172 Ho β^- decay (25 s) 1991Be04

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	ENSDF	08-Dec-2015				

Parent: ¹⁷²Ho: E=0.0; $T_{1/2}$ =25 s 3; $Q(\beta^{-})$ =5000 SY; % β^{-} decay=100.0 ¹⁷²Ho-Q(β⁻): 5000 200 (syst, 2012Wa38).

1991Be04: ¹⁷²Ho produced and identified by mass separation of products from reaction ¹⁸⁶W(¹³⁶Xe,X) at E=11.6 MeV/nucleon. Enriched (99.8%) target of ¹⁸⁶W was used. Measured γ , $\gamma\gamma$, $\beta\gamma$, $\gamma(x \text{ rays, } T_{1/2}$.

2000GrZV: a reconstructed decay scheme proposed based on gamma-ray singles and coincidence data in 1991Be04, and known levels from (t,p) in 1980Sh14. The author postulated low-spin (1⁻) and high-spin (7⁺) activities of 172 Ho, both of ≈ 25 s half-life.

The evaluator considers the decay scheme of ¹⁷²Ho to ¹⁷²Er as incomplete, and the one proposed by 2000GrZV (using data from

1991Be04) as unconfirmed, until further experiments are carried out to prove the hypothesis of isomerism in 172 Ho.

¹⁷² Er Level	5
-------------------------	---

E(level)	\mathbf{J}^{π}
0.0	0+
77.0 4	(2^{+})
255.0 5	(4^{+})
834.2 7	
961.4 4	$(1,2^+)$
1033.7 5	(3 ⁺)
1125.3 7	
1263.1 5	(4 ⁻)
1396.7 5	$(3^+, 4^+, 5^+)$

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(3603 <i>SY</i>)	1396.7	≈44	≈5.7	av E β =1417 syst
(3736 [‡] <i>SY</i>)	1263.1			$I\beta^-$: 6 6 (from intensity balance).
(4038 SY)	961.4	≈21	≈6.2	av E β =1615 syst
(4745 SY)	255.0	≈15	≈6.7	av E β =1937 syst

 † Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{172}\text{Er})$

Iy normalization: From summed transition intensity to g.s.=100, assuming no β^{-} feeding of g.s. Apparent strong feeding of (4⁺) precludes any significant branch to g.s. A first-forbidden unique transition would give $I\beta$ (g.s.)<0.6%.

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
77.0 5	26 6	77.0	(2 ⁺)	0.0 0+	[E2]	8.13 25	α (K)=1.79 3; α (L)=4.85 17; α (M)=1.18 4 α (N)=0.267 10; α (O)=0.0310 11; α (P)=8.04×10 ⁻⁵ 16
^x 103.7 5	20 6						Coin with Er K x ray, 134γ , 178γ , (291γ) , (1008 γ); but no placement is suggested. 2000GrZV proposed placement from a 1500.4, 5 ⁺ level.
133.6 <i>3</i>	100	1396.7	$(3^+,\!4^+,\!5^+)$	1263.1 (4 ⁻)	(E1)	0.1507 23	$\alpha(K)=0.1259\ 20;\ \alpha(L)=0.0194\ 3;\ \alpha(M)=0.00428$

Continued on next page (footnotes at end of table)

¹⁷²Ho β^- decay (25 s) 1991Be04 (continued) $\gamma(^{172}\text{Er})$ (continued) α^{\dagger} Eγ I_{γ}^{\ddagger} E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} Mult. Comments 7 *α*(N)=0.000983 *15*; *α*(O)=0.0001338 *21*; $\alpha(P)=5.91\times10^{-6}$ 9 Mult.: from $\alpha(\exp) < 0.5$ deduced from intensity balance at 1263 level, assuming mult=D,E2 for 138γ and 229γ . $\alpha(K)=0.5442; \alpha(L)=0.08063; \alpha(M)=0.01814$ 137.8 6 20 5 1263.1 (4^{-}) 1125.3 [D,E2] 0.64 51 α (N)=0.0041 33; α (O)=6.0×10⁻⁴ 48; $\alpha(P)=3.2\times10^{-5}\ 27$ 2000GrZV proposed placement from a 1638.2, 6^+ level. ^x153.7 5 22 6 Coin with (Er K x ray), 104γ , (757γ) ; but no placement is suggested. 2000GrZV proposed placement from a 1781.7, 7⁺ level. (4^{+}) 178.0 3 64 11 255.0 77.0 (2⁺) [E2] 0.373 $\alpha(K)=0.227$ 4; $\alpha(L)=0.1118$ 18; $\alpha(M)=0.0268$ 5 α (N)=0.00609 10; α (O)=0.000743 12; $\alpha(P)=1.041\times10^{-5}$ 16 229.4 6 37 9 1263.1 (4^{-}) 1033.7 (3+) [D,E2] 0.16 12 α(K)=0.13 10; α(L)=0.019 15; α(M)=0.0043 33 $\alpha(N)=1.00\times10^{-3}$ 78; $\alpha(O)=1.4\times10^{-4}$ 12; $\alpha(P)=7.9\times10^{-6}~64$ 2000GrZV proposed placement from a 1781.7, 291.1 5 44 11 1125.3 834.2 [D,E2] 0.082 63 7^+ level. 757.2 7 49 10 77.0 (2⁺) 2000GrZV proposed placement from a 2548.9, 834.2 8⁺ level, but no such level seen in the high-spin study by 2010Dr02. 884.4 5 25 7 961.4 $(1,2^+)$ 77.0 (2⁺) 956.7 5 22 6 (3^{+}) 77.0 (2⁺) 1033.7 $(1,2^+)$ $0.0 \quad 0^+$ 961.4 5 34 8 961.4 1008.1 5 36 9 1263.1 (4^{-}) 255.0 (4+) (3^{+}) $0.0 \ 0^+$ 1033.7 6 75 1033.7 [M3] $(3^+, 4^+, 5^+)$ $255.0~(4^+)$ 1141.7 5 11 4 1396.7 1186.1 6 23 7 1263.1 (4^{-}) 77.0 (2⁺)

[†] From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr. When no δ value given, value overlaps listed multipolarities.

[‡] For absolute intensity per 100 decays, multiply by ≈ 0.36 .

 $x \gamma$ ray not placed in level scheme.

¹⁷²Ho β^- decay (25 s) 1991Be04

 $^{172}_{68}\mathrm{Er}_{104}$