170 Er(136 Xe,X γ) **2010Dr02**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	08-Dec-2015		

2010Dr02 (also 2006Dr04): $E(^{136}Xe)=830$ MeV, ns-pulsed beam with 856 ns pulse separation or macroscopically chopped beam with beam-on/ beam-off conditions ranging from the μ s to the s regimes for out-of-beam data collection Au-backed isotopically-enriched metallic ¹⁷⁰Er target. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma\gamma$ coin, $\gamma-\gamma$ -t, T_{1/2} using GAMMASPHERE array at ATLAS-ANL facility. Various timing conditions used to identify isomers and isolate specific structures using $\gamma-\gamma$ -t correlations. Deduced high-spin levels, J, π , g_K-g_R. Multi-quasiparticle calculations. No very long-lived isomers were identified.

Note that the authors report a partial level scheme only.

¹⁷²Er Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		Comments	
$0.0^{@}$	0^{+}				
77.0 [@] 2	2+				
255.2 [@] 3	4+				
530.2 [@] 3	6+				
897.9 [@] 4	8+				
1034.4 ^{&} 3	(3^+)				
1131.3 <mark>&</mark> 3	(2^+)				
$1251.5^{\&}3$	(5^+)				
1263.5 ^{<i>a</i>} 3	(4^{-})	39.5 ns 21			
1351.7 [@] 4	10^{+}				
1367.3 ^a 3	(5 ⁻)				
1491.3 ^a 3	(6 ⁻)				
1500.9 ^b 3	(6 ⁺)	0.57 μs 6	$T_{1/2}$: other:>1 μ s (2006Dr04).		
1635.1 ^{<i>a</i>} 3	(7 ⁻)				
1654.3 ^b 3	(7^{+})				
1792.4 [°] 3	(7-)				
1799.0 ^{<i>a</i>} 4	(8-)				
1828.5 ^b 3	(8 ⁺)				
1885.3 [@] 5	12^{+}				
1945.0 [°] 4	(8 ⁻)				
1981.0 ^{<i>a</i>} 4	(9-)				
2022.1 ^b 4	(9 ⁺)				
2110.8 ^c 4	(9-)				
2294.5° 4	(10^{-})				
2498.6°5	(11^{-})				

[†] From least-squares fit to $E\gamma$ values.

[‡] As proposed by 2010Dr02, based on deduced band properties and comparison with isotone ¹⁷⁴Yb.

[#] From fits to time spectra produced by gating on transitions above and below level (2010Dr02).

[@] Band(A): $K^{\pi}=0^+$ g.s. band.

& Band(B): $K^{\pi}=2^+ \gamma$ vibration band.

^{*a*} Band(C): $K^{\pi}=(4^{-})$ band. Dominant configuration= $\pi 7/2[523] + \pi 1/2[411]$; supported by experimental band properties and expectations from multi-quasiparticle calculations.

^b Band(D): $K^{\pi}=(6^+)$ band. Possible configuration=v5/2[512]+v7/2[514]. Magnitude of $g_{K}-g_{R}$ is similar to that for corresponding band in the ¹⁷⁴Yb isotone, but larger than expected for the suggested configuration.

170 Er(136 Xe,X γ) **2010Dr02** (continued)

¹⁷²Er Levels (continued)

 $\gamma(^{172}\text{Er})$

^{*c*} Band(E): $K^{\pi} = (7^{-})$ band. Probable configuration= $\nu 7/2[633] + \nu 7/2[514]$; supported by experimental branching ratios. The magnitude of $g_{K}-g_{R}$ and the band structure are similar to those for the corresponding band in the ¹⁷⁴Yb isotone.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	Comments
77.0	2+	77.0.2		$0.0 0^+$			
255.2	4+	178.1 2		$77.0 2^+$			
530.2	6+	275.0 2		255.2 4+			
897.9	8+	367.7 2		530.2 6+			
1034.4	(3^+)	779.3 2		255.2 4+			
	(-)	957.3.2		$77.0 2^+$			
1131.3	(4^{+})	876.1.2		$255.2 4^+$			
	()	1054.5 2		77.0 2+			
1251.5	(5^{+})	721.6 2		530.2 6+			
		996.3 2		255.2 4+			
1263.5	(4^{-})	229.1 2	40 3	$1034.4(3^+)$	[E1]	0.0366	$\alpha(K)=0.0308$ 5; $\alpha(L)=0.00452$ 7;
							$\alpha(M) = 0.000998 \ 15$
							$\alpha(N) = 0.000230 4; \alpha(O) = 3.21 \times 10^{-5} 5;$
							$\alpha(P) = 1.548 \times 10^{-6} 22$
		1008 3 2	100.3	255.2 4+	[F1]	1.35×10^{-3}	$\alpha(\mathbf{K}) = 0.001149.16; \alpha(\mathbf{L}) = 0.0001550.22;$
		1008.5 2	100 5	233.2 4		1.55×10	$u(\mathbf{K}) = 0.001149 \ 10, \ u(\mathbf{L}) = 0.0001550 \ 22,$
							$u(M) = 5.59 \times 10^{-5} J$
							$\alpha(N) = 7.89 \times 10^{\circ} \ 11; \ \alpha(O) = 1.138 \times 10^{\circ} \ 10;$
1051 5	10+	152 0 0					$\alpha(P) = 6.30 \times 10^{-6} 9$
1351.7	10'	453.8 2		897.9 8			
1367.3	(5^{-})	103.8 2		1263.5 (4 ⁻)			
1401.2		1112.0 2	100	255.2 4			
1491.3	(6)	124.1 2	100	1367.3 (5)			
1500.0	(C^{+})	228.0 2	30.3	1263.5(4)	F 1	0 1507	I_{γ} : from table III.
1500.9	(6')	133.6 2	100 3	1367.3 (5)	EI	0.1507	$\alpha(\exp)=0.26$ 3
							$\alpha(\mathbf{K})=0.1259\ 19;\ \alpha(\mathbf{L})=0.0194\ 3;$
							$\alpha(M) = 0.00428 /$
							$\alpha(N)=0.000985 \ IS; \ \alpha(O)=0.0001558 \ 20;$
							$\alpha(P) = 5.91 \times 10^{-6} 9$
							Mult.: $\alpha(\exp)=0.26$ 3 from delayed intensity
							balance. This implies $\delta(M2/E1)=0.11+4-2$,
							higher than expected for the two-orbital
							change required by the proposed initial and
							nnal state configurations. Alternatively,
							$\alpha(\exp)$ may be high due to a possible issue
							aslibration
		240 6 2	1120	1251 5 (5+)	FM 11	0.210	calibration. $\alpha(K) = 0.184.2; \ \alpha(L) = 0.0272.4; \ \alpha(M) = 0.00602.0$
		249.0 2	11.5 0	1231.3 (3)		0.219	$\alpha(\mathbf{N})=0.184, 5, \alpha(\mathbf{L})=0.0272, 4, \alpha(\mathbf{N})=0.00005, 9$
							$a(N)=0.001400\ 20;\ a(O)=0.000204\ 5;$
		260 7 2	10 1 0	11212(4+)	(E2)	0.0272	$\alpha(P)=1.12/\times10^{-5}$ 10
		509.72	12.1 0	1151.5 (4)		0.0575	$u(\mathbf{K})=0.0285$ 4; $u(\mathbf{L})=0.00084$ 10;
							$\alpha(M) = 0.001585 25$
							$\alpha(N)=0.000364 \ 0; \ \alpha(O)=4.7\times10^{-5} \ 7;$
		070 5 6	())	520.2 (+	0.00	0.00((2	$\alpha(\mathbf{r}) = 1.520 \times 10^{-6} 22$
		970.5 2	6.2 8	530.2 61	[MI]	0.00663	$\alpha(\mathbf{K}) = 0.00562 \ 8; \ \alpha(\mathbf{L}) = 0.000794 \ 12;$
							$\alpha(M) = 0.000170020$
							$\alpha(N) = 4.08 \times 10^{-5} 6; \alpha(O) = 5.93 \times 10^{-6} 9;$
			100				$\alpha(P)=3.35\times10^{-7}5$
1635.1	('/-)	143.8 2	100	1491.3 (6 ⁻)			
		267.62	475	1367.3 (5)			I_{γ} : from table III.

Continued on next page (footnotes at end of table)

¹⁷⁰Er(¹³⁶Xe,Xγ) **2010Dr02** (continued)

$\gamma(^{172}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	$E_f J_f^{\pi}$	Comments
1654.3	(7^{+})	153.3 2		1500.9 (6 ⁺)	
1792.4	(7^{-})	138.1 2		1654.3 (7+)	
		291.4 2		1500.9 (6+)	
1799.0	(8 ⁻)	163.8 2	100	1635.1 (7-)	
		307.7 2	92 9	1491.3 (6-)	I_{γ} : from table III.
1828.5	(8^{+})	174.0 2	100	1654.3 (7+)	,
		327.7 2	32 7	1500.9 (6 ⁺)	I_{γ} : from table IV.
1885.3	12^{+}	533.6 2		1351.7 10+	,
1945.0	(8 ⁻)	152.6 2		1792.4 (7 ⁻)	
1981.0	(9 ⁻)	182 <i>I</i>		1799.0 (8-)	
		345.9 2		1635.1 (7 ⁻)	
2022.1	(9 ⁺)	193.6 2		1828.5 (8 ⁺)	
		368 1		1654.3 (7 ⁺)	
2110.8	(9 ⁻)	165.5 2	100	1945.0 (8 ⁻)	
		318.4 2	48 7	1792.4 (7-)	I_{γ} : from table IV.
2294.5	(10^{-})	183.6 2		2110.8 (9 ⁻)	
		349.7 2		1945.0 (8-)	
2498.6	(11^{-})	204.0 2		2294.5 (10 ⁻)	
		388 1		2110.8 (9-)	

[†] Uncertainty unstated by authors in 2010Dr02 but reported to be 0.2 keV via an email to C.M. Baglin from G. Dracoulis (May 2010). However, 1 keV uncertainty assigned here to $E\gamma$ values quoted to the nearest keV.

[‡] From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr. When no δ value given, value overlaps listed multipolarities.

170 Er(136 Xe,X γ) 2010Dr02

Level Scheme

Intensities: Relative photon branching from each level

 $^{172}_{68}\mathrm{Er}_{104}$

4

170 Er(136 Xe,X γ) 2010Dr02

 $^{172}_{68}\mathrm{Er}_{104}$