ band.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	α &	Comments
457.60	$2^{(+)}$	457.6 <i>1</i>	100	0.0	0+	(E2)	0.0309	
1069.98	(4 ⁺)	612.4 [@] 2	100	457.60	2 ⁽⁺⁾			Other E γ : 611.5 6 in (⁵⁸ Ni,2n γ); 612.5 <i>1</i> for doublet in (⁶⁰ Ni,xn γ).
1464.7	(3 ⁻)	1006.7 10	100	457.60	$2^{(+)}$			
1753.2	(6 ⁺)	683.2 <i>3</i>	100	1069.98	(4 ⁺)	(E2)	0.01205	E_{γ} : unweighted average of 682.6 <i>3</i> from (⁵⁸ Ni,2nγ), 683.2 <i>2</i> from (⁸⁴ Sr,2p2nγ) and 683.7 <i>1</i> from (⁶⁰ Ni,xnγ).
1839.2	(5 ⁻)	374.0 10	12 <i>3</i>	1464.7	(3 ⁻)			Placement of 374.1 3 γ feeding 2181 level in $({}^{84}Sr,2p2n\gamma)$ is not adopted. That γ probably belongs here, consistent with implied branching of 15 4.
		769.2 2	100 9	1069.98	(4 ⁺)			Other Eγ: 768.9 <i>3</i> in (⁵⁸ Ni,2nγ), 768.5 <i>2</i> in (⁸⁴ Sr,2p2nγ).
1931.8		861.8 [@] 3	100	1069.98	(4+)			E_{γ} : weighted average of 861.7 4 from (⁵⁸ Ni,2n γ), 861.9 5 from (⁸⁴ Sr,2p2n γ) and 862.1 10 from (⁶⁰ Ni,xn γ).
2081.0	(7 ⁻)	241.80 <i>21</i>	100	1839.2	(5 ⁻)	(E2)	0.192	E_{γ} : unweighted average of 241.5 2 from (⁵⁸ Ni,2nγ), 241.7 2 from (⁸⁴ Sr,2p2nγ) and 242.2 2 from (⁶⁰ Ni,xnγ).
2164.0?		410.8 ^{<i>a</i>} 2	100	1753.2	(6+)	Q		Other Ey: 411.4 3 in $({}^{84}Sr, 2p2n\gamma)$, 410.1 3 in $({}^{58}Ni, 2n\gamma)$.
2405.8	(8+)	652.6 1	100	1753.2	(6+)			Other Ey: 651.6 3 in $({}^{58}Ni,2n\gamma)$, 652.3 2 in $({}^{84}Sr,2p2n\gamma)$.
2406.3		567.1 2	100	1839.2	(5 ⁻)			Other Ey: 568.4 5 in $({}^{58}Ni,2n\gamma)$.
2728.1?		564.1 ^{<i>a</i>} 2	100	2164.0?				Other Ey: 563.1 5 in $({}^{58}Ni,2n\gamma)$.
2742.6		336.4 2	100 6	2406.3				E_{γ}, I_{γ} : doublet in Sn(⁶⁰ Ni,xn γ); $E\gamma$ is from (⁸⁴ Sr,2p2n γ), $I\gamma$ is weighted average from (⁵⁸ Ni,2n γ) and (⁸⁴ Sr,2p2n γ).
		661.6 4	60 7	2081.0	(7 ⁻)			I _{γ} : weighted average of 53 9 from (⁸⁴ Sr,2p2n γ) and 66 9 from (⁵⁸ Ni,2n γ).
2993.8	(10 ⁺)	588.0 [@] 4	100	2405.8	(8^{+})			
3580.5	(12+)	586.7 10	100	2993.8	(10 ⁺)			E _{γ} : from (⁵⁸ Ni,2n γ). E γ =586.7 <i>10</i> for doublet in (⁶⁰ Ni,xn γ).
4218.0	(14^{+})	637.5 <i>3</i>	100	3580.5	(12^{+})			

[†] From Sn(⁶⁰Ni,xn γ), except as noted. Note, however, that although these data are in satisfactory agreement with those from ${}^{92}Mo({}^{84}Sr,2p2n\gamma)$, they are usually higher than data from ${}^{116}Sn({}^{58}Ni,2n\gamma)$. Major discrepancies are noted.

[‡] From Sn(⁶⁰Ni,xn γ).

[#] From asymmetry ratio in S(n)(⁶⁰Ni,xn γ), assigning $\Delta \pi$ =(no) to intraband transitions.

[@] From ${}^{92}Mo({}^{84}Sr,2p2n\gamma)$.

Adopted Levels, Gammas (continued)

$\gamma(^{172}\text{Pt})$ (continued)

- & Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*a*} Placement of transition in the level scheme is uncertain.

¹⁷²₇₈Pt₉₄

Adopted Levels, Gammas

¹⁷²₇₈Pt₉₄