¹⁷⁰Er(t,p) 1980Sh14

Type Author Citation Literature Cutoff Date

Full Evaluation Balraj Singh ENSDF 08-Dec-2015

1980Sh14: E=15 MeV. 96.9% enriched target. Split-pole magnetic spectrograph, emulsions, FWHM \approx 17 keV. Measured $\sigma(\theta)$, θ =7.5°-67.5° in 7.5° steps. DWBA calculations. Q value=4034 4.

¹⁷²Er Levels

E(level) [†]	\mathbf{J}^{π}	$L^{\&}$	$\mathrm{d}\sigma/\mathrm{d}\Omega^{\pmb{b}}$	E(level) [†]	$L^{\&}$	$\mathrm{d}\sigma/\mathrm{d}\Omega^{\pmb{b}}$	E(level) [†]	$\mathrm{d}\sigma/\mathrm{d}\Omega^{\color{red}b}$
0.0		0	238	1820 <i>3</i>		3.9	2474 3	12
76 <i>3</i>	$(2^+)^{@}$		25	1843 ° 3		11	2502 3	9.0
254 3	$(4^+)^{@}$		15 ^c	1906 <i>3</i>		4.9	2545 3	8.4
960 ^e 3			27 ^c	1926 <i>3</i>		5.2	2635 <i>3</i>	4.9
1030 [#] 3			1.5 ^c	1950 <i>3</i>		2.5	2657 ^e 3	4.3
1127 ^e 3			6.3	1983 <i>3</i>		13	2679 <i>3</i>	4.6
1280 <i>3</i>			7.8	2004 3		11	2697 ^e 3	9.9
1322 <i>3</i>		0^a	13	2234 3		13	2741 <i>3</i>	10
1390 <i>3</i>			5.9	2253 3		4.1	2768 [‡] 3	5.3
1470 <i>3</i>		0^a	15	2286 <i>3</i>		5.0	2789 <i>3</i>	9.0
1495 [‡] <i>3</i>			13	2308 <i>3</i>		4.6	2807 3	10
1713 ^e 3			14	2382 <i>3</i>		9.1	2827 [#] 3	9.9 <mark>d</mark>
1729 <i>3</i>			4.8	2403 <i>3</i>	0^a	22	2856 ^e 3	39

[†] Each level was observed at five or more angles, except where indicated.

[‡] Observed at three angles.

[#] Observed at four angles.

[@] Member of g.s. rotational band based on excitation energy. 1980Sh14 point out that $\sigma(\theta)$ shape for this group is similar to that for corresponding level in other nuclides.

[&]amp; From comparison of $\sigma(\theta)$ with DWBA calculations.

^a The total strength of the three excited 0^+ states is $\approx 22\%$ of the ground-state value.

^b Cross section at $\theta(lab)=30^{\circ}$ in μ b/sr, overall uncertainty is 20%.

^c Cross section at θ (c.m.)=15.1°.

^d Cross section at θ (c.m.)=37.8°.

 $^{^{}e}$ $\sigma(\theta)$ given by 1980Sh14 but no L value is deduced, except that the $\sigma(\theta)$ shape is not consistent with L=0.