⁹⁶Ru(⁷⁸Kr,pnγ) 2009Ha42

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Tibor Kibedi and Coral M. Baglin	ENSDF	15-Mar-2010			

2009Ha42: $E(^{78}$ Kr)=342, 348 MeV; 96% enriched ⁹⁶Ru target followed by C charge reset foil; In-flight mass separation using RITU gas-filled separator; fusion-evaporation residues implanted In 2 double-sided Si strip detectors In the GREAT spectrometer (which also includes a multiwire proportional counter, 28 Si PIN diode detectors, a segmented planar Ge detector and a HPGe clover detector) At the RITU focal plane; JUROGAM γ -detector array (43 EUROGAM type escape-suppressed HPGe detectors distributed over 6 angles); recoil-decay tagging technique; measured E α , $\alpha(t)$, α branching, α -correlated prompt I γ , $E\gamma$, angular distribution ratios; total routhian surface calculations.

¹⁷²Au Levels

The level scheme is tentative; No $\gamma\gamma$ coincidence data are available.

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	(3 ⁻)	22 ms +6-4	T _{1/2} : from 6762 <i>α</i> (t), As stated In table I from 2009Ha42; value In abstract is 22 ms +6–5 and that In fig. 3 is 22 ms 6. J ^π : possible π (s _{1/2} ,d _{3/2}) \otimes ν (f _{7/2} ,h _{9/2}) or π (s _{1/2} ,d _{3/2}) \otimes ν i _{13/2} state (2009Ha42). Possibly J ^π =(3 ⁻) analogous to ¹⁷⁴ Au and ¹⁷⁶ Au (2009Ha42).
0.0+x	(9+)	9 ms +2-1	J^{π} : Possible π h _{11/2} $\otimes \nu$ (f _{7/2} ,h _{9/2}) state. Possibly (9 ⁺), analogous to ¹⁷⁴ Au and ¹⁷⁶ Au; very tentative value (2009Ha42). T _{1/2} : from 6870 α (t). other: 8 ms +5-2 from 6800 α (t) (2009Ha42). ADOPTED value is 7.7 ms 15.
459.7+x 6			
748.42+x 10			E(level): an alternative value of 896.2+x is possible because the order of 289γ and 437γ has not been established.
822.3+x? 5			
870.70+x? 20			
1184.98+x? 22			
1367.7+x? 6			E(level): an alternative value of 1282.0+x is possible because the order of 460γ and 545γ has not been established.
1827.4+x? 9			

[†] From least-squares fit to $E\gamma$.

Eγ	I_{γ}^{\dagger}	E _i (level)	E_f	Mult. [‡]	Comments
^x 115.6 [#] 3	#				
^x 143.2 8	26 2				
^x 156.6 2	91				
^x 164.1 2	91				E_{γ} , I_{γ} : for unresolved doublet.
x207.8 2	61				
^x 214.7 [#] 3	#				
^x 240.4 2	71				
^x 268.1 3	≤5				
288.7 1	14 2	748.42+x	459.7+x	D	Mult.: R=0.62 12.
^x 335.4 5	≤5				
^x 345.4 3	72				
^x 351.9 [#] 3	#				
363.4 ^{@&} 7	47 [@] 2	822.3+x?	459.7+x		Mult.: R=1.02 8 for doublet.
363.4 ^{@&} 7	47 [@] 2	1184.98+x?	822.3+x?		Mult.: R=1.02 8 for doublet.

 $\gamma(^{172}\mathrm{Au})$

Continued on next page (footnotes at end of table)

96 Ru(78 Kr,pn γ) 2009Ha42 (continued)

$\gamma(^{172}\text{Au})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	E_f J	\int_{f}^{π} Mult. [‡]	Comments
^x 377.9 4	≤5				
^x 406.2 4	72				
411.0 ^{&} 2	22 2	870.70+x?	459.7+x	D	Mult.: R=0.63 15.
436.5 <mark>&</mark> 2	26 2	1184.98+x?	748.42+x		
459.7 [@] 6	100 [@] 4	459.7+x	0.0+x (9	9 ⁺)	Mult.: R=1.09 6 for doublet.
459.7 ^{@&} 6	100 [@] 4	1827.4+x?	1367.7+x?		Mult.: R=1.09 6 for doublet.
^x 469.5 2	25 9				
^x 480.4 1	45 2				
^x 509.0 4	10 2				
^x 518.6 <i>1</i>	63 <i>3</i>			D	Mult.: R=0.69 7.
545.4 ^{&} 3	21 2	1367.7+x?	822.3+x?		
^x 549.9 2	22 2				
^x 575.0 3	18 2				
^x 578.9 8	≤6				
^x 606.6 7	≤5				
^x 626.9 1	61 <i>3</i>			Q	Mult.: R=1.30 12.
^x 644.8 4	13 2				
^x 678.2 3	28 2				
^x 696.0 <i>3</i>	21 2				
^x 708.9 3	21 3			D	Mult.: R=0.72 22.
^x 818.3 6	72				
^x 913.1 10	72				
^x 943.6 10	72				
^x 991.6 5	11 2				

[†] Relative to I(460 γ)=100; from prompt γ spectrum correlated with α decay from the 7.7-ms high-spin isomer of ¹⁷²Au, unless noted to the contrary.

[±] Based on measured angular distribution ratio, $R=I\gamma(157^{\circ})/(I\gamma(94^{\circ})+I\gamma(86^{\circ}))$. [#] Observed only In γ spectrum correlated with α decay from ¹⁷²Au g.s.. if $I(352\gamma)=^{100}I(116\gamma):I(215\gamma):I(352\gamma)=36$ 18:80 *35*:100 *34*. ^(a) Multiply placed with undivided intensity.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁹⁶**Ru**(⁷⁸**Kr,pn**γ) 2009Ha42 Legend Level Scheme • $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ • $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ • $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ • γ Decay (Uncertain) Intensities: Relative I_{γ} & Multiply placed: undivided intensity given + 439, 2100 <u>1827.4+x</u> 1545.4 21 ¢. \$ <u>1367.7+x</u> ⁴³6.5 ŝ 100 100 100 100 100 <u>1184.98+x</u> 286-2014 <u>870.70+x</u> <u>822.3+x</u> + 430, 2, 10 + 748.42+x 459.7+x (9^+) 0.0+x 9 ms + 2 - 1(3-) 0.0 22 ms +6-4

¹⁷²₇₉Au₉₃