Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	08-Dec-2015		

 $Q(\beta^{-})=5000 SY; S(n)=5040 SY; S(p)=8580 SY; Q(\alpha)=-1190 SY 2012Wa38$

Estimated uncertainties (2012Wa38): 200 for Q(β^-), 630 for S(n), 360 for S(p) and Q(α).

S(2n)=11390 200, S(2p)=19340 450 (syst,2012Wa38).

1991Be04: ¹⁷²Ho identified at GSI in mass separation of fragments from ¹⁸⁶W(¹³⁶Xe,X) reaction at E=11.6 MeV per nucleon. Enriched (99.8%) target of ¹⁸⁶W was used. Measured γ , β and x-ray spectra in singles and coincidence, populating states in ¹⁷²Er.

¹⁷²Ho Levels

E(level)	T _{1/2}	Comments	
0.0	25 s 3	$\%\beta^{-}=100$	
		 J^π: Low energy level spectrum has been calculated by 1991Be04 using a macroscopic-microscopic model. Below 260 keV, six excitations are proposed from coupling of following proton and neutron states: proton states: 7/2[523], 1/2[411]. Neutron states: 9/2[624], 7/2[514], 5/2[512]. These give J^π=(1⁻,8⁻) for g.s.; (0⁺,7⁺) for 8 keV; (3⁻,4⁻) for 70 keV; (4⁺,5⁺) for 72 keV; (1⁺,6⁺) 180 keV; and (2⁻,3⁻) for 258 keV. Possible β feeding of (4⁺) and (1,2⁺) levels in ¹⁷²Er would support J^π(¹⁷²Ho g.s.)=3,4⁻. E(level),J^π: 2000GrZV reconstructed the decay scheme of ¹⁷²Ho to ¹⁷²Er using data γ and γγ-coin data 	

from 1991Be04 and levels data from 1980Sh14, and postulated two activities in ¹⁷²Ho, each of about 25 s half-life, one with $J^{\pi}=1^-$, configuration= $\pi7/2[523]-\nu9/2[624]$, and the other with $J^{\pi}=7^+$, configuration= $\pi7/2[523]+\nu7/2[514]$, the latter populating an 8⁺ -> 7⁺ -> 6⁺ -> 5⁺ -> 4⁺ sequence, starting from a 2548.9-keV, 8⁺ level decaying through a 757.2-153.7-137.8-103.7 γ cascade. However, in the high-spin study by 2010Dr02, no 8⁺ state at 2548.9 keV in ¹⁷²Er was reported, which casts doubt on the reconstructed decay scheme of ¹⁷²Ho to ¹⁷²Er in 2000GrZV. In the opinion of the evaluator, further improved experiments are needed to investigate possible isomerism in ¹⁷²Ho and establish the decay scheme of ¹⁷²Ho, which seems incomplete at present, and also experimentally investigate the possibility of isomerism in ¹⁷²Ho.

 $T_{1/2}$: from $\beta(t)$ and $\gamma(t)$ (1991Be04).