# Adopted Levels, Gammas

|                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                                                                                                                                                                                                                                                                                                         | Aut                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Citation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Literature Cutoff Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Full Evaluation                                                                                                                                                                                                                                                                                                                              | Coral M. Baglin,                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E. A. Mccutchan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NDS 151,334 (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2018) 30-Jun-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <i>19</i> ; S(n)=6614.21 <i>1</i> ;<br><i>12</i> ; S(2p)=12961.6 <i>12</i><br>e.g., 1981Li21, 1982F<br>ta: 2002Zi04, 2003Ba<br>tions: 2002St11.<br>of time-reversal symm<br>and/or radiative streng<br>nformation 1.                                                                                                                         | S(p)=6799.9 8; Q(a<br>2 (2017Wa10).<br>8u21, 1983B105, 198<br>90.<br>netry in <sup>171</sup> Yb using<br>gth function: 2004A <sub>3</sub>                                                                                                                                                                                                                                                                                                                             | e)=1559.5 <i>12</i> 20<br>33Ma49, 1985Li06,<br>3Ma49, 1985Li06,<br>3Ma+E2 67γ from<br>g05, 2005Ag15.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 017Wa10<br>, 1987Mu09, 2002<br><sup>, 171</sup> Tm β <sup>-</sup> decay:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2Zi04.<br>: 2007Ts10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>171</sup> Yb Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross Reference (X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KREF) Flags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{c} \mathbf{A} & {}^{171}\mathrm{Tm}\boldsymbol{\beta}^{-}\mathrm{de}\\ \mathbf{B} & {}^{171}\mathrm{Lu}\boldsymbol{\varepsilon}\mathrm{deca}\\ \mathbf{C} & {}^{170}\mathrm{Er}(\alpha,3n\gamma)\\ \mathbf{D} & {}^{170}\mathrm{Yb}(n,\gamma)\mathbf{H}\\ \mathbf{E} & {}^{170}\mathrm{Yb}(n,\gamma)\mathbf{H} \end{array} $ | ecayF $ay$ (8.247 d)G $b = 34$ MeVH $e=$ thermalI $e=$ resonanceJ                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>170</sup> Yb(d,p), <sup>172</sup> Yl<br><sup>171</sup> Yb( $\gamma$ , $\gamma$ ): Moss<br>Coulomb excitati<br><sup>172</sup> Yb( <sup>3</sup> He, $\alpha$ ), <sup>17</sup><br><sup>173</sup> Yb(p,t)                                                                                                                                                                                                                                                                                                                               | b(d,t) K<br>sbauer L<br>on M<br>${}^{2}Yb({}^{3}He,\alpha\gamma)$ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>170</sup> Er( $\alpha$ ,3n $\gamma$ ) E=35,40 MeV<br><sup>172</sup> Yb(p,d)<br><sup>171</sup> Yb( <sup>3</sup> He, <sup>3</sup> He' $\gamma$ )<br><sup>171</sup> Yb( $\gamma$ ,X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $J^{\pi \ddagger} T_{1/2}^{\#}$                                                                                                                                                                                                                                                                                                              | XREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1/2 <sup>-</sup> stable       3/2 <sup>-</sup> 0.79 ns 5                                                                                                                                                                                                                                                                                     | ABCDEFGH JKL                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mu = +0.49367$ $\mu: \text{ optical pur}$ $4 (1964Got)$ $J^{\pi}: EPR, \text{ optic}$ $\Delta < r^{2} > (170-17)$ $Q = -2.34 7; \mu$ $\mu: \text{ Mossbauer}$ $\mu = +0.4936$ $Q: \text{ mossbauer}$ $J^{\pi}: M1 + E2 \gamma$                                                                                                                                                                                                                                                                                                         | <i>I</i><br>nping (1972Ol01)<br>06, nuclear magne<br>cal spectroscopy (<br>71)=0.08 3, $\Delta$ <r<sup>2:<br/><i>u</i>=0.350 2<br/><i>i</i> effect (1966He09<br/>7 <i>I</i> for <sup>171</sup>Yb(0.0<br/><i>i</i> effect (1971Pl03,<br/>to 1/2<sup>-</sup>.</r<sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ; value relative to <sup>23</sup> Na. Other: +0.4<br>etic resonance).<br>(1976Fu06); L=1 in <sup>170</sup> Yb(d,p).<br>>(171-172)=0.086 <i>14</i> (1973Le16).<br>0, 1966Gu07); value relative to<br>level).<br>,2016St14).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                              | Type         Full Evaluation         19; S(n)=6614.21 1;         12; S(2p)=12961.6 12         e.g., 1981Li21, 1982E         ta: 2002Zi04, 2003Ba         tions: 2002St11.         of time-reversal symm         and/or radiative streng         formation 1.         A         A         A         C         C         C         C         C         C         A         170°Tb(n,7) E         J##         1/2 <sup>-</sup> Stable         3/2 <sup>-</sup> 0.79 ns 5 | TypeAutFull EvaluationCoral M. Baglin,19; S(n)=6614.21 I; S(p)=6799.9 & Q(all 12; S(2p)=12961.6 I2 (2017Wa10).e.g., 1981Li21, 1982Bu21, 1983Bl05, 198ta: 2002Zi04, 2003Ba90.tions: 2002St11.of time-reversal symmetry in 171 Yb usingand/or radiative strength function: 2004Agformation 1.A $1^{71}$ Tm $\beta^-$ decayFB $1^{71}$ Lu $\varepsilon$ decay (8.247 d)GC $1^{70}$ Yb(n, $\gamma$ ) E=thermalIF $1^{70}$ Yb(n, $\gamma$ ) E=resonanceJJ <sup>#‡</sup> T <sub>1/2</sub> <sup>#</sup> XREFJ/2 <sup>-</sup> stableABCDEFGH JKL | Type         Author           Full Evaluation         Coral M. Baglin, E. A. Mccutchan           19; S(n)=6614.21 1; S(p)=6799.9 8; Q(α)=1559.5 12         20           12; S(2p)=12961.6 12 (2017Wa10).         e.g., 1981Li21, 1982Bu21, 1983Bl05, 1983Ma49, 1985Li06, ta: 2002Zi04, 2003Ba90.           tions: 2002St11.         of time-reversal symmetry in <sup>171</sup> Yb using M1+E2 67γ from and/or radiative strength function: 2004Ag05, 2005Ag15.           afformation 1.         171 Yb Lev           Cross Reference (X           A         171 Tm β <sup>-</sup> decay           F         170 Yb(d,p), <sup>172</sup> Y           B         171 Lu ε decay (8.247 d)           G         170 Yb(n,γ) E=34 MeV           D         170 Yb(n,γ) E=thermal           I         172 Yb( <sup>3</sup> He,α), <sup>17</sup> E         170 Yb(n,γ) E=resonance           J <sup>π‡</sup> T <sub>1/2</sub> <sup>#</sup> XREF         μ=+0.49367           μ: optical pur         4 (1964God           J <sup>π</sup> : EPR, opti         Δ           A         17.2           3/2 <sup>-</sup> 0.79 ns 5           ABCDEFGH JKL         Q=-2.34 7; μ           μ: Mossbauer         μ <sup>2</sup> : M036           Q: mossbauer         μ <sup>2</sup> : M1+E2 γ | Type       Author       Citation         Full Evaluation       Coral M. Baglin, E. A. Mccutchan       NDS 151,334 (2         19; S(n)=6614.21 1; S(p)=6799.9 8; Q( $\alpha$ )=1559.5 12       2017Wa10         12; S(2p)=12961.6 12 (2017Wa10).       e.g., 1981Li21, 1982Bu21, 1983Bl05, 1983Ma49, 1985Li06, 1987Mu09, 2002         a: 2002Zi04, 2003Ba90.       tions: 2002St11.         of time-reversal symmetry in <sup>171</sup> Yb using M1+E2 67γ from <sup>171</sup> Tm β <sup>-</sup> decay:         and/or radiative strength function: 2004Ag05, 2005Ag15.         aformation 1.         Intro for decay         F         Intro for decay         F         Intro for decay         E         Intro for decay         F         Intro for decay         Intro for decay         F         Intro for decay         Intro for decay         E         Intro for decay         F         Intro for decay         Intro for decay         Intro for decay         Intro for decay         Intret for decay |

| 66.732 <sup>d</sup> 2        | 3/2- | 0.79 ns 5         | ABCDEfGHijKL | Q=-2.34 7; $\mu$ =0.350 2<br>$\mu$ : Mossbauer effect (1966He09, 1966Gu07); value relative to<br>$\mu$ =+0.49367 <i>I</i> for <sup>171</sup> Yb(0.0 level).<br>Q: mossbauer effect (1971Pl03,2016St14).<br>J <sup><math>\pi</math></sup> : M1+E2 $\gamma$ to 1/2 <sup>-</sup> .<br>T <sub>1/2</sub> : from B(E2) in Coulomb excitation and adopted $\gamma$ -ray properties.<br>Other values: 0.87 ns <i>10</i> (1966He09, Mossbauer); 0.81 ns <i>17</i><br>(1971Ak7S, ca ca(t) in <sup>171</sup> L u c decay (8.24 d)) |
|------------------------------|------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75.882 <sup>c</sup> 2        | 5/2- | 1.64 ns <i>16</i> | BCD fGHijKL  | Q=-2.22 7; $\mu$ =+1.015 5<br>$\mu$ : mossbauer effect (1970He25); value relative to $\mu$ =+0.49367 1 for<br><sup>171</sup> Yb(0.0 level).<br>Q: mossbauer effect (1971Pl03,2016St14).<br>J <sup><math>\pi</math></sup> : M1+E2 $\gamma$ to 3/2 <sup>-</sup> ; $\mu$ (=+1.015) agrees with $\mu$ from theory<br>(=+1.2) for 5/2 <sup>-</sup> 1/2[521] Nilsson state.<br>T <sub>1/2</sub> : ce-ce(t) in <sup>171</sup> Lu $\varepsilon$ decay (8.24 d) (1971AkZS). Other values:                                        |
|                              |      |                   |              | 1.16 ns 7 (from B(E2) in Coulomb excitation and adopted $\gamma$ -ray properties), 0.72 ns <i>10</i> (recoil distance in Coulomb excitation (1967As03)). Other: 1966Ka11.                                                                                                                                                                                                                                                                                                                                               |
| 95.282 <sup><i>f</i></sup> 2 | 7/2+ | 5.25 ms 24        | BCD JK       | %IT=100<br>J <sup><math>\pi</math></sup> : E1 $\gamma$ to 5/2 <sup>-</sup> , M1+E2 $\gamma$ from 9/2 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |      |                   |              | (1974Ha50), Other: 1968Lo10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 122.416 <sup>g</sup> 2       | 5/2- | 265 ns 20         | BCD F H JKL  | $J^{\pi}$ : E1 $\gamma$ to 7/2 <sup>+</sup> , M1+E2 $\gamma$ to 3/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |      |                   |              | $T_{1/2}$ : ce $\gamma$ (t) in <sup>171</sup> Lu $\varepsilon$ decay (8.24 d) (1968Lo10).                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 167.662 <sup>e</sup> 3       | 9/2+ |                   | BC F IJK     | $J^{n}$ : L=4 in <sup>1/2</sup> Yb( <sup>3</sup> He, $\alpha$ ); strong population in <sup>1/2</sup> Yb(d,t) consistent                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |      |                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Continued on next page (footnotes at end of table)

# <sup>171</sup>Yb Levels (continued)

| E(level) <sup>†</sup>                        | $J^{\pi \ddagger}$           | $T_{1/2}^{\#}$ | XREF          | Comments                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|----------------------------------------------|------------------------------|----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                              |                              |                |               | with large cross section predicted for $9/2^+$ $7/2[633]$ state.                                                                                                                                                                                                                                                                                                    |  |  |  |
| 208.019 <sup>h</sup> 4                       | 7/2 <sup>-&amp;</sup>        |                | BC F HIJKL    |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 230.631 <sup>d</sup> 11                      | 7/2-                         | 155 ps 8       | BC F HIJKL    | $\mu$ =0.83 5 (2000St06)<br>$\mu$ : thin-foil transient field IMPAC in Coulomb excitation.                                                                                                                                                                                                                                                                          |  |  |  |
| 246.617 <sup>c</sup> 10                      | 9/2-                         | 149 ps 4       | BC F HIJKL    | $\mu$ =1.53 7 (2000St06)<br>$\mu$ : thin-foil transient field IMPAC in Coulomb excitation.                                                                                                                                                                                                                                                                          |  |  |  |
| 259.070 <sup><i>f</i></sup> 5                | 11/2+                        |                | BC K          | $J^{\pi}$ : M1+E2 $\gamma$ to 9/2 <sup>+</sup> ; energy agrees with expected energy (=260.5) of 11/2 <sup>+</sup> 7/2[633] state.                                                                                                                                                                                                                                   |  |  |  |
| 317.309 <sup>8</sup> 4                       | 9/2 <sup>-&amp;</sup>        |                | BC F HIJKL    |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 368.91 <sup>e</sup> 11                       | 13/2+                        |                | C F IJK       | J <sup><math>\pi</math></sup> : L=6 in <sup>170</sup> Yb(d,p) and <sup>172</sup> Yb( <sup>3</sup> He, $\alpha$ ); strong population<br>in <sup>172</sup> Yb(d,t) consistent with large cross section predicted<br>for 13/2 <sup>+</sup> 7/2[633] state.                                                                                                             |  |  |  |
| 449.599 <sup>h</sup> 15                      | 11/2-&                       |                | BC F IJKL     |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 487.29 <sup>d</sup> 3                        | 11/2-                        | 21.39 ps 19    | BC F HIJK     | $\mu$ =1.54 8 (2000St06)<br>$\mu$ : thin-foil transient field IMPAC in Coulomb excitation.                                                                                                                                                                                                                                                                          |  |  |  |
| 501.37 <sup>f</sup> 13                       | $(15/2^+)$                   |                | C jK          |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 509.32 <sup>c</sup> 16                       | 13/2-                        | 21.3 ps 4      | С НјК         | $\mu$ =2.31 <i>12</i> (2000St06)<br>$\mu$ : thin-foil transient field IMPAC in Coulomb excitation.                                                                                                                                                                                                                                                                  |  |  |  |
| $604.38^{\circ}$ 12                          | $(13/2^{-})$<br>$(17/2^{+})$ |                | С ЈК          |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 048.22° 13<br>766 3 11                       | (1/2)<br>$(3/2^+)$           |                |               | $I^{\pi}$ : similarity to 860.1 level in <sup>169</sup> Fr (population and decay)                                                                                                                                                                                                                                                                                   |  |  |  |
| 700.5 11                                     | (3/2)                        |                |               | consistent with $3/2^+$ .                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| $780.32^{t}$ 13                              | (15/2)                       |                | C JK          |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 820.11 <sup>J</sup> 13                       | $(19/2^{+})$                 | 12 2           |               | $x = 2.10 I4 (2000 \pm 06)$                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 855.08" 10                                   | 13/2                         | 4.5 ps 5       | С ніјк        | $\mu$ =2.10 14 (20005100)<br>$\mu$ : thin-foil transient field IMPAC in Coulomb excitation.                                                                                                                                                                                                                                                                         |  |  |  |
| 835.082 <sup>i</sup> 5                       | 7/2-                         |                | B F ii        | $J^{\pi}$ : E1 $\gamma$ to 9/2 <sup>+</sup> . M1+E2 $\gamma$ to 5/2 <sup>-</sup> .                                                                                                                                                                                                                                                                                  |  |  |  |
| 860.16 <sup>C</sup> 20                       | 17/2-                        | 4.19 ps 18     | С Н К         | $\mu$ =2.83 15 (2000St06)                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ~867                                         |                              |                | F             | $\mu$ : thin-foil transient field IMPAC in Coulomb excitation.                                                                                                                                                                                                                                                                                                      |  |  |  |
| ~876 <i>3</i>                                |                              |                | F             |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 902.250 <sup>j</sup> 20                      | 3/2-                         |                | B f ij        | $J^{\pi}$ : M1(+E2) $\gamma$ to 1/2 <sup>-</sup> ; log $f^{4u}t=9.31$ from 7/2 <sup>+</sup> .                                                                                                                                                                                                                                                                       |  |  |  |
| 907.2 16                                     | 1/2,3/2 <sup><i>a</i></sup>  |                | DEf ij        |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 935.261 15                                   | 9/2+                         |                | B j           | J <sup><math>\pi</math></sup> : M1 $\gamma$ to 11/2 <sup>+</sup> , M1+E2 $\gamma$ to 7/2 <sup>+</sup> . Possible 9/2[624] bandhead                                                                                                                                                                                                                                  |  |  |  |
| 944.35 <i>3</i>                              | 5/2-                         |                | B ij          | $J^{\pi}$ : M1+E2 $\gamma$ to 5/2 <sup>-</sup> , M1(+E2) $\gamma$ to 3/2 <sup>-</sup> ; nuclear orientation data consistent only with 5/2 (1985Kr07).                                                                                                                                                                                                               |  |  |  |
| 948.371 <sup>i</sup> 8                       | 9/2-                         |                | Bfi           | $J^{\pi}$ : E1 $\gamma$ to 11/2 <sup>+</sup> , E1 $\gamma$ to 7/2 <sup>+</sup> .                                                                                                                                                                                                                                                                                    |  |  |  |
| 953.0 <sup>s</sup> 15                        | (1/2 <sup>-</sup> )          |                | Df j          | J <sup><math>\pi</math></sup> : population by primary $\gamma$ in <sup>170</sup> Yb(n, $\gamma$ ) E=thermal;<br>energy agrees with expected position (=954.2) of 1/2 <sup>-</sup><br>1/2[510] state.                                                                                                                                                                |  |  |  |
| 958.31 <sup>j</sup> 10                       | (5/2-)                       |                | B j           | J <sup><math>\pi</math></sup> : $\gamma$ to 1/2 <sup>-</sup> , (E2) $\gamma$ to 5/2 <sup>-</sup> ; log <i>ft</i> =9.33 from 7/2 <sup>+</sup> ; 5/2 <sup>-</sup> consistent with band assignment.                                                                                                                                                                    |  |  |  |
| 971 <sup><i>t</i></sup> 3                    | (7/2 <sup>-</sup> )          |                | Fi            | J <sup><math>\pi</math></sup> : angular distributions, ( <sup>3</sup> He, $\alpha$ ) cross sections, and ( <sup>3</sup> He, $\alpha$ )/(d,t) cross-section ratios in <sup>172</sup> Yb( <sup>3</sup> He, $\alpha$ ) consistent with 7/2 <sup>-</sup> 5/2[523], 9/2 <sup>-</sup> 5/2[523] and 11/2 <sup>-</sup> 5/2[523] assignments for 971, 1083, and 1204 levels. |  |  |  |
| 976.38 <sup>8</sup> 14                       | $(17/2^{-})$                 |                | C K           |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 980.919 <i>13</i><br>984 037 <sup>4</sup> 21 | $(13/2^+)$<br>$(9/2)^+$      |                | C Í K<br>R fi | J <sup>*</sup> : alpole $\gamma$ to $11/2^+$ and $\gamma$ to $13/2^+$ ; band assignment.<br>I <sup><math>\pi</math></sup> : F1 $\gamma$ to $7/2^-$ (M1) $\gamma$ to $11/2^+$                                                                                                                                                                                        |  |  |  |
| 988.2 15                                     | $(1/2^{-}, 3/2^{-})^{b}$     |                | DEf i         | ·                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                              | (-1-,01-)                    |                | J             |                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

Continued on next page (footnotes at end of table)

# <sup>171</sup>Yb Levels (continued)

| E(level) <sup>†</sup>                  | $J^{\pi \ddagger}$      | XREF        | Comments                                                                                                                                                                                                                                                          |
|----------------------------------------|-------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 991.7 <sup>\$</sup> 11                 | (3/2 <sup>-</sup> )     | DF j        | J <sup><math>\pi</math></sup> : population by primary $\gamma$ in <sup>170</sup> Yb(n, $\gamma$ ) E=thermal; dominant (d,p) cross section fits expectations for $3/2^{-}$ 1/2[510] state.                                                                         |
| 1004.77 <sup>e</sup> 16                | $(21/2^+)$              | C K         |                                                                                                                                                                                                                                                                   |
| 1024.626 <sup>j</sup> 16               | 7/2-                    | B F iJ      | $J^{\pi}$ : M1+E2 $\gamma$ to 7/2 <sup>-</sup> , M1+E2 $\gamma$ to 5/2 <sup>-</sup> ; nuclear orientation data consistent only with 7/2 (1985Kr07).                                                                                                               |
| 1039.4 14                              | $(1/2^{-},3/2^{-})^{b}$ | DEF i       |                                                                                                                                                                                                                                                                   |
| 1052 <sup>s</sup> 3                    | (5/2 <sup>-</sup> )     | FJ          | $J^{\pi}$ : L=3 in <sup>170</sup> Yb(d,p); band structure and relative cross sections in (d,p) consistent with 5/2 <sup>-</sup> for 1052 level, 7/2 <sup>-</sup> for 1144 level, and 9/2 <sup>-</sup> for 1254 level.                                             |
| 1080.971 24                            | 5/2-                    | B f ij      | J <sup><math>\pi</math></sup> : M1+E2 $\gamma$ to 7/2 <sup>-</sup> , M1+E2 $\gamma$ to 5/2 <sup>-</sup> ; nuclear orientation data consistent only with 5/2 (1985Kr07).                                                                                           |
| 1083 <sup>t</sup> 3                    | (9/2-)                  | f ij        | $J^{\pi}$ : see comment with 971 level.                                                                                                                                                                                                                           |
| 1093.30° <i>3</i>                      | 9/2+                    | В           | J <sup><math>\pi</math></sup> : E1 $\gamma$ to 7/2 <sup>-</sup> , M1+E2 $\gamma$ to 9/2 <sup>+</sup> ; nuclear orientation data consistent only with 9/2 (1985Kr07).                                                                                              |
| 1114.03 15                             | $(15/2^+)$              | C F jK      |                                                                                                                                                                                                                                                                   |
| 1119 <sup><i>u</i></sup> 1             | $(13/2^+)$              | F Ij        | $J^{\pi}$ : L=6 in <sup>1/2</sup> Yb( <sup>3</sup> He, $\alpha$ ); population in <sup>1/2</sup> Yb(d,t) consistent with cross section predicted for 13/2 <sup>+</sup> 5/2[642] state.                                                                             |
| 1127.68 4                              | (9/2-)                  | В           |                                                                                                                                                                                                                                                                   |
| 1144° <i>3</i>                         | $(7/2^{-})$             | FJ          | $J^{\pi}$ : see comment with 1052 level.                                                                                                                                                                                                                          |
| 11/5                                   |                         |             |                                                                                                                                                                                                                                                                   |
| $1100 J_{2h} J_{4}$                    | (10/2-)                 | r<br>C V    |                                                                                                                                                                                                                                                                   |
| $1190.43 \ 14$                         | (19/2)                  |             | IT can comment with 071 level                                                                                                                                                                                                                                     |
| $1204^{\circ}$ 3                       | (11/2)                  | r IJ        | J . see comment with 971 level.                                                                                                                                                                                                                                   |
| $1234.29^{\circ}$ 10<br>$1244^{\circ}$ | $(23/2^{+})$            |             |                                                                                                                                                                                                                                                                   |
| $124^{\circ}$ 3                        | $(9/2^{-})$             | F           | $I^{\pi}$ : see comment with 1052 level.                                                                                                                                                                                                                          |
| 1263.63 <sup>d</sup> 21                | 19/2-                   | С НјК       | $\mu$ =2.5 3 (2000St06)<br>$\mu$ : thin-foil transient field IMPAC in Coulomb excitation                                                                                                                                                                          |
| 1265.86 <sup>9</sup> 16                | $(17/2^+)$              | С јК        |                                                                                                                                                                                                                                                                   |
| 1280 <i>3</i>                          |                         | F           |                                                                                                                                                                                                                                                                   |
| 1290 3                                 |                         | F           |                                                                                                                                                                                                                                                                   |
| 1294.54 <sup>°</sup> 25                | $(21/2^{-})$            | СНК         | $\mu$ =3.1 3 (2000St06)<br>$\mu$ : thin-foil transient field IMPAC in Coulomb excitation.                                                                                                                                                                         |
| ≈1300                                  |                         | Fi          |                                                                                                                                                                                                                                                                   |
| 1320 3                                 | (2/2-)                  | F 1         | $\pi$ 1.4 1 1 1 1 2/0[510]                                                                                                                                                                                                                                        |
| 1331.2, 13                             | (3/2)                   | DEF J       | J <sup>*</sup> : population by primary $\gamma$ in <sup>170</sup> Yb(n, $\gamma$ ) E=thermal; possible 3/2[512] bandhead. 5/2 <sup>-</sup> 3/2[512] and 7/2 <sup>-</sup> 3/2[512] for 1395 and 1486 levels follow from energy fits and cross-section systematics. |
| 1343 <sup><sup>w</sup> 5</sup>         |                         | EF ij       |                                                                                                                                                                                                                                                                   |
| $\approx 1356$                         | 7/2-                    | Fi          | $\pi_{-}$ E1 $(2^{+})$ M1 $(5/2^{-})$                                                                                                                                                                                                                             |
| $13/7.505^{P}$ 14                      | $\frac{1}{2}$           | B<br>B      | $J^{**}$ : E1 $\gamma$ to $9/2^{*}$ , M1 $\gamma$ to $5/2^{*}$ .                                                                                                                                                                                                  |
| $1305^{\vee}$ 3                        | $(1/2, 3/2)^{-1}$       | Dr J<br>Fi  | $I^{\pi_1}$ see comment with 1331 level                                                                                                                                                                                                                           |
| 1402.3                                 | (3/2)                   | F           | J . see comment with 1551 level.                                                                                                                                                                                                                                  |
| 1407 3                                 | $(13/2)^+$              | I           | J <sup><math>\pi</math></sup> : L=6 in <sup>172</sup> Yb( <sup>3</sup> He, $\alpha$ ); 13/2 <sup>+</sup> consistent with ( <sup>3</sup> He, $\alpha$ ) cross section.                                                                                             |
| 1421.45 <mark>8</mark> 15              | $(21/2^{-})$            | C K         |                                                                                                                                                                                                                                                                   |
| 1434.9 15                              | 1/2,3/2 <sup>a</sup>    | DF j        |                                                                                                                                                                                                                                                                   |
| 1435.90 <sup>e</sup> 18                | $(25/2^+)$              | C K         |                                                                                                                                                                                                                                                                   |
| 1436.63 <sup>r</sup> 17<br>1460 3      | $(19/2^+)$              | С јК<br>F Т |                                                                                                                                                                                                                                                                   |
| $1486^{v}$ 1                           | $(7/2^{-})$             | F ii        | $J^{\pi}$ : see comment with 1331 level.                                                                                                                                                                                                                          |
| 1492.3 9                               | $(1/2,3/2)^{a}$         | D ij        |                                                                                                                                                                                                                                                                   |

Continued on next page (footnotes at end of table)

# <sup>171</sup>Yb Levels (continued)

| E(level) <sup>†</sup>          | Jπ‡                            | XREF   | Comments                                            |
|--------------------------------|--------------------------------|--------|-----------------------------------------------------|
| 1513 5                         | 5/2-                           | J      | $J^{\pi}$ : L(p,t)=0 for 5/2 <sup>-</sup> target.   |
| $1517 2^{l} 4$                 | $(17/2^+)$                     | к      |                                                     |
| 1518 6                         | (1)=)                          | Fi     |                                                     |
| 1524 6                         |                                | Fi     |                                                     |
| 1536.9 14                      | 1/2,3/2 <sup>a</sup>           | DE     |                                                     |
| 1559 6                         |                                | FΙ     |                                                     |
| 1588 6                         |                                | Fj     |                                                     |
| 1599 6                         |                                | Fj     |                                                     |
| 1614.4 <sup>k</sup> 3          | $(19/2^+)$                     | K      |                                                     |
| 1626 <sup>@</sup> 2            |                                | F ij   |                                                     |
| 1626.17 <mark>9</mark> 18      | $(21/2^+)$                     | C jK   |                                                     |
| 1638 6                         |                                | Fi     |                                                     |
| 1649 7                         |                                | iJ     |                                                     |
| 1656.41 <sup><i>n</i></sup> 20 | $(19/2^+)$                     | K      |                                                     |
| 1662 6                         |                                | Fi     |                                                     |
| 1664.87 <sup><i>n</i></sup> 17 | $(23/2^{-})$                   | K      |                                                     |
| 1665.22 <sup>m</sup> 24        | $(21/2^+)$                     | K      |                                                     |
| 1672 <sup>@</sup> 1            |                                | FJ     |                                                     |
| 1702.6 25                      | 1/2,3/2 <sup>a</sup>           | D J    |                                                     |
| 1716.5 21                      | 1/2,3/2 <sup><i>a</i></sup>    | D F    |                                                     |
| 1724.43 <sup>†</sup> 19        | $(27/2^+)$                     | C K    |                                                     |
| 1733 <sup>@</sup> 3            |                                | FJ     |                                                     |
| 1764 <sup>@</sup> 1            |                                | FJ     |                                                     |
| 1771 6                         |                                | FΙ     |                                                     |
| 1773.3 6                       | $(23/2^+)$                     | K      |                                                     |
| 1774.2 <sup>d</sup> 3          | $(23/2^{-})$                   | H K    |                                                     |
| 1807.6 <sup>C</sup> 3          | $(25/2^{-})$                   | СНК    |                                                     |
| 1829.0 22                      | 1/2,3/2 <sup>a</sup>           | D J    |                                                     |
| 1834.79 <sup>r</sup> 21        | $(23/2^+)$                     | C K    |                                                     |
| 1845 7                         | ,                              | J      |                                                     |
| 1871.5 <i>15</i>               | $(1/2^{-},3/2^{-})^{b}$        | D J    |                                                     |
| 1884.8 <sup>1</sup> 4          | $(21/2^+)$                     | K      |                                                     |
| 1888.8 21                      | $(1/2^{-}, 3/2^{-})^{b}$       | De j   |                                                     |
| 1913.2 <i>19</i>               | 1/2,3/2 <sup>a</sup>           | De j   |                                                     |
| 1919.57 <mark>8</mark> 18      | $(25/2^{-})$                   | K      |                                                     |
| 1938.18 <sup>e</sup> 21        | $(29/2^+)$                     | K      |                                                     |
| 1971.7 15                      | 1/2,3/2 <sup>a</sup>           | D J    |                                                     |
| 1986.1 <sup>k</sup> 3          | $(23/2^+)$                     | K      |                                                     |
| 1995 10                        | $(5/2^{-})$                    | J      | $J^{\pi}$ : L(p,t)=(0) for 5/2 <sup>-</sup> target. |
| 2006.8 15                      | 1/2,3/2 <sup>a</sup>           | D      |                                                     |
| 2049.1 22                      | 1/2,3/2 <sup>a</sup>           | D      |                                                     |
| 2059.894 20                    | $(25/2^+)$                     | K      |                                                     |
| 2009.9" 3                      | $(23/2^+)$                     | K      |                                                     |
| $2087.5^{-6}4$                 | (23/21)                        | K<br>T |                                                     |
| 2100 10                        | $(1/2 - 2/2 - )^{b}$           | L L    |                                                     |
| 2138.4 23                      | $(1/2, 3/2)^{\circ}$           | υ<br>  |                                                     |
| 2179.83" 21                    | (27/2)                         | K      |                                                     |
| 2201.4 20                      | $\frac{1}{2}, \frac{3}{2^{a}}$ | ע      |                                                     |
| 2290.0 ZI                      | 1/4,3/4                        | ע J    |                                                     |

<sup>171</sup>Yb Levels (continued)

| E(level) <sup>†</sup>                   | J <sup>π</sup> ‡                             | XREF     | Comments                                                                                                                                                                 |
|-----------------------------------------|----------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2293.86 <sup>f</sup> 25                 | $(31/2^+)$                                   | К        |                                                                                                                                                                          |
| 2303 10                                 |                                              | J        |                                                                                                                                                                          |
| 2306.14' 25                             | $(27/2^+)$                                   | K        |                                                                                                                                                                          |
| 2318.7 4                                | $(25/2^+)$                                   | K        |                                                                                                                                                                          |
| 2334.3 6                                | $(27/2^+)$                                   | K        |                                                                                                                                                                          |
| 2550.0 U                                | $(27/2^{-})$                                 |          |                                                                                                                                                                          |
| 2359.8" 4                               | (27/2)                                       | нк       |                                                                                                                                                                          |
| 23/3.4 21<br>2392.9 <sup>°</sup> 3      | $(1/2, 3/2)^{\circ}$<br>$(29/2^{-})^{\circ}$ | н к      |                                                                                                                                                                          |
| 2428.5 <sup>k</sup> 3                   | $(27/2^+)$                                   | К        |                                                                                                                                                                          |
| 2446.9 18                               | $\frac{1}{2},\frac{3}{2^{a}}$                | D        |                                                                                                                                                                          |
| 2447.23 <sup>g</sup> 20                 | $(29/2^{-})$                                 | K        |                                                                                                                                                                          |
| 2468.0 20                               | $(1/2^{-}, 3/2^{-})^{b}$                     | D j      |                                                                                                                                                                          |
| 2479.0 20                               | $(1/2^{-},3/2^{-})^{b}$                      | D j      |                                                                                                                                                                          |
| 2494.5 21                               | $(1/2^{-},3/2^{-})^{b}$                      | D        |                                                                                                                                                                          |
| 2509.0 <sup>e</sup> 3                   | $(33/2^+)$                                   | K        |                                                                                                                                                                          |
| 2566.64 3                               | $(29/2^+)$                                   | K        |                                                                                                                                                                          |
| $25/8.1^{m} 4$<br>2506 3 <sup>m</sup> 7 | $(21/2^+)$<br>(20/2 <sup>+</sup> )           | K<br>V   |                                                                                                                                                                          |
| 2642.10                                 | (2)/2)                                       | 1        |                                                                                                                                                                          |
| $2717.10^{h}$ 25                        | $(31/2^{-})$                                 | ĸ        |                                                                                                                                                                          |
| $2820 8^{l} 4$                          | $(29/2^+)$                                   | ĸ        |                                                                                                                                                                          |
| $2846.1^r$ 3                            | $(2)/2^{+})$<br>$(31/2^{+})$                 | K        |                                                                                                                                                                          |
| 2939.1 <i><sup>f</sup> 3</i>            | (35/2+)                                      | K        |                                                                                                                                                                          |
| 2944.6 <sup>k</sup> 4                   | $(31/2^+)$                                   | K        |                                                                                                                                                                          |
| 2984.0 <sup>g</sup> 4                   | $(33/2^{-})$                                 | K        |                                                                                                                                                                          |
| 3015.1 <sup>d</sup> 6                   | $(31/2^{-})$                                 | H K      | XREF: H(3025).                                                                                                                                                           |
| 3059.0 <sup>°</sup> 4                   | $(33/2^{-})$                                 | H K      | XREF: H(3048).                                                                                                                                                           |
| 3142.79 5                               | $(33/2^+)$                                   | K        |                                                                                                                                                                          |
| $3146.5^{\circ} 4$                      | $(37/2^{+})$                                 | K        |                                                                                                                                                                          |
| $3281.8^{-3}$                           | (35/2)                                       | K        |                                                                                                                                                                          |
| 3389.8° /                               | $(33/2^{+})$                                 | К<br>Т М | Pyamy resonance: not a discete level                                                                                                                                     |
| 5400 00                                 |                                              | 1 11     | E(level): weighted average of 3.54 MeV 10 from ( <sup>3</sup> He, <sup>3</sup> He' $\gamma$ ) and 3.35 MeV 6 from 2001V005 in ( <sup>3</sup> He, $\alpha$ ).             |
|                                         |                                              |          | $\Gamma$ : 0.94 MeV 12, weighted average of 0.91 MeV 18 from ( <sup>3</sup> He, <sup>3</sup> He' $\gamma$ ) and 0.97 MeV 16 from ( <sup>3</sup> He $\alpha$ ) (2001Vo05) |
| 3448.0 <sup>r</sup> 6                   | $(35/2^+)$                                   | K        | ······································                                                                                                                                   |
| 3538.3 <sup>k</sup> 6                   | $(35/2^+)$                                   | К        |                                                                                                                                                                          |
| 3567.6 <mark>8</mark> 5                 | (37/2-)                                      | K        |                                                                                                                                                                          |
| 3656.5 <sup>f</sup> 6                   | $(39/2^+)$                                   | K        |                                                                                                                                                                          |
| 3746.7 <sup>d</sup> 8                   | $(35/2^{-})$                                 | K        |                                                                                                                                                                          |
| 3772.5 <sup>°</sup> 6                   | $(37/2^{-})$                                 | K        |                                                                                                                                                                          |
| 3779.1 <sup>9</sup> 7                   | $(37/2^+)$                                   | К        |                                                                                                                                                                          |
| 3848.0 <sup>e</sup> 6                   | $(41/2^+)$                                   | K        |                                                                                                                                                                          |
| 3882.7 <sup>n</sup> 5                   | $(39/2^{-})$                                 | K        |                                                                                                                                                                          |
| 4103.0' 8<br>4107.6 <mark>8</mark> .11  | $(39/2^+)$                                   | K        |                                                                                                                                                                          |
| +17/.0° 11                              | (+1/2)                                       | А        |                                                                                                                                                                          |

#### 171 Yb Levels (continued)

| E(level) <sup>†</sup>        | $J^{\pi \ddagger}$ | XREF |
|------------------------------|--------------------|------|
| 4442.5 <sup><i>f</i></sup> 8 | $(43/2^+)$         | K    |
| 4468.1? <b>9</b> 12          | $(41/2^+)$         | K    |
| 4527.7 <sup>h</sup> 11       | $(43/2^{-})$       | K    |
| 4612.1 <sup>e</sup> 8        | $(45/2^+)$         | K    |
| 4812.0 <sup>r</sup> 10       | $(43/2^+)$         | K    |
| 4879.7? <mark>8</mark> 15    | $(45/2^{-})$       | K    |

<sup>†</sup> From least-squares fit to adopted E $\gamma$  (omitting 862 $\gamma$  and 926 $\gamma$ ), except where noted or where cross references clearly indicate other source.

<sup>‡</sup> Values given without comment are from ( $\alpha$ ,3n $\gamma$ ) E=35,40 MeV, based on  $\gamma$  multipolarity data and deduced band structure.

- <sup>#</sup> From RDM in Coulomb excitation, except as noted.
- <sup>@</sup> Average from  ${}^{170}$ Yb(d,p),  ${}^{172}$ Yb(d,t),  ${}^{172}$ Yb( ${}^{3}$ He, $\alpha$ ), and/or  ${}^{173}$ Yb(p,t).
- & Cascade of M1+E2  $\gamma$ 's to 5/2<sup>-</sup>; spectroscopic factors in <sup>170</sup>Yb(d,p), <sup>172</sup>Yb(d,t) consistent with 7/2<sup>-</sup>, 9/2<sup>-</sup>, 11/2<sup>-</sup> sequence.
- <sup>*a*</sup> From population by primary  $\gamma$  in <sup>170</sup>Yb(n, $\gamma$ ) E=thermal.
- <sup>b</sup> From population by (E1) primary  $\gamma$  in <sup>170</sup>Yb(n, $\gamma$ ) E=thermal.
- <sup>c</sup> Band(A): 1/2[521],  $\alpha = +1/2$  band (1998Ar08).  $\alpha = 12.1$ ,  $\beta = -4.5$ , a = 0.85 (1/2, 3/2, 5/2, 7/2, 9/2 levels).
- <sup>d</sup> Band(a): 1/2[521],  $\alpha = -1/2$  band (1998Ar08). For band parameters, see comment on signature partner band.
- <sup>*e*</sup> Band(B): 7/2[633],  $\alpha$ =+1/2 band (1998Ar08).  $\alpha$ =7.8,  $\beta$ =13.4 (7/2, 9/2, 11/2 levels).
- <sup>*f*</sup> Band(b): 7/2[633],  $\alpha = -1/2$  band (1998Ar08). For band parameters, see comment on signature partner band.
- <sup>g</sup> Band(C): 5/2[512],  $\alpha = +1/2$  band (1998Ar08).  $\alpha = 12.3$ ,  $\beta = -5.4$  (5/2, 7/2, 9/2 levels).
- <sup>h</sup> Band(c): 5/2[512],  $\alpha = -1/2$  band (1998Ar08). For band parameters, see comment on signature partner band.
- <sup>*i*</sup> Band(D): 7/2[514] band. ( $\alpha$ =12.6 (7/2, 9/2 levels)).
- <sup>*j*</sup> Band(E): 3/2[521] band (+  $\gamma$ -vibration). ( $\alpha$ =12.4,  $\beta$ =-145 (3/2, 5/2, 7/2 levels)).
- <sup>k</sup> Band(f):  $\alpha = -1/2$  band (1998Ar08). Probable 1/2[521] + Octupole vibration band.
- <sup>1</sup> Band(F):  $\alpha = +1/2$  band (1998Ar08). Probable 1/2[521] + Octupole vibration band.
- <sup>*m*</sup> Band(G):  $\alpha = +1/2$  band (1998Ar08). Probably involves  $i_{13/2}$  neutron.
- <sup>*n*</sup> Band(g):  $\alpha = -1/2$  band (1998Ar08). Probably involves  $i_{13/2}$  neutron.
- <sup>o</sup> Band(H): Possible 3/2[651] band.
- <sup>p</sup> Band(I): 7/2[503] band.
- <sup>*q*</sup> Band(J):  $K^{\pi}=13/2^+$ ,  $\nu(7/2[633])(5/2[512])(1/2[521])$ ,  $\alpha=+1/2$  band. A=10.3, B=-4.2 (11/2, 13/2, 15/2 levels). J is 1 unit lower and  $\pi=-$  in ( $\alpha$ ,  $3n\gamma$ ) E=34 MeV, where band was tentatively assigned as 11/2[505].
- <sup>*r*</sup> Band(j):  $K^{\pi} = 13/2^+$ , v(7/2[633])(5/2[512])(1/2[521]),  $\alpha = -1/2$  band. A=10.3, B=-4.2 (11/2, 13/2, 15/2 levels). J is 1 unit lower and  $\pi$  reversed in ( $\alpha$ ,  $3n\gamma$ ) E=34 MeV, where band was tentatively assigned as 11/2[505].
- <sup>s</sup> Band(K): 1/2[510] band (+  $\gamma$ -vibration).  $\alpha$ =12.1,  $\beta$ =21.7, a=0.001 (1/2, 3/2, 5/2, 7/2, 9/2 levels).
- <sup>t</sup> Band(L): 5/2[523] band.  $\alpha$ =14.5,  $\beta$ =-72 (7/2, 9/2, 11/2 levels).
- <sup>*u*</sup> Band(M): 5/2[642] band.  $\alpha = 5.6$  (9/2, 13/2 levels). J=5/2 member not identified; see 1993Dz03 for discussion of its possible energy (735 5 or 876 3).
- <sup>v</sup> Band(N): Possible 3/2[512] band.  $\alpha$ =12.7,  $\beta$ =16.7 (3/2, 5/2, 7/2 levels).

|                        |                    |                                   |                                   |                     | Adop                                      | oted Levels, Gam         | mas (continu          | ed)                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|--------------------|-----------------------------------|-----------------------------------|---------------------|-------------------------------------------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                    |                                   |                                   |                     |                                           | $\gamma(^{171}\text{Y})$ | b)                    |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{\ddagger}$           | $\mathrm{E}_f$ J    | $\int_{f}^{\pi}$ Mult. <sup>†</sup>       | $\delta^{\dagger}$       | α                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                |
| 66.732                 | 3/2-               | 66.731 2                          | 100                               | 0.0 1/              | 2 <sup>-</sup> M1+E2                      | +0.684 17                | 12.60 19              | $ \alpha(K)=6.66\ 13; \alpha(L)=4.55\ 13; \alpha(M)=1.10\ 3; \alpha(N)=0.252\ 7;  \alpha(O)=0.0301\ 8; \alpha(P)=0.000413\ 8 $ B(E2)(W.u.)=225 17; B(M1)(W.u.)=0.0047 4<br>δ: magnitude from subshell ratios in ε decay, sign from $\gamma(\theta)$<br>in Coulomb excitation. Nuclear orientation in ε decay favors<br>negative sign, but adopted sign supported by δ for three<br>other ΔJ=1 transitions in g.s. band. |
| 75.882                 | 5/2-               | 9.149 <i>1</i><br>75.889 <i>5</i> | 2.48 <i>23</i><br>100.0 <i>13</i> | 66.732 3/<br>0.0 1/ | 2 <sup>-</sup> M1+E2<br>2 <sup>-</sup> E2 | 0.016 +4-5               | 160 <i>10</i><br>9.60 | B(E2)(W.u.)=42 22; B(M1)(W.u.)=0.030 5<br>$\alpha$ (K)=1.604 23; $\alpha$ (L)=6.11 9; $\alpha$ (M)=1.508 22; $\alpha$ (N)=0.344 5;<br>$\alpha$ (O)=0.0391 6; $\alpha$ (P)=7.98×10 <sup>-5</sup> 12<br>B(E2)(W.u.)=167 18                                                                                                                                                                                                |
| 95.282                 | 7/2+               | 19.394 2                          | 100                               | 75.882 5/           | 2 <sup>-</sup> E1                         |                          | 5.57                  | $\alpha(L)=4.33 \ 6; \ \alpha(M)=1.001 \ 14; \ \alpha(N)=0.221 \ 3; \ \alpha(O)=0.0231 \ 4; \ \alpha(P)=0.000527 \ 8 \ B(E1)(Wn)=8.7\times10^{-10} \ 5$                                                                                                                                                                                                                                                                 |
| 122.416                | 5/2-               | 27.133 1                          | 63.5 12                           | 95.282 7/           | 2 <sup>+</sup> E1                         |                          | 2.22                  | $\alpha(L)=1.727\ 25;\ \alpha(M)=0.395\ 6;\ \alpha(N)=0.0881\ 13;\alpha(O)=0.00990\ 14;\ \alpha(P)=0.000259\ 4$                                                                                                                                                                                                                                                                                                         |
|                        |                    | 46.543 5                          | 13.8 6                            | 75.882 5/           | 2 <sup>-</sup> M1+E2                      | 0.127 13                 | 6.4 <i>3</i>          | B(E1)(W.u.)=3.6×10 <sup>-6</sup> 3<br>$\alpha$ (L)=4.99 22; $\alpha$ (M)=1.14 6; $\alpha$ (N)=0.266 12; $\alpha$ (O)=0.0362<br>14; $\alpha$ (P)=0.001581 23                                                                                                                                                                                                                                                             |
|                        |                    | 55.689 2                          | 100.0 16                          | 66.732 3/           | 2 <sup>-</sup> M1+E2                      | 0.056 6                  | 3.15                  | B(E2)(W.u.)=0.052 <i>12</i> ; B(M1)(W.u.)=1.55×10 <sup>-5</sup> <i>17</i><br>$\alpha$ (L)=2.45 <i>4</i> ; $\alpha$ (M)=0.551 <i>9</i> ; $\alpha$ (N)=0.1292 <i>21</i> ; $\alpha$ (O)=0.0183<br><i>3</i> ; $\alpha$ (P)=0.000944 <i>14</i>                                                                                                                                                                               |
|                        |                    | 122.37 5                          | 0.96 6                            | 0.0 1/              | 2 <sup>-</sup> [E2]                       |                          | 1.502                 | B(E2)(W.u.)=0.031 7; B(M1)(W.u.)= $6.6 \times 10^{-5} 6$<br>$\alpha$ (K)=0.632 9; $\alpha$ (L)=0.665 10; $\alpha$ (M)=0.1634 23;<br>$\alpha$ (N)=0.0373 6; $\alpha$ (O)=0.00433 7<br>$\alpha$ (P)= $2.68 \times 10^{-5} 4$<br>P(E2)(W.u.) = 0.00192 10                                                                                                                                                                  |
| 167.662                | 9/2+               | 72.380 2                          | 100                               | 95.282 7/           | 2+ M1+E2                                  | -0.32 3                  | 8.86 14               | B(E2)(W.U.)=0.00185 <i>19</i><br>$\alpha$ (K)=6.64 <i>13</i> ; $\alpha$ (L)=1.71 <i>11</i> ; $\alpha$ (M)=0.40 <i>3</i> ; $\alpha$ (N)=0.093 <i>7</i> ;<br>$\alpha$ (O)=0.0121 <i>7</i> ; $\alpha$ (P)=0.000407 <i>8</i><br>E $\alpha$ (D)=0.22 $\alpha$ (P)=0.000407 <i>8</i>                                                                                                                                          |
| 208.019                | 7/2-               | 85.602 <i>3</i>                   | 100.0 13                          | 122.416 5/          | 2 <sup>-</sup> M1+E2                      | -0.224 25                | 5.31                  | $\alpha(K)=4.27\ 7;\ \alpha(L)=0.81\ 4;\ \alpha(M)=0.185\ 8;\ \alpha(N)=0.0432\ 18;\ \alpha(O)=0.00590\ 20$                                                                                                                                                                                                                                                                                                             |
|                        |                    | 112.70 <i>14</i>                  | 0.45 5                            | 95.282 7/           | 2 <sup>+</sup> [E1]                       |                          | 0.250                 | $\begin{array}{l} \alpha(P) = 0.000260 \ 5 \\ \alpha(K) = 0.207 \ 3; \ \alpha(L) = 0.0334 \ 5; \ \alpha(M) = 0.00747 \ 11; \\ \alpha(N) = 0.001722 \ 25; \ \alpha(O) = 0.000228 \ 4 \\ \alpha(P) = 9.28 \times 10^{-6} \ 14 \end{array}$                                                                                                                                                                                |
| 230.631                | 7/2-               | 154.753 <i>11</i>                 | 53.8 16                           | 75.882 5/           | 2 <sup>-</sup> M1+E2                      | +0.521 <sup>b</sup> 16   | 0.905 14              | $\begin{aligned} &\alpha(\mathrm{K}) = 0.714 \ 12; \ \alpha(\mathrm{L}) = 0.1477 \ 24; \ \alpha(\mathrm{M}) = 0.0341 \ 6; \\ &\alpha(\mathrm{N}) = 0.00793 \ 13; \ \alpha(\mathrm{O}) = 0.001064 \ 17 \\ &\alpha(\mathrm{P}) = 4.23 \times 10^{-5} \ 7 \\ &\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 33 \ 3; \ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.0064 \ 5 \end{aligned}$                                        |

From ENSDF

|   |                        |                    |                                         |                                             |                                                      | Adopted Lev                 | els, Gammas               | (continued) |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|------------------------|--------------------|-----------------------------------------|---------------------------------------------|------------------------------------------------------|-----------------------------|---------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                        |                    |                                         |                                             |                                                      | $\gamma(^{17}$              | <sup>1</sup> Yb) (continu | ed)         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$ | $E_{\gamma}^{\dagger}$                  | $I_{\gamma}^{\ddagger}$                     | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$             | Mult. <sup>†</sup>          | $\delta^{\dagger}$        | α           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 230.631                | 7/2-               | 164.2 2                                 | 100 8                                       | 66.732 3/2-                                          | E2                          |                           | 0.526       | I <sub>γ</sub> : other: 41 5 in (α,3nγ) E=35, 40 MeV, 37.9 6 in         Coulomb excitation.         δ: other: 0.71 21 from ε decay. $\alpha(K)=0.288$ 5; $\alpha(L)=0.182$ 3; $\alpha(M)=0.0444$ 7; $\alpha(N)=0.01016$ 16; $\alpha(O)=0.001204$ 18 $\alpha(P)=1.284\times10^{-5}$ 19         B(E2)(W.u.)=213 23         E <sub>γ</sub> : from (α,3nγ) E=35, 40 MeV. Other E <sub>γ</sub> : 163.847 5                              |
|   | 246.617                | 9/2-               | 16.0                                    | 0.152 <sup>&amp;</sup> 3                    | 230.631 7/2-                                         | [M1]                        |                           | 122.1       | for doublet in $\varepsilon$ decay.<br>$\alpha(L)=95.0 \ 14; \ \alpha(M)=21.4 \ 3; \ \alpha(N)=5.01 \ 7; \ \alpha(O)=0.714 \ 10; \ \alpha(P)=0.0378 \ 6 \ B(M1)(W.u.)=0.033 \ 7 \ E_{\star}$ if for near layer difference: Ex not measured                                                                                                                                                                                         |
|   |                        |                    | 170.732 10                              | 100 <sup>&amp;</sup>                        | 75.882 5/2-                                          | E2                          |                           | 0.459       | $\alpha(K)=0.258 \ 4; \ \alpha(L)=0.1542 \ 22; \ \alpha(M)=0.0375 \ 6; \ \alpha(N)=0.00859 \ 12; \ \alpha(O)=0.001021 \ 15 \ \alpha(P)=1.162 \times 10^{-5} \ 17$                                                                                                                                                                                                                                                                  |
| 8 | 259.070                | 11/2+              | 91.408 <i>3</i>                         | 100.0 19                                    | 167.662 9/2+                                         | M1+E2                       | -0.281 16                 | 4.38        | B(E2)(W.u.)=282 8<br>$\alpha$ (K)=3.47 6; $\alpha$ (L)=0.705 19; $\alpha$ (M)=0.162 5;<br>$\alpha$ (N)=0.0377 11; $\alpha$ (O)=0.00510 12<br>$\alpha$ (P)=0.000211 4                                                                                                                                                                                                                                                               |
|   |                        |                    | 164.1 2                                 | 37 4                                        | 95.282 7/2+                                          | E2                          |                           | 0.527       | $\begin{array}{l} \alpha(K) = 0.288 \ 5; \ \alpha(L) = 0.183 \ 3; \ \alpha(M) = 0.0445 \ 7; \\ \alpha(N) = 0.01019 \ 16; \ \alpha(O) = 0.001207 \ 18 \\ \alpha(P) = 1.286 \times 10^{-5} \ 19 \\ E_{\gamma}: \ from (\alpha, 3n\gamma) \ E = 35, \ 40 \ MeV. \ Other \ E_{\gamma}: \ 163.847 \ 5 \\ for \ doublet \ in \ \varepsilon \ I_{\gamma}: \ other: \ 94 \ 10 \ in \ (\alpha, 3n\gamma) \ E = 35, \ 40 \\ MeV \end{array}$ |
|   | 317.309                | 9/2-               | 109.289 <i>3</i>                        | 100 3                                       | 208.019 7/2-                                         | M1+E2                       | -0.27 4                   | 2.60        | $\alpha(\mathbf{K}) = 2.10 \ 4; \ \alpha(\mathbf{L}) = 0.387 \ 17; \ \alpha(\mathbf{M}) = 0.088 \ 5; \ \alpha(\mathbf{N}) = 0.0206 \ 10; \ \alpha(\mathbf{O}) = 0.00283 \ 10 \ \alpha(\mathbf{P}) = 0.000127 \ 3$                                                                                                                                                                                                                  |
|   |                        |                    | 149.63 5                                | 0.75 12                                     | 167.662 9/2+                                         | [E1]                        |                           | 0.1182      | $\alpha(K) = 0.0001273$ ; $\alpha(L) = 0.0153622$ ; $\alpha(M) = 0.003435$ ;<br>$\alpha(N) = 0.00079412$ ; $\alpha(L) = 0.0153622$ ; $\alpha(M) = 0.003435$ ;                                                                                                                                                                                                                                                                      |
|   |                        |                    | 194.896 7                               | 29 <i>3</i>                                 | 122.416 5/2-                                         | E2                          |                           | 0.293       | $\alpha(O)=0.0001068 \ I3; \ \alpha(P)=4.00\times10^{-6} \ 7$<br>$\alpha(K)=0.1775 \ 25; \ \alpha(L)=0.0884 \ I3; \ \alpha(M)=0.0214 \ 3; \ \alpha(N)=0.00491 \ 7; \ \alpha(O)=0.000590 \ 9$<br>$\alpha(P)=8.25\times10^{-6} \ I2$<br>L: other: 98 \ I3 in (\$\alpha\$ 3ny) E=35 \ 40 MeV                                                                                                                                          |
|   | 368.91                 | 13/2+              | 222.06 5<br>110.0 <sup><i>a</i></sup> 2 | 1.42 <i>16</i><br>100 <sup><i>a</i></sup> 5 | 95.282 7/2 <sup>+</sup><br>259.070 11/2 <sup>+</sup> | (M1+E2) <sup><i>a</i></sup> |                           | 2.40 18     | $\alpha(K)=1.48\ 67;\ \alpha(L)=0.70\ 38;\ \alpha(M)=0.170\ 96;$<br>$\alpha(N)=0.039\ 22;\ \alpha(O)=0.0047\ 23$<br>$\alpha(P)=8\ 3\times10^{-5}\ 49$                                                                                                                                                                                                                                                                              |
|   |                        |                    | 201.4 <sup><i>a</i></sup> 2             | 72 <sup><i>a</i></sup> 4                    | 167.662 9/2+                                         | (E2) <sup><i>a</i></sup>    |                           | 0.262       | $\alpha(K) = 0.1617 \ 23; \ \alpha(L) = 0.0772 \ 12; \ \alpha(M) = 0.0187 \ 3;$                                                                                                                                                                                                                                                                                                                                                    |

| Adopted Levels, Gammas (continued) |                      |                                                            |                                     |                             |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|----------------------|------------------------------------------------------------|-------------------------------------|-----------------------------|--------------------------------------|------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                      |                                                            |                                     |                             | $\underline{\gamma}(^1$              | <sup>71</sup> Yb) (continued | <u>l)</u> |                                                                                                                                                                                                                                                                                                                                                                |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^\pi$   | $E_{\gamma}^{\dagger}$                                     | $I_{\gamma}^{\ddagger}$             | $E_f = J_f^2$               | Mult. <sup>†</sup>                   | $\delta^{\dagger}$           | α         | Comments                                                                                                                                                                                                                                                                                                                                                       |
| 449.599                            | 11/2-                | 132.255 19                                                 | 100 5                               | 317.309 9/2                 | - M1+E2                              | 1.4 +21-6                    | 1.26 11   | $\begin{array}{c} \alpha(N)=0.00428 \ 7; \ \alpha(O)=0.000517 \ 8\\ \alpha(P)=7.57\times10^{-6} \ 11\\ \alpha(K)=0.77 \ 21; \ \alpha(L)=0.38 \ 8; \ \alpha(M)=0.091 \ 20;\\ \alpha(N)=0.021 \ 5; \ \alpha(O)=0.0025 \ 5; \ \alpha(P)=4 \ 1\times10^{-5} \ 15 \end{array}$                                                                                      |
|                                    |                      | 241.73 5                                                   | 68 4                                | 208.019 7/2                 | - (E2)                               |                              | 0.1446    | $\alpha(K)=0.0964 \ I4; \ \alpha(L)=0.0371 \ 6; \ \alpha(M)=0.00889 \ I3; \\ \alpha(N)=0.00204 \ 3; \ \alpha(O)=0.000251 \ 4 \\ \alpha(P)=4.71\times10^{-6} \ 7 \\ I_{\gamma}: \ \text{other:} \ 115 \ I4 \ \text{in} \ (\alpha, 3n\gamma) \ \text{E=35, 40 MeV for}$                                                                                          |
| 487.29                             | 11/2-                | 240.63 8                                                   | 16.0 5                              | 246.617 9/2                 | - M1+E2 <sup>b</sup>                 | +0.50 <sup>b</sup> 4         | 0.258 6   | E <sub>γ</sub> =241.9 2.<br>$\alpha$ (K)=0.211 5; $\alpha$ (L)=0.0365 6; $\alpha$ (M)=0.00828 12;<br>$\alpha$ (N)=0.00194 3; $\alpha$ (O)=0.000268 4<br>$\alpha$ (P)=1.26×10 <sup>-5</sup> 3<br>B(E2)(W.u.)=14.1 19; B(M1)(W.u.)=0.0072 4<br>I <sub>γ</sub> : weighted average of 15.8 5 in Coulomb excitation<br>and 17.2 12 from ( $\alpha$ 3ny) E=35 40 MeV |
|                                    |                      | 256.65 3                                                   | 100 <sup>&amp;</sup>                | 230.631 7/2                 | - E2                                 |                              | 0.1196    | $\begin{aligned} \alpha(\mathbf{K}) = 0.0814 \ I2; \ \alpha(\mathbf{L}) = 0.0294 \ 5; \ \alpha(\mathbf{M}) = 0.00702 \ I0; \\ \alpha(\mathbf{N}) = 0.001616 \ 23; \ \alpha(\mathbf{O}) = 0.000200 \ 3 \\ \alpha(\mathbf{P}) = 4.03 \times 10^{-6} \ 6 \\ \mathbf{B}(\mathbf{F}) \otimes \mathbf{W} \mathbf{w} > -319 \ 4 \end{aligned}$                        |
| 501.37                             | (15/2+)              | 132.7 <sup>a</sup> 2<br>242.3 <sup>a</sup> 2               | $45^{a} 4$<br>100.0 <sup>a</sup> 25 | 368.91 13/<br>259.070 11/   | $2^{+} D^{a}$<br>$2^{+} (E2)^{a}$    |                              | 0.1436    | $\alpha(K)=0.0957 \ 14; \ \alpha(L)=0.0367 \ 6; \ \alpha(M)=0.00881 \ 13; \ \alpha(N)=0.00203 \ 3; \ \alpha(Q)=0.000249 \ 4$                                                                                                                                                                                                                                   |
|                                    |                      |                                                            |                                     |                             |                                      |                              |           | $\alpha(P)=4.68\times10^{-6} 7$                                                                                                                                                                                                                                                                                                                                |
| 509.32                             | 13/2-                | 22.0                                                       | 0.059 <sup>&amp;</sup> 5            | 487.29 11/                  | 2 <sup>-</sup> [M1]                  |                              | 47.4      | $\alpha$ (L)=36.9 6; $\alpha$ (M)=8.28 12; $\alpha$ (N)=1.94 3; $\alpha$ (O)=0.277<br>4; $\alpha$ (P)=0.01468 21<br>B(M1)(W.u.)=0.050 9<br>E <sub><math>\gamma</math></sub> : from level energy difference; E $\gamma$ not measured.                                                                                                                           |
|                                    |                      | 262.7 2                                                    | 100 <sup>&amp;</sup>                | 246.617 9/2                 | - E2                                 |                              | 0.1112    | $\alpha(K)=0.0763 \ 11; \ \alpha(L)=0.0268 \ 4; \ \alpha(M)=0.00641 \ 10; \ \alpha(N)=0.001476 \ 22; \ \alpha(O)=0.000183 \ 3 \ \alpha(P)=3.79\times10^{-6} \ 6 \ B(E2)(W.u.)=330 \ 7 \ E_{\gamma}: \ from \ (\alpha,3n\gamma) \ E=35, \ 40 \ MeV; \ mult \ from \ Coulomb \ excitation.$                                                                      |
| 604.38                             | (13/2 <sup>-</sup> ) | 154.9 <sup><i>a</i></sup> 2<br>287.0 <sup><i>a</i></sup> 2 |                                     | 449.599 11/3<br>317.309 9/2 | $^{2^{-}}_{-}$ $^{D^{a}}_{(E2)^{a}}$ |                              | 0.0846    | $\alpha(K)=0.0596 \ 9; \ \alpha(L)=0.0192 \ 3; \ \alpha(M)=0.00457 \ 7; \ \alpha(N)=0.001053 \ 15; \ \alpha(O)=0.0001317 \ 19 \ \alpha(P)=3.02\times10^{-6} \ 5$                                                                                                                                                                                               |
|                                    |                      | 345.4 <sup><i>a</i></sup> 5                                | 10 <sup>a</sup> 3                   | 259.070 11/2                | 2 <sup>+</sup> D <sup><i>a</i></sup> |                              |           | u(1)-5.02×10 J                                                                                                                                                                                                                                                                                                                                                 |

|                        |                      |                             |                              |         | Ado                  | pted Levels, (              | Gammas (continued  | 1)              |                                                                                                                                                                                                                        |
|------------------------|----------------------|-----------------------------|------------------------------|---------|----------------------|-----------------------------|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                             |                              |         |                      | $\gamma(^{171}\text{Yb})$   | (continued)        |                 |                                                                                                                                                                                                                        |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$   | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$      | $E_f$   | $\mathrm{J}_f^\pi$   | Mult. <sup>†</sup>          | $\delta^{\dagger}$ | α               | Comments                                                                                                                                                                                                               |
| 648.22                 | (17/2 <sup>+</sup> ) | 147.0 <sup><i>a</i></sup> 2 | 41 <sup><i>a</i></sup> 3     | 501.37  | (15/2 <sup>+</sup> ) | (M1+E2) <sup>a</sup>        | -0.37 +10-13       | 1.08 4          | $\frac{\alpha(K)=0.88\ 5;\ \alpha(L)=0.162\ 13;\ \alpha(M)=0.037\ 4;}{\alpha(N)=0.0086\ 8;\ \alpha(O)=0.00118\ 7;}$ $\frac{\alpha(P)=5.3\times10^{-5}\ 4}{\alpha(P)=5.3\times10^{-5}\ 4}$                              |
|                        |                      | 279.2 <sup><i>a</i></sup> 2 | 100.0 <sup><i>a</i></sup> 18 | 368.91  | 13/2+                | (E2) <sup><i>a</i></sup>    |                    | 0.0920          | δ: from (α, snγ) E=34 MeV.<br>$\alpha(K)=0.0643 \ 9$ ; $\alpha(L)=0.0213 \ 3$ ; $\alpha(M)=0.00507$<br>$\beta$ ; $\alpha(N)=0.001169 \ 17$ ; $\alpha(O)=0.0001457 \ 21$<br>$\alpha(P)=3.24 \times 10^{-6} \ 5$         |
| 766.3                  | $(3/2^+)$            | 669.6 <sup>c@</sup> 15      | <195@                        | 95.282  | $7/2^{+}$            |                             |                    |                 |                                                                                                                                                                                                                        |
|                        |                      | 691.1 <sup>@</sup> 15       | 100                          | 75.882  | $5/2^{-}$            |                             |                    |                 |                                                                                                                                                                                                                        |
|                        |                      | 698.9 <sup>@</sup> 15       | 93 <sup>@</sup>              | 66.732  | 3/2-                 | _                           |                    |                 |                                                                                                                                                                                                                        |
| 780.32                 | (15/2 <sup>-</sup> ) | 176.1 <sup><i>a</i></sup> 2 | 47.9 <sup><i>a</i></sup> 21  | 604.38  | (13/2 <sup>-</sup> ) | (M1) <sup><i>a</i></sup>    |                    | 0.678           | $\alpha(K)=0.568 \ 9; \ \alpha(L)=0.0861 \ 13; \ \alpha(M)=0.0193$<br>$3; \ \alpha(N)=0.00453 \ 7; \ \alpha(O)=0.000648 \ 10$<br>$\alpha(P)=3.46\times10^{-5} \ 5$<br>E_:: other: 174.8 5 in ( $\alpha$ 3ny) E=34 MeV. |
|                        |                      | 330.5 <sup><i>a</i></sup> 2 | 100 <sup><i>a</i></sup> 4    | 449.599 | 11/2-                | (E2) <sup><i>a</i></sup>    |                    | 0.0554          | $\alpha(K)=0.0405 \ 6; \ \alpha(L)=0.01149 \ 17; \\ \alpha(M)=0.00271 \ 4; \ \alpha(N)=0.000627 \ 9; \\ \alpha(O)=7.96 \times 10^{-5} \ 12 \\ \alpha(P)=2.11 \times 10^{-6} \ 3$                                       |
|                        |                      | 411.4 <sup><i>a</i></sup> 5 | 8.3 <sup><i>a</i></sup> 21   | 368.91  | $13/2^{+}$           |                             |                    |                 |                                                                                                                                                                                                                        |
| 826.11                 | (19/2+)              | 177.9 <sup><i>a</i></sup> 2 | 29 <sup><i>a</i></sup> 3     | 648.22  | (17/2 <sup>+</sup> ) | (M1+E2) <sup><i>a</i></sup> | -0.18 8            | 0.651 <i>13</i> | $\alpha(K)=0.542 \ 13; \ \alpha(L)=0.0852 \ 19; \ \alpha(M)=0.0191$<br>5; $\alpha(N)=0.00449 \ 11; \ \alpha(O)=0.000637 \ 12$<br>$\alpha(P)=3.29\times10^{-5} \ 9$                                                     |
|                        |                      | 324.8 <sup><i>a</i></sup> 2 | 100.0 <sup><i>a</i></sup> 12 | 501.37  | (15/2+)              | (E2) <sup><i>a</i></sup>    |                    | 0.0583          | α(K)=0.0425 6; α(L)=0.01222 18;<br>α(M)=0.00289 4; α(N)=0.000667 10;<br>α(O)=8.45×10 <sup>-5</sup> 12                                                                                                                  |
| 833.08                 | 15/2-                | 323.9 <sup><i>a</i></sup> 2 | 14.9 <sup><i>a</i></sup> 17  | 509.32  | 13/2-                | M1+E2 <sup>b</sup>          | ≈+0.5 <sup>b</sup> | ≈0.1143         | $\alpha(P)=2.20\times10^{-5} 4$<br>$\alpha(K)\approx0.0946; \ \alpha(L)\approx0.01533; \ \alpha(M)\approx0.00346;$<br>$\alpha(N)\approx0.000810$                                                                       |
|                        |                      |                             |                              |         |                      |                             |                    |                 | $\alpha(O) \approx 0.0001138; \ \alpha(P) \approx 5.63 \times 10^{-6}$<br>B(E2)(W.u.) \approx 16; B(M1)(W.u.) \approx 0.015<br>L_{\approx}: other: 9.4 10 from Coulomb excitation.                                     |
|                        |                      | 345.7 <sup><i>a</i></sup> 2 | 100.0 <sup><i>a</i></sup> 23 | 487.29  | 11/2-                | E2                          |                    | 0.0486          | $\alpha(K)=0.0359 5; \alpha(L)=0.00980 14;$<br>$\alpha(M)=0.00231 4; \alpha(N)=0.000534 8;$<br>$\alpha(O)=6.81\times10^{-5} 10$<br>$\alpha(P)=1.88\times10^{-6} 3$                                                     |
|                        |                      |                             |                              |         |                      |                             |                    |                 | $B(E2)(W.u.)=3.9\times10^2 3$<br>Mult.: from Coulomb excitation.                                                                                                                                                       |
|                        | = 10 -               | 517 770 A                   | 0 714 10                     |         |                      | 3.64 5.8                    | 0.50.0             |                 |                                                                                                                                                                                                                        |

From ENSDF

 $^{171}_{70} \rm Yb_{101} \text{--} 10$ 

|                        |                                       |                        |                         |                  | 1                    | Adopted Lev        | els, Gammas (cor   | ntinued)  |                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|------------------------|---------------------------------------|------------------------|-------------------------|------------------|----------------------|--------------------|--------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        | $\gamma(^{171}\text{Yb})$ (continued) |                        |                         |                  |                      |                    |                    |           |                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                  | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | $\delta^{\dagger}$ | α         | Comments                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 835.082                | 7/2-                                  | 627.062 12             | 1.75 3                  | 208.019          | 7/2-                 | M1+E2              | +1.17 +7-6         | 0.0156 5  | $ \frac{\alpha(M)=0.00094 \ 3; \ \alpha(N)=0.000221 \ 6;}{\alpha(O)=3.14\times10^{-5} \ 10} \\ \alpha(P)=1.63\times10^{-6} \ 7 \\ \alpha(K)=0.0129 \ 4; \ \alpha(L)=0.00208 \ 5; \ \alpha(M)=0.000470 $                                                                                                                                   |  |  |  |
|                        |                                       |                        |                         |                  |                      |                    |                    |           | <i>11</i> ; $\alpha$ (N)=0.0001099 24; $\alpha$ (O)=1.54×10 <sup>-5</sup> 4<br>$\alpha$ (P)=7.52×10 <sup>-7</sup> 22                                                                                                                                                                                                                      |  |  |  |
|                        |                                       | 667.422 11             | 23.1 4                  | 167.662          | 9/2+                 | E1                 |                    | 0.00329   | $\alpha(K)=0.00279 \ 4; \ \alpha(L)=0.000390 \ 6; \ \alpha(M)=8.65\times10^{-5}$<br>$I3; \ \alpha(N)=2.02\times10^{-5} \ 3; \ \alpha(O)=2.86\times10^{-6} \ 4$<br>$\alpha(P)=1.485\times10^{-7} \ 2I$                                                                                                                                     |  |  |  |
|                        |                                       | 712.670 16             | 2.37 3                  | 122.416          | 5/2-                 | M1+E2              | -1.62 +10-11       | 0.0101 3  | $\alpha(\mathbf{K}) = 0.00837\ 24;\ \alpha(\mathbf{L}) = 0.00136\ 4;\ \alpha(\mathbf{M}) = 0.000306\ 7;\ \alpha(\mathbf{N}) = 7.16 \times 10^{-5}\ 17;\ \alpha(\mathbf{O}) = 1.000 \times 10^{-5}\ 24\ \alpha(\mathbf{C}) = 4\ 82 \times 10^{-7}\ 15$                                                                                     |  |  |  |
|                        |                                       | 739.793 12             | 100.0 14                | 95.282           | 7/2+                 | E1                 |                    | 0.00267   | $\alpha(K) = 0.00227 \ 4; \ \alpha(L) = 0.000316 \ 5; \ \alpha(M) = 6.99 \times 10^{-5}$<br>10; \alpha(N) = 1.634 \times 10^{-5} \ 23; \alpha(O) = 2.32 \times 10^{-6} \ 4                                                                                                                                                                |  |  |  |
|                        |                                       | 759.21 3               | 0.049 3                 | 75.882           | 5/2-                 | (E2)               |                    | 0.00664   | $\alpha(P)=1.212\times10^{-7} I/$<br>$\alpha(K)=0.00544 \ 8; \ \alpha(L)=0.000935 \ I3; \ \alpha(M)=0.000212$<br>$3; \ \alpha(N)=4.95\times10^{-5} \ 7; \ \alpha(O)=6.81\times10^{-6} \ I0$<br>$\alpha(P)=3.05\times10^{-7} \ 5$                                                                                                          |  |  |  |
| 860.16                 | 17/2-                                 | 27.1 <sup>d</sup>      | <0.25 <sup>&amp;</sup>  | 833.08           | 15/2-                | [M1]               |                    | 25.6      | $\alpha$ (L)=19.9 3; $\alpha$ (M)=4.46 7; $\alpha$ (N)=1.046 15;<br>$\alpha$ (O)=0.1492 21; $\alpha$ (P)=0.00791 11<br>B(M1)(W.u.)=0.3 3<br>E : from lowel energy difference: For not measured                                                                                                                                            |  |  |  |
|                        |                                       | 350.7 2                | 100 <sup>&amp;</sup>    | 509.32           | 13/2-                | (E2)               |                    | 0.0467    | $         α(K) = 0.0346 5;          α(L) = 0.00932 14;          α(M) = 0.00220 4;          α(N) = 0.000507 8;          α(O) = 6.48 \times 10^{-5} 10         α(P) = 1.81 \times 10^{-6} 3         B(E2)(W.u.) = 418 23         Eγ: from (α,3nγ) E=35, 40 MeV.         Mult.: from Coulomb excitation. B(E2)(W.u.)         existing a put$ |  |  |  |
| 902.250                | 3/2-                                  | 902.248 20             | 100                     | 0.0              | 1/2-                 | M1(+E2)            | -0.4 +4-10         | 0.0086 25 | significantly exceeds KOL.<br>$\alpha(K)=0.0072\ 21;\ \alpha(L)=0.00105\ 27;\ \alpha(M)=0.00024$<br>$6;\ \alpha(N)=5.5\times10^{-5}\ 14;\ \alpha(O)=7.9\times10^{-6}\ 21$<br>$\alpha(P)=4.3\times10^{-7}\ 13$                                                                                                                             |  |  |  |
| 907.2                  | 1/2,3/2                               | $840.4^{c@}$ 15        | <114 <sup>@</sup>       | 66.732           | $3/2^{-1}$           |                    |                    |           |                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 935.261                | 9/2+                                  | 676.15 8               | 0.57 6                  | 259.070          | 1/2<br>$11/2^+$      | M1                 |                    | 0.0190    | $\alpha$ (K)=0.01597 23; $\alpha$ (L)=0.00233 4; $\alpha$ (M)=0.000520<br>8; $\alpha$ (N)=0.0001220 17                                                                                                                                                                                                                                    |  |  |  |
|                        |                                       | 767.614 20             | 23.1 3                  | 167.662          | 9/2+                 | M1+E2              | -0.55 7            | 0.0121 4  | $\alpha(\text{C})=1.752\times10^{-5}25; \ \alpha(\text{P})=9.50\times10^{-7}14$<br>$\alpha(\text{K})=0.0102\ 4; \ \alpha(\text{L})=0.00151\ 5; \ \alpha(\text{M})=0.000337\ 9;$                                                                                                                                                           |  |  |  |

<sup>171</sup><sub>70</sub>Yb<sub>101</sub>-11

|                        | Adopted Levels, Gammas (continued) |                                                 |                                       |                   |                                      |                    |                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|------------------------|------------------------------------|-------------------------------------------------|---------------------------------------|-------------------|--------------------------------------|--------------------|-------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        |                                    |                                                 |                                       |                   |                                      | $\gamma(1)$        | <sup>71</sup> Yb) (continued) |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$               | $E_{\gamma}^{\dagger}$                          | I <sub>γ</sub> ‡                      | $\mathrm{E}_{f}$  | $\mathrm{J}_f^\pi$                   | Mult. <sup>†</sup> | $\delta^{\dagger}$            | α         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 935.261                | 9/2+                               | 839.961 <i>21</i>                               | 100.0 16                              | 95.282            | 7/2+                                 | M1+E2              | -0.50 9                       | 0.0099 4  | $\begin{aligned} \alpha(N) &= 7.90 \times 10^{-5} \ 22; \ \alpha(O) &= 1.13 \times 10^{-5} \ 4 \\ \alpha(P) &= 5.99 \times 10^{-7} \ 20 \\ \alpha(K) &= 0.0083 \ 3; \ \alpha(L) &= 0.00122 \ 4; \ \alpha(M) &= 0.000273 \ 9; \\ \alpha(N) &= 6.40 \times 10^{-5} \ 21; \ \alpha(O) &= 9.2 \times 10^{-6} \ 3 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 944.35                 | 5/2-                               | 821.96 12                                       | 27 5                                  | 122.416           | 5/2-                                 | M1(+E2)            | 0.6 +9-7                      | 0.0100 26 | $\alpha(P)=4.90\times10^{-7} \ 19$<br>$\alpha(K)=0.0084 \ 23; \ \alpha(L)=0.0012 \ 3; \ \alpha(M)=0.00028 \ 7;$<br>$\alpha(N)=6.5\times10^{-5} \ 15; \ \alpha(O)=9.3\times10^{-6} \ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                        |                                    | 868.45 5                                        | 100 5                                 | 75.882            | 5/2-                                 | M1+E2              | +1.8 +21-6                    | 0.0062 9  | $\alpha(\mathbf{F}) = 5.0 \times 10^{-7} I4^{-7}$<br>$\alpha(\mathbf{K}) = 0.0052 \ 8; \ \alpha(\mathbf{L}) = 0.00081 \ I0; \ \alpha(\mathbf{M}) = 0.000181 \ 22;$<br>$\alpha(\mathbf{N}) = 4.2 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 6.0 \times 10^{-6} \ 8$<br>$\alpha(\mathbf{R}) = 3.0 \times 10^{-7} \ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                        |                                    | 877.60 4                                        | 73 5                                  | 66.732            | 3/2-                                 | M1(+E2)            | 0.1 +6-1                      | 0.0098 16 | $\begin{array}{l} \alpha(\mathrm{F}) = 5.0 \times 10^{-5} & \text{J} \\ \alpha(\mathrm{K}) = 0.0083 & 14; \ \alpha(\mathrm{L}) = 0.00120 & 18; \ \alpha(\mathrm{M}) = 0.00027 & 4; \\ \alpha(\mathrm{N}) = 6.3 \times 10^{-5} & 10; \ \alpha(\mathrm{O}) = 9.0 \times 10^{-6} & 14 \\ \alpha(\mathrm{N}) = 4.0 \times 10^{-7} & 0. \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                        |                                    | 944.40 6                                        | 22 3                                  | 0.0               | 1/2-                                 | (E2)               |                               | 0.00417   | $\alpha(\mathbf{F}) = 4.9 \times 10^{-9}  \mathbf{a}(\mathbf{K}) = 0.00346  5;  \alpha(\mathbf{L}) = 0.000554  8;  \alpha(\mathbf{M}) = 0.0001247 \\ 18;  \alpha(\mathbf{N}) = 2.91 \times 10^{-5}  4;  \alpha(\mathbf{O}) = 4.06 \times 10^{-6}  6 \\ \alpha(\mathbf{D}) = 1.05 \times 10^{-7}  3  \mathbf{a}(\mathbf{D}) = 1.05 \times 10^{-7}  \mathbf{a}(\mathbf{D}) =$ |  |  |  |  |  |
| 948.371                | 9/2-                               | 498.755 21                                      | 2.37 7                                | 449.599           | 11/2-                                | M1+E2              | +0.41 +12-14                  | 0.0379 19 | $\alpha(\mathbf{F}) = 1.93 \times 10^{-5} \text{ s}$<br>$\alpha(\mathbf{K}) = 0.0317 \ 17; \ \alpha(\mathbf{L}) = 0.00481 \ 18; \ \alpha(\mathbf{M}) = 0.00108 \ 4;$<br>$\alpha(\mathbf{N}) = 0.000252 \ 9; \ \alpha(\mathbf{O}) = 3.59 \times 10^{-5} \ 14$<br>$\alpha(\mathbf{M}) = 1.80 \times 10^{-6} \ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                        |                                    | 631.066 14                                      | 3.02 6                                | 317.309           | 9/2-                                 | M1+E2              | +1.14 +18-15                  | 0.0155 9  | $\alpha(\mathbf{F}) = 1.89 \times 10^{-7} II \\ \alpha(\mathbf{K}) = 0.0129 \ 8; \ \alpha(\mathbf{L}) = 0.00207 \ I0; \ \alpha(\mathbf{M}) = 0.000465 \ 2I; \\ \alpha(\mathbf{N}) = 0.000109 \ 5; \ \alpha(\mathbf{O}) = 1.53 \times 10^{-5} \ 8 \\ \alpha(\mathbf{P}) = 7.5 \times 10^{-7} \ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                        |                                    | 689.286 <i>20</i>                               | 54.3 8                                | 259.070           | 11/2+                                | E1                 |                               | 0.00308   | $\alpha(\mathbf{K}) = 0.00261 \ 4; \ \alpha(\mathbf{L}) = 0.000365 \ 6; \ \alpha(\mathbf{M}) = 8.08 \times 10^{-5}$ $12; \ \alpha(\mathbf{N}) = 1.89 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 2.68 \times 10^{-6} \ 4$ $\alpha(\mathbf{R}) = 1.392 \times 10^{-7} \ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                        |                                    | 780.711 23                                      | 100.0 14                              | 167.662           | 9/2+                                 | E1                 |                               | 0.00240   | $\alpha(\mathbf{K}) = 1.592 \times 10^{-2.0}$<br>$\alpha(\mathbf{K}) = 0.00204 \ 3; \ \alpha(\mathbf{L}) = 0.000283 \ 4; \ \alpha(\mathbf{M}) = 6.26 \times 10^{-5}$<br>$9; \ \alpha(\mathbf{N}) = 1.465 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 2.08 \times 10^{-6} \ 3$<br>$\alpha(\mathbf{R}) = 1.002 \times 10^{-7} \ 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                        |                                    | 825.96 3                                        | 3.70 14                               | 122.416           | 5/2-                                 | E2                 |                               | 0.00553   | $\alpha(\mathbf{F}) = 1.092 \times 10^{-170}$<br>$\alpha(\mathbf{K}) = 0.00455 \ 7; \ \alpha(\mathbf{L}) = 0.000760 \ 11; \ \alpha(\mathbf{M}) = 0.0001719$<br>$24; \ \alpha(\mathbf{N}) = 4.01 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 5.55 \times 10^{-6} \ 8$<br>$\alpha(\mathbf{P}) = 2.56 \times 10^{-7} \ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                        |                                    | 853.091 12                                      | 58.4 8                                | 95.282            | 7/2+                                 | E1                 |                               | 0.00202   | $\alpha(K) = 0.001717 \ 24; \ \alpha(L) = 0.000237 \ 4; \ \alpha(M) = 5.25 \times 10^{-5} \\ 8; \ \alpha(N) = 1.228 \times 10^{-5} \ 18 \\ \alpha(D) = 1.745 \times 10^{-6} \ 25; \ \alpha(P) = 0.22 \times 10^{-8} \ 13 \\ \alpha(D) = 1.745 \times 10^{-6} \ 25; \ \alpha(P) = 0.22 \times 10^{-8} \ 13 \\ \alpha(D) = 1.248 \times 10^{-6} \ 25; \ \alpha(D) = 0.22 \times 10^{-8} \ 13 \\ \alpha(D) = 0.23 \times 10^{-6} \ 13 \ 13 \\ \alpha(D) = 0.23 \times 10^{-6} \ 13 \ 13 \\ \alpha(D) = 0.23 \times 10^{-6} \ 13 \ 13 \ 13 \ 13 \ 13 \ 13 \ 13 \ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 953.0                  | (1/2 <sup>-</sup> )                | 832.6 <sup>c@</sup> 15<br>886.3 <sup>@</sup> 15 | <136 <sup>@</sup><br>100 <sup>@</sup> | 122.416<br>66.732 | 5/2 <sup>-</sup><br>3/2 <sup>-</sup> |                    |                               |           | $a(0) = 1.143 \times 10^{-5} 23, a(r) = 9.22 \times 10^{-5} 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 958.31                 | $(5/2^{-})$                        | 835.91 12                                       | 100 8                                 | 122.416           | 5/2-                                 | (E2)               |                               | 0.00539   | $\alpha(K)=0.00444$ 7; $\alpha(L)=0.000738$ 11; $\alpha(M)=0.0001669$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |

 $^{171}_{70}$ Yb $_{101}$ -12

From ENSDF

 $^{171}_{70}$ Yb $_{101}$ -12

|                        | Adopted Levels, Gammas (continued)                           |                                                                                                                          |                                                                               |                                       |                                                          |                          |                    |                 |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|--------------------------|--------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        |                                                              |                                                                                                                          |                                                                               |                                       |                                                          | $\gamma(^{171}$ Yb) (c   | continued)         |                 |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                           | $E_{\gamma}^{\dagger}$                                                                                                   | $I_{\gamma}^{\ddagger}$                                                       | $E_f$                                 | $J_f^{\pi}$                                              | Mult. <sup>†</sup>       | $\delta^{\dagger}$ | α               | Comments                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 958.31<br>976.38       | (5/2 <sup>-</sup> )<br>(17/2 <sup>-</sup> )                  | 958.27 <i>18</i><br>196.1 <sup><i>a</i></sup> 2                                                                          | $6.4 \ 5$<br>$30^a \ 3$                                                       | 0.0<br>780.32                         | 1/2 <sup>-</sup><br>(15/2 <sup>-</sup> )                 | (M1+E2)                  |                    | 0.39 11         | 24; $\alpha(N)=3.90\times10^{-5}$ 6; $\alpha(O)=5.39\times10^{-6}$ 8<br>$\alpha(P)=2.50\times10^{-7}$ 4<br>$\alpha(K)=0.30$ 13; $\alpha(L)=0.075$ 12; $\alpha(M)=0.018$ 4;                                                                                                                                                                         |  |  |  |  |  |
|                        |                                                              |                                                                                                                          |                                                                               |                                       |                                                          |                          |                    |                 | $\alpha$ (N)=0.0041 8; $\alpha$ (O)=0.00053 5<br>$\alpha$ (P)=1.69×10 <sup>-5</sup> 88<br>Mult.: from ( $\alpha$ .3ny) E=34 MeV.                                                                                                                                                                                                                   |  |  |  |  |  |
|                        |                                                              | 371.9 <sup>a</sup> 2                                                                                                     | 100 <sup><i>a</i></sup> 4                                                     | 604.38                                | (13/2 <sup>-</sup> )                                     | (E2) <sup><i>a</i></sup> |                    | 0.0395          | $\alpha(K)=0.0296 5; \alpha(L)=0.00762 11; \alpha(M)=0.00179 3; \alpha(N)=0.000414 6; \alpha(O)=5.32\times10^{-5} 8 \alpha(P)=1.568\times10^{-6} 22$                                                                                                                                                                                               |  |  |  |  |  |
| 980.91                 | (13/2+)                                                      | 475.3 <sup><i>a</i></sup> 5<br>479.3 <sup><i>a</i></sup> 5<br>612.1 <sup><i>a</i></sup> 2<br>721.8 <sup><i>a</i></sup> 2 | $8^{a} 2$<br>11.8 <sup>a</sup> 20<br>39 <sup>a</sup> 4<br>100 <sup>a</sup> 10 | 501.37<br>501.37<br>368.91<br>259.070 | $(15/2^+)$<br>$(15/2^+)$<br>$13/2^+$<br>$11/2^+$         | D <sup>a</sup>           |                    |                 |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 984.037                | (9/2)+                                                       | 724.97 5                                                                                                                 | 100 3                                                                         | 259.070                               | $11/2^+$                                                 | (M1)                     |                    | 0.01591         | $\alpha(\mathbf{K})=0.01340 \ 19; \ \alpha(\mathbf{L})=0.00195 \ 3; \\ \alpha(\mathbf{M})=0.000435 \ 6; \ \alpha(\mathbf{N})=0.0001021 \ 15 \\ \alpha(\mathbf{O})=1.467 \times 10^{-5} \ 24; \ \alpha(\mathbf{D})=7.06 \times 10^{-7} \ 12$                                                                                                        |  |  |  |  |  |
|                        |                                                              | 753.37 6                                                                                                                 | 13 2                                                                          | 230.631                               | 7/2-                                                     | E1                       |                    | 0.00258         | $\begin{array}{l} \alpha(\text{O})=1.467\times10^{-2.17}, \alpha(\text{P})=7.50\times10^{-1.12}\\ \alpha(\text{K})=0.00219\ 3; \ \alpha(\text{L})=0.000304\ 5;\\ \alpha(\text{M})=6.73\times10^{-5}\ 10; \ \alpha(\text{N})=1.574\times10^{-5}\ 22;\\ \alpha(\text{O})=2.23\times10^{-6}\ 4\\ \alpha(\text{P})=1.170\times10^{-7}\ 17 \end{array}$ |  |  |  |  |  |
|                        |                                                              | 816.37 <i>3</i>                                                                                                          | 49 2                                                                          | 167.662                               | 9/2+                                                     | M1(+E2)                  | 0.7 +8-7           | 0.0098 23       | $\alpha(K)=0.0082\ 20;\ \alpha(L)=0.00123\ 25;\ \alpha(M)=0.00027\ 6;\ \alpha(N)=6.4\times10^{-5}\ 13;\ \alpha(O)=9.2\times10^{-6}\ 19\ \alpha(P)=4\ 8\times10^{-7}\ 12$                                                                                                                                                                           |  |  |  |  |  |
|                        |                                                              | 888.77 4                                                                                                                 | 23 2                                                                          | 95.282                                | 7/2+                                                     | (M1)                     |                    | 0.00958         | $\alpha(K) = 0.00808 \ 12; \ \alpha(L) = 0.001168 \ 17; \alpha(M) = 0.000260 \ 4; \ \alpha(N) = 6.11 \times 10^{-5} \ 9; \alpha(O) = 8.78 \times 10^{-6} \ 13 \alpha(P) = 4.78 \times 10^{-7} \ 7$                                                                                                                                                 |  |  |  |  |  |
| 988.2<br>991.7         | (1/2 <sup>-</sup> ,3/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> ) | 921.5 <sup>c@</sup> 15<br>869.7 <sup>@</sup> 15<br>991.3 <sup>@</sup> 15                                                 | 100<br>52 <sup>@</sup><br>100 <sup>@</sup>                                    | 66.732<br>122.416                     | 3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>1/2 <sup>-</sup> |                          |                    |                 |                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1004.77                | (21/2+)                                                      | 178.5 <sup><i>a</i></sup> 5                                                                                              | 22.8 <sup><i>a</i></sup> 22                                                   | 826.11                                | $(19/2^+)$                                               | (M1+E2) <sup>a</sup>     | -0.31 +9-11        | 0.630 <i>19</i> | $\alpha$ (K)=0.519 22; $\alpha$ (L)=0.087 4; $\alpha$ (M)=0.0197 9;<br>$\alpha$ (N)=0.00460 19; $\alpha$ (O)=0.000643 18<br>$\alpha$ (P)=3.13×10 <sup>-5</sup> 16                                                                                                                                                                                  |  |  |  |  |  |
|                        |                                                              | 356.6 <sup><i>a</i></sup> 2                                                                                              | 100.0 <sup><i>a</i></sup>                                                     | 648.22                                | (17/2 <sup>+</sup> )                                     | (E2) <sup><i>a</i></sup> |                    | 0.0445          | $\alpha(K) = 0.0331 5; \ \alpha(L) = 0.00880 \ 13; \ \alpha(M) = 0.00207$<br>3; \alpha(N) = 0.000479 7; \alpha(O) = 6.13 \times 10^{-5} 9<br>\alpha(P) = 1.741 \times 10^{-6} 25                                                                                                                                                                   |  |  |  |  |  |

 $^{171}_{70}$ Yb $_{101}$ -13

From ENSDF

 $^{171}_{70} \rm Yb_{101} \text{--} 13$ 

|                        | Adopted Levels, Gammas (continued)    |                                                    |                                      |                    |                                        |                             |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|------------------------|---------------------------------------|----------------------------------------------------|--------------------------------------|--------------------|----------------------------------------|-----------------------------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        |                                       |                                                    |                                      |                    |                                        | $\gamma(^{171}\mathrm{Yb})$ | (continued)        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                    | $E_{\gamma}^{\dagger}$                             | $I_{\gamma}$                         | $\mathbf{E}_{f}$   | $\mathrm{J}_f^\pi$                     | Mult. <sup>†</sup>          | $\delta^{\dagger}$ | α         | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| 1024.626               | 7/2-                                  | 707.46 14                                          | 14 3                                 | 317.309            | 9/2-                                   | (M1)                        |                    | 0.01691   | $\alpha(K)=0.01425\ 20;\ \alpha(L)=0.00208\ 3;\ \alpha(M)=0.000463\ 7;\ \alpha(N)=0.0001087\ 16\ \alpha(Q)=1\ 561\times10^{-5}\ 22;\ \alpha(P)=8\ 47\times10^{-7}\ 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                        |                                       | 777.99 4                                           | 54 16                                | 246.617            | 9/2-                                   | (M1)                        |                    | 0.01333   | $\begin{array}{l} \alpha(\text{C}) = 1.501116  \text{(22), } \alpha(\text{C}) = 0.011631  \text{(23)} \\ \alpha(\text{M}) = 0.000364  \text{(5), } \alpha(\text{N}) = 8.54 \times 10^{-5}  12 \\ \alpha(\text{M}) = 0.277  \text{(10)}  \text{(21)}  \text{(21)}$ |  |  |  |  |  |
|                        |                                       | 794.00 <i>3</i>                                    | 80 2                                 | 230.631            | 7/2-                                   | M1+E2                       | +0.66 +19-15       | 0.0107 8  | $\alpha(O)=1.227\times10^{-7} 18; \ \alpha(P)=0.67\times10^{-7} 10^{-7} \\ \alpha(K)=0.0089 \ 7; \ \alpha(L)=0.00133 \ 9; \ \alpha(M)=0.000298 \\ 19; \ \alpha(N)=7.0\times10^{-5} \ 5; \ \alpha(O)=1.00\times10^{-5} \ 7 \\ \alpha(P)=5.3\times10^{-7} \ 5 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                        |                                       | 948.740 20                                         | 100 2                                | 75.882             | 5/2-                                   | M1+E2                       | +0.60 9            | 0.0071 3  | $\alpha(K) = 0.00596 \ 22; \ \alpha(L) = 0.00087 \ 3; \alpha(M) = 0.000195 \ 7; \ \alpha(N) = 4.58 \times 10^{-5} \ 15; \alpha(O) = 6.55 \times 10^{-6} \ 22 \alpha(P) = 3.50 \times 10^{-7} \ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 1039.4                 | (1/2 <sup>-</sup> ,3/2 <sup>-</sup> ) | 963.9 <sup>c@d</sup> 15<br>1039.4 <sup>@d</sup> 15 |                                      | 75.882<br>0.0      | 5/2 <sup>-</sup><br>1/2 <sup>-</sup>   |                             |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 1080.971               | 5/2-                                  | 834.3 <sup>c</sup> 3<br>850.38 4                   | <40<br>100 <i>13</i>                 | 246.617<br>230.631 | 9/2 <sup>-</sup><br>7/2 <sup>-</sup>   | M1+E2                       | 0.9 +11-6          | 0.0082 20 | $\alpha$ (K)=0.0069 <i>18</i> ; $\alpha$ (L)=0.00104 <i>22</i> ; $\alpha$ (M)=0.00023<br>5; $\alpha$ (N)=5.4×10 <sup>-5</sup> <i>12</i> ; $\alpha$ (O)=7.7×10 <sup>-6</sup> <i>17</i><br>$\alpha$ (P)=4.0×10 <sup>-7</sup> <i>11</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                        |                                       | 985.69 <i>4</i><br>1005.04 <i>4</i>                | 29 2<br>46.0 <i>13</i>               | 95.282<br>75.882   | 7/2 <sup>+</sup><br>5/2 <sup>-</sup>   | M1+E2                       | 0.61 21            | 0.0062 5  | $\alpha(K)=0.0052 \ 4; \ \alpha(L)=0.00076 \ 6; \ \alpha(M)=0.000169$<br>12; \ \alpha(N)=4.0×10^{-5} \ 3; \ \alpha(O)=5.7×10^{-6} \ 4<br>\ \alpha(P)=3.04×10^{-7} \ 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 1093.30                | 9/2+                                  | 605.6 2<br>834.3 <sup>c</sup> 3                    | 44 9<br><76                          | 487.29<br>259.070  | 11/2 <sup>-</sup><br>11/2 <sup>+</sup> |                             |                    |           | a(r)=5.01/10 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                        |                                       | 862.389 24                                         | 91 4                                 | 230.631            | 7/2-                                   | E1                          |                    | 0.00198   | $\alpha(\mathbf{K})=0.001682\ 24;\ \alpha(\mathbf{L})=0.000232\ 4;\alpha(\mathbf{M})=5.14\times10^{-5}\ 8;\ \alpha(\mathbf{N})=1.202\times10^{-5}\ 17\alpha(\mathbf{O})=1\ 709\times10^{-6}\ 24;\ \alpha(\mathbf{P})=9\ 03\times10^{-8}\ 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                        |                                       | 925.776 20                                         | 100.0 25                             | 167.662            | 9/2+                                   | M1+E2                       | 0.6 4              | 0.0075 11 | $\alpha(K) = 0.0063 \ 9; \ \alpha(L) = 0.00093 \ 12; \ \alpha(M) = 0.000207$<br>$25; \ \alpha(K) = 4.9 \times 10^{-5} \ 6; \ \alpha(O) = 7.0 \times 10^{-6} \ 9$<br>$\alpha(R) = 3.7 \times 10^{-7} \ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                        |                                       | 998.02 <i>3</i>                                    | 70.9 25                              | 95.282             | 7/2+                                   | M1+E2                       | -0.7 4             | 0.0061 9  | $\alpha(K) = 0.0051 \ 8; \ \alpha(L) = 0.00075 \ 10; \ \alpha(M) = 0.000167$<br>$21; \ \alpha(N) = 3.9 \times 10^{-5} \ 5; \ \alpha(O) = 5.6 \times 10^{-6} \ 8$<br>$\alpha(R) = 3.0 \times 10^{-7} \ 5; \ \alpha(O) = 5.6 \times 10^{-6} \ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 1114.03                | (15/2 <sup>+</sup> )                  | $133.2^{a} 2$<br>745.2 <sup>a</sup> 2              | $\frac{100^{a}}{23^{a}}\frac{11}{4}$ | 980.91<br>368.91   | $(13/2^+)$<br>$13/2^+$                 | D <sup>a</sup>              |                    |           | u(1)-5.0×10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| 1127.68                | (9/2-)                                | 881.03 4                                           | 100 4                                | 246.617            | 9/2-                                   | (E2)                        |                    | 0.00482   | $\alpha(K)=0.00398$ 6; $\alpha(L)=0.000651$ 10;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

From ENSDF

|                        |                                           |                                                            |                                               |                  | A                                                                 | dopted Levels                                           | , <mark>Gammas</mark> (conti | nued)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|-------------------------------------------|------------------------------------------------------------|-----------------------------------------------|------------------|-------------------------------------------------------------------|---------------------------------------------------------|------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                           |                                                            |                                               |                  |                                                                   | $\gamma(^{171}Y)$                                       | b) (continued)               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                      | $E_{\gamma}^{\dagger}$                                     | $I_{\gamma}$ ‡                                | $\mathrm{E}_{f}$ | $\mathrm{J}_f^\pi$                                                | Mult. <sup>†</sup>                                      | $\delta^{\dagger}$           | α                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1127.68                | (9/2-)                                    | 897.18 8                                                   | 62 7                                          | 230.631          | 7/2-                                                              | (M1)                                                    |                              | 0.00936           | $\alpha(M)=0.0001470\ 21;\ \alpha(N)=3.43\times10^{-5}\ 5;\alpha(O)=4.77\times10^{-6}\ 7\alpha(P)=2.24\times10^{-7}\ 4\alpha(K)=0.00789\ 11;\ \alpha(L)=0.001141\ 16;\alpha(M)=0.000254\ 4;\ \alpha(N)=5.97\times10^{-5}\ 9;\alpha(O)=8.57\times10^{-6}\ 12\alpha(P)=4.67\times10^{-7}\ 7$                                                                                                                                                                                                                                                                                                                 |
|                        |                                           | 1051.73 10                                                 | 15.3 18                                       | 75.882           | 5/2-                                                              |                                                         |                              |                   | <i>u</i> (1)-4.07×10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1190.43                | (19/2 <sup>-</sup> )                      | 214.1 <sup><i>a</i></sup> 2                                | 26.3 <sup><i>a</i></sup> 21                   | 976.38           | (17/2 <sup>-</sup> )                                              | (M1+E2)                                                 | -0.29 +10-12                 | 0.380 14          | $\alpha(K)=0.315 \ 14; \ \alpha(L)=0.0507 \ 10; \ \alpha(M)=0.0114 \ 3; \ \alpha(N)=0.00268 \ 6; \ \alpha(O)=0.000378 \ 6 \ \alpha(P)=1.90\times10^{-5} \ 10 \ Mult, \delta: \ from \ (\alpha, 3n\gamma) \ E=34 \ MeV.$                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                           | 410.0 <sup><i>a</i></sup> 2                                | 100 <sup><i>a</i></sup> 4                     | 780.32           | (15/2 <sup>-</sup> )                                              | (E2) <sup><i>a</i></sup>                                |                              | 0.0301            | $\alpha(K)=0.0230 \ 4; \ \alpha(L)=0.00550 \ 8; \ \alpha(M)=0.001285$<br>$19; \ \alpha(N)=0.000298 \ 5; \ \alpha(O)=3.87\times10^{-5} \ 6$<br>$\alpha(P)=1.234\times10^{-6} \ 18$                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                           | 542.2 <sup><i>a</i></sup> 2                                | 9.5 <sup>a</sup> 21                           | 648.22           | $(17/2^+)$                                                        | D <sup>a</sup>                                          |                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1234.29                | (23/2 <sup>+</sup> )<br>19/2 <sup>-</sup> | $229.5^{a} 2$<br>$408.2^{a} 2$<br>$403.4^{a} 2$            | $21.4^{a} 2$<br>$100.0^{a} 13$<br>$7 9^{a} 7$ | 826.11<br>860.16 | (21/2 <sup>+</sup> )<br>(19/2 <sup>+</sup> )<br>17/2 <sup>-</sup> | (M1+E2) <sup><i>a</i></sup><br>(E2) <sup><i>a</i></sup> | -0.25 6                      | 0.317 7<br>0.0305 | $\begin{aligned} &\alpha(\mathbf{K}) = 0.263 \ 6; \ \alpha(\mathbf{L}) = 0.0414 \ 6; \ \alpha(\mathbf{M}) = 0.00932 \ 15; \\ &\alpha(\mathbf{N}) = 0.00218 \ 4; \ \alpha(\mathbf{O}) = 0.000310 \ 5 \\ &\alpha(\mathbf{P}) = 1.59 \times 10^{-5} \ 4 \\ &\delta: \ \text{from} \ (\alpha, 3n\gamma) \ \mathbf{E} = 34 \ \text{MeV.} \\ &\alpha(\mathbf{K}) = 0.0232 \ 4; \ \alpha(\mathbf{L}) = 0.00558 \ 8; \ \alpha(\mathbf{M}) = 0.001304 \\ &19; \ \alpha(\mathbf{N}) = 0.000302 \ 5; \ \alpha(\mathbf{O}) = 3.92 \times 10^{-5} \ 6 \\ &\alpha(\mathbf{P}) = 1.247 \times 10^{-6} \ 18 \end{aligned}$ |
|                        |                                           | 430.6 <sup><i>a</i></sup> 2                                | 100 <sup><i>a</i></sup> 3                     | 833.08           | 15/2-                                                             | (E2) <sup><i>a</i></sup>                                |                              | 0.0264            | $\alpha$ (K)=0.0203 3; $\alpha$ (L)=0.00469 7; $\alpha$ (M)=0.001093<br>16; $\alpha$ (N)=0.000253 4; $\alpha$ (O)=3.31×10 <sup>-5</sup> 5<br>$\alpha$ (P)=1.096×10 <sup>-6</sup> 16                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1265.86                | (17/2 <sup>+</sup> )                      | 152.1 <sup><i>a</i></sup> 2                                | 100 <sup>a</sup> 11                           | 1114.03          | (15/2 <sup>+</sup> )                                              | (M1+E2) <sup>a</sup>                                    |                              | 0.86 17           | $\alpha(K) = 0.61 \ 25; \ \alpha(L) = 0.192 \ 62; \ \alpha(M) = 0.046 \ 17; \alpha(N) = 0.0105 \ 37; \ \alpha(O) = 0.00132 \ 35 \alpha(P) = 3.4 \times 10^{-5} \ 19$                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                                           | 284.9 <sup><i>a</i></sup> 2                                | 47 <sup><i>a</i></sup> 6                      | 980.91           | (13/2+)                                                           | (E2) <sup><i>a</i></sup>                                |                              | 0.0865            | $\alpha(K)=0.0608 \ 9; \ \alpha(L)=0.0197 \ 3; \ \alpha(M)=0.00470 \ 7; \ \alpha(N)=0.001083 \ 16; \ \alpha(O)=0.0001353 \ 20 \ \alpha(P)=3.08\times10^{-6} \ 5 \ I_{\gamma}: \ other: \ 38 \ in \ (\alpha, 3n\gamma) \ E=34 \ MeV.$                                                                                                                                                                                                                                                                                                                                                                       |
| 1294.54                | (21/2 <sup>-</sup> )                      | 764.5 <sup><i>a</i></sup> 5<br>434.3 <sup><i>a</i></sup> 2 | 19 <sup>a</sup> 4<br>100 <sup>a</sup>         | 501.37<br>860.16 | (15/2 <sup>+</sup> )<br>17/2 <sup>-</sup>                         | (E2) <sup><i>a</i></sup>                                |                              | 0.0258            | $\alpha$ (K)=0.0199 3; $\alpha$ (L)=0.00456 7; $\alpha$ (M)=0.001063<br>15; $\alpha$ (N)=0.000246 4; $\alpha$ (O)=3.22×10 <sup>-5</sup> 5<br>$\alpha$ (P)=1.074×10 <sup>-6</sup> 15                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1331.2                 | (3/2 <sup>-</sup> )                       | 1256 <sup>@</sup> 2                                        |                                               | 75.882           | 5/2-                                                              |                                                         |                              |                   | Doublet (broader than normal peak).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

From ENSDF

 $^{171}_{70}$ Yb $_{101}$ -15

 $^{171}_{70}$ Yb $_{101}$ -15

|                        | Adopted Levels, Gammas (continued)      |                                                                                                                                                                       |                                                                                            |                           |                                                                                     |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        |                                         |                                                                                                                                                                       |                                                                                            |                           |                                                                                     | $\gamma(^{171}$ Yb) (cc   | ontinued)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                    | $E_{\gamma}^{\dagger}$                                                                                                                                                | $I_{\gamma}^{\ddagger}$                                                                    | $\mathbf{E}_{f}$          | $\mathbf{J}_f^\pi$                                                                  | Mult. <sup>†</sup>        | α                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 1331.2<br>1377.505     | (3/2 <sup>-</sup> )<br>7/2 <sup>-</sup> | 1264 <sup>@</sup> 2<br>1169.48 6                                                                                                                                      | 1.67 15                                                                                    | 66.732<br>208.019         | 3/2 <sup>-</sup><br>7/2 <sup>-</sup>                                                | M1                        | 0.00489               | Doublet (broader than normal peak).<br>$\alpha(K)=0.00413\ 6;\ \alpha(L)=0.000592\ 9;\ \alpha(M)=0.0001316\ 19;$<br>$\alpha(N)=3.09\times10^{-5}\ 5;\ \alpha(O)=4.44\times10^{-6}\ 7$<br>$\alpha(P)=2.43\times10^{-7}\ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                        |                                         | 1209.830 <i>21</i>                                                                                                                                                    | 20.9 3                                                                                     | 167.662                   | 9/2+                                                                                | E1                        | 1.09×10 <sup>-3</sup> | $\begin{array}{l} \alpha(\Gamma) = 2.15110^{-1} & \alpha(L) = 0.0001228 & I8; \\ \alpha(M) = 2.71 \times 10^{-5} & 4; & \alpha(N) = 6.35 \times 10^{-6} & 9 \\ \alpha(O) = 0.07 \times 10^{-7} & I3; & \alpha(D) = 4.88 \times 10^{-8} & 7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                        |                                         | 1255.14 4                                                                                                                                                             | 1.92 11                                                                                    | 122.416                   | 5/2-                                                                                | M1                        | 0.00413               | $\alpha(O) = 9.07 \times 10^{-15}, \ \alpha(P) = 4.88 \times 10^{-7} \\ \alpha(K) = 0.00348 \ 5; \ \alpha(L) = 0.000498 \ 7; \ \alpha(M) = 0.0001106 \ 16; \\ \alpha(N) = 2.60 \times 10^{-5} \ 4; \ \alpha(O) = 3.74 \times 10^{-6} \ 6 \\ \alpha(P) = 2.05 \times 10^{-7} \ 3 \\ \alpha(O) = 3.74 \times 10^{-6} \ 6 \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6}$ |  |  |  |  |  |
|                        |                                         | 1282.214 19                                                                                                                                                           | 100.0 17                                                                                   | 95.282                    | 7/2+                                                                                | E1                        | 1.01×10 <sup>-3</sup> | $\alpha(K) = 0.000815 \ I2; \ \alpha(L) = 0.0001106 \ I6; \alpha(M) = 2.44 \times 10^{-5} \ 4; \ \alpha(N) = 5.71 \times 10^{-6} \ 8 \alpha(O) = 8.17 \times 10^{-7} \ I2; \ \alpha(P) = 4.41 \times 10^{-8} \ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1388.1<br>1421.45      | (1/2,3/2)<br>(21/2 <sup>-</sup> )       | $     \begin{array}{r} 1388.1 @d \\ 231.0^{a} \\ 2 \\ 445.0^{a} \\ 2 \end{array} $                                                                                    | $     \begin{array}{r}       100 \\       21.3^{a} 25 \\       100^{a} 4     \end{array} $ | 0.0<br>1190.43<br>976.38  | 1/2 <sup>-</sup><br>(19/2 <sup>-</sup> )<br>(17/2 <sup>-</sup> )                    | $D+Q^a$ (E2) <sup>a</sup> | 0.0241                | $\alpha(K)=0.0187 \ 3; \ \alpha(L)=0.00422 \ 6; \ \alpha(M)=0.000983 \ 14; \ \alpha(N)=0.000228 \ 4; \ \alpha(O)=2.99\times10^{-5} \ 5 \ \alpha(P)=1.013\times10^{-6} \ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 1434.9                 | 1/2,3/2                                 | 595.5 <sup><i>a</i></sup> 2<br>669.6 <sup><i>c</i></sup> <sup><i>@</i></sup> 15<br>1370.5 <sup><i>c</i></sup> <sup><i>@</i></sup> 10<br>1434 9 <sup><i>@</i></sup> 15 | $17.5^{a} 25$<br><160 <sup>@</sup><br><134 <sup>@</sup><br>100 <sup>@</sup>                | 826.11<br>766.3<br>66.732 | (19/2 <sup>+</sup> )<br>(3/2 <sup>+</sup> )<br>3/2 <sup>-</sup><br>1/2 <sup>-</sup> |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 1435.90                | (25/2+)                                 | $\begin{array}{c} 201.7^{a} \ 2 \\ 431.1^{a\#} \ 2 \end{array}$                                                                                                       | $16.2^a$ 7<br>$100.0^a$ 18                                                                 | 1234.29<br>1004.77        | $(23/2^+)$<br>$(21/2^+)$                                                            | (E2) <sup>a#</sup>        | 0.0263                | I <sub>γ</sub> : other: 71 7 in ( $\alpha$ ,3nγ) E=34 MeV.<br>$\alpha$ (K)=0.0202 3; $\alpha$ (L)=0.00467 7; $\alpha$ (M)=0.001089 16;<br>$\alpha$ (N)=0.000252 4; $\alpha$ (O)=3.30×10 <sup>-5</sup> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 1436.63                | (19/2+)                                 | 171.0 <sup><i>a</i></sup> 2                                                                                                                                           | 100 <sup><i>a</i></sup> 10                                                                 | 1265.86                   | (17/2+)                                                                             | (M1+E2) <sup>a</sup>      | 0.60 14               | $\alpha(P)=1.093\times10^{-6} \ 16$<br>$\alpha(K)=0.44 \ 18; \ \alpha(L)=0.12 \ 3; \ \alpha(M)=0.0291 \ 82;$<br>$\alpha(N)=0.0067 \ 19; \ \alpha(O)=0.00086 \ 16$<br>$\alpha(P)=2 \ 5\times10^{-5} \ 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                        |                                         | 322.5 <sup><i>a</i></sup> 2                                                                                                                                           | 69 <sup><i>a</i></sup> 8                                                                   | 1114.03                   | (15/2+)                                                                             | (E2) <sup><i>a</i></sup>  | 0.0596                | $\alpha(K) = 0.0433 7; \ \alpha(L) = 0.01254 \ 18; \ \alpha(M) = 0.00297 5; \alpha(N) = 0.000684 \ 10; \ \alpha(O) = 8.67 \times 10^{-5} \ 13 \alpha(P) = 2.24 \times 10^{-6} \ 4 L_{\alpha}; \ \text{other: 19 in } (\alpha \ 3n\chi) E = 34 \text{ MeV.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 1492.3                 | (1/2,3/2)                               | 788.3 <sup><i>a</i></sup> 5<br>1370.5 <sup><i>c</i> @</sup> 10                                                                                                        | 12.2 <sup><i>a</i></sup> 20                                                                | 648.22<br>122.416         | (17/2 <sup>+</sup> )<br>5/2 <sup>-</sup>                                            |                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 1517.2                 | (17/2+)                                 | 1491.0 <sup>c@</sup> 15<br>684.1 <sup>a</sup> 5                                                                                                                       | 100 <sup>a</sup> 29                                                                        | 0.0<br>833.08             | 1/2 <sup>-</sup><br>15/2 <sup>-</sup>                                               | D <sup>a</sup>            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |

# $\gamma(^{171}$ Yb) (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}^{\ddagger}$      | $E_f$   | $\mathrm{J}_f^\pi$   | Mult. <sup>†</sup>          | α        | Comments                                                                                                                                                                                                      |
|------------------------|----------------------|------------------------------|------------------------------|---------|----------------------|-----------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1517.2                 | $(17/2^+)$           | 869.1 <sup><i>a</i></sup> 5  | 71 <sup><i>a</i></sup> 29    | 648.22  | $(17/2^+)$           |                             |          |                                                                                                                                                                                                               |
| 1536.9                 | 1/2.3/2              | 1470.0 <sup>@</sup> 15       | 100                          | 66.732  | 3/2-                 |                             |          |                                                                                                                                                                                                               |
| 1614.4                 | $(19/2^+)$           | 754.2 <sup><i>a</i></sup> 2  | 100 <sup><i>a</i></sup>      | 860.16  | $17/2^{-}$           | $D^{a}$                     |          |                                                                                                                                                                                                               |
| 1626.17                | $(21/2^+)$           | 189.6 <sup><i>a</i></sup> 2  | 78 <sup>a</sup> 8            | 1436.63 | $(19/2^+)$           | (M1+E2) <sup>a</sup>        | 0.44 12  | $\alpha$ (K)=0.33 14; $\alpha$ (L)=0.085 15; $\alpha$ (M)=0.020 5;<br>$\alpha$ (N)=0.0046 10; $\alpha$ (O)=0.00059 7<br>$\alpha$ (P)=1.85×10 <sup>-5</sup> 97                                                 |
|                        |                      | 360.3 <sup><i>a</i></sup> 2  | 100 <sup>a</sup> 11          | 1265.86 | (17/2+)              | (E2) <sup><i>a</i></sup>    | 0.0432   | $\alpha(K) = 0.0322 \ 5; \ \alpha(L) = 0.00849 \ 12; \ \alpha(M) = 0.00200 \ 3; \alpha(N) = 0.000462 \ 7; \ \alpha(O) = 5.92 \times 10^{-5} \ 9 \alpha(P) = 1.696 \times 10^{-6} \ 24$                        |
|                        |                      | 800.2 <sup><i>a</i></sup> 5  | 25 <sup>a</sup> 6            | 826.11  | $(19/2^+)$           |                             |          |                                                                                                                                                                                                               |
| 1656.41                | $(19/2^+)$           | 651.7 <sup>a</sup> 2         | 92 <sup>a</sup> 17           | 1004.77 | $(21/2^+)$           |                             |          |                                                                                                                                                                                                               |
|                        |                      | 830.2 <sup><i>a</i></sup> 2  | 100 <sup>a</sup> 17          | 826.11  | $(19/2^+)$           |                             |          |                                                                                                                                                                                                               |
| 1664.87                | $(23/2^{-})$         | 243.4 <sup><i>a</i></sup> 2  | 21 <sup><i>a</i></sup> 3     | 1421.45 | $(21/2^{-})$         |                             |          |                                                                                                                                                                                                               |
|                        |                      | 474.4 <sup>a</sup> 2         | 100 <sup><i>a</i></sup> 4    | 1190.43 | $(19/2^{-})$         | $Q^a$                       |          |                                                                                                                                                                                                               |
|                        |                      | 660.1 <sup><i>a</i></sup> 2  | $20^{a}$ 3                   | 1004.77 | $(21/2^+)$           |                             |          |                                                                                                                                                                                                               |
| 1665.22                | $(21/2^+)$           | 839.1 <sup><i>a</i></sup> 2  | 100 <sup><i>a</i></sup>      | 826.11  | $(19/2^+)$           |                             |          |                                                                                                                                                                                                               |
| 1724.43                | (27/2 <sup>+</sup> ) | 288.5 <sup><i>a</i></sup> 2  | 14.6 <sup><i>a</i></sup> 10  | 1435.90 | $(25/2^+)$           | (M1+E2) <sup><i>a</i></sup> | 0.129 46 | $\alpha(K)=0.103 \ 44; \ \alpha(L)=0.0204 \ 16; \ \alpha(M)=0.00470 \ 23; \ \alpha(N)=0.00109 \ 7; \ \alpha(O)=0.000147 \ 19 \ \alpha(P)=5.9\times10^{-6} \ 30$                                               |
|                        |                      | 490.2 <sup><i>a</i></sup> 2  | 100.0 <sup><i>a</i></sup> 20 | 1234.29 | (23/2 <sup>+</sup> ) | (E2) <sup><i>a</i></sup>    | 0.0188   | $\alpha(K)=0.01472\ 21;\ \alpha(L)=0.00313\ 5;\ \alpha(M)=0.000724\ 11;\ \alpha(N)=0.0001682\ 24$                                                                                                             |
| 1773 3                 | $(23/2^{+})$         | 768 5 <mark>4</mark> 5       | 100 <sup>a</sup>             | 1004 77 | $(21/2^+)$           |                             |          | $u(0) = 2.23 \times 10^{-4}$ , $u(1) = 0.00 \times 10^{-12}$                                                                                                                                                  |
| 1774.2                 | $(23/2^{-})$         | $479.7^{a}$ 5                | $6.3^{a}$ 10                 | 1294.54 | $(21/2^{-})$         |                             |          |                                                                                                                                                                                                               |
| 1,,,,,,_               | (=0/= )              | 510.6 <sup><i>a</i></sup> 2  | $100^{a}$ 3                  | 1263.63 | $19/2^{-1}$          | 0 <sup><i>a</i></sup>       |          |                                                                                                                                                                                                               |
| 1807.6                 | $(25/2^{-})$         | 513.0 <sup><i>a</i></sup> 2  | 100 <sup><i>a</i></sup>      | 1294.54 | $(21/2^{-})$         | $\tilde{o}^a$               |          |                                                                                                                                                                                                               |
| 1829.0                 | 1/2.3/2              | 840.4 <sup>c@d</sup> 15      | <102 <sup>@</sup>            | 991.7   | $(3/2^{-})$          |                             |          |                                                                                                                                                                                                               |
| 102,10                 | 1/=,0/=              | 845.3 <sup>@d</sup> 15       | 100 <sup>@</sup>             | 988.2   | $(1/2^{-}, 3/2^{-})$ |                             |          |                                                                                                                                                                                                               |
|                        |                      | 876.0 <sup>@</sup> 15        | 27 <sup>@</sup>              | 953.0   | $(1/2^{-})$          |                             |          |                                                                                                                                                                                                               |
| 1834.79                | (23/2+)              | 208.7 <sup><i>a</i></sup> 2  | 54 <sup><i>a</i></sup> 5     | 1626.17 | $(21/2^+)$           | (M1+E2) <sup>a</sup>        | 0.328 96 | $\alpha$ (K)=0.25 <i>11</i> ; $\alpha$ (L)=0.060 <i>7</i> ; $\alpha$ (M)=0.0141 <i>21</i> ;<br>$\alpha$ (N)=0.0033 <i>5</i> ; $\alpha$ (O)=0.000425 <i>24</i><br>$\alpha$ (P)=1.42×10 <sup>-5</sup> <i>74</i> |
|                        |                      | 398.1 <sup><i>a</i></sup> 2  | 100 <sup><i>a</i></sup> 10   | 1436.63 | (19/2+)              | (E2) <sup><i>a</i></sup>    | 0.0326   | $\alpha(K) = 0.0248 \ 4; \ \alpha(L) = 0.00606 \ 9; \ \alpha(M) = 0.001418 \ 20; \alpha(N) = 0.000328 \ 5; \ \alpha(O) = 4.25 \times 10^{-5} \ 6 \alpha(P) = 1.326 \times 10^{-6} \ 19$                       |
| 1871.5                 | $(1/2^{-},3/2^{-})$  | 832.6 <sup>c@d</sup> 15      |                              | 1039.4  | $(1/2^{-},3/2^{-})$  |                             |          |                                                                                                                                                                                                               |
|                        | ×1 -1 /              | $963.9^{c@d}$ 15             |                              | 907.2   | 1/2.3/2              |                             |          |                                                                                                                                                                                                               |

 $\gamma(^{171}$ Yb) (continued)

|               |                  | 4                           | +                          |         |                      | +                       |
|---------------|------------------|-----------------------------|----------------------------|---------|----------------------|-------------------------|
| $E_i$ (level) | $J_i^{\pi}$      | Eγ                          | $I_{\gamma}^{+}$           | $E_f$   | $J_f^{\pi}$          | Mult.                   |
| 1884.8        | $(21/2^+)$       | 367.7 <sup>a</sup> 5        | 100 <sup>a</sup> 14        | 1517.2  | $(17/2^+)$           | (Q) <sup><i>a</i></sup> |
|               |                  | 621.2 <sup><i>a</i></sup> 5 | 86 <mark>a</mark> 29       | 1263.63 | 19/2-                |                         |
| 1913.2        | 1/2,3/2          | 921.5 <sup>c@d</sup> 15     | 100                        | 991.7   | $(3/2^{-})$          |                         |
| 1919.57       | $(25/2^{-})$     | 254.8 <sup>a</sup> 5        | 15.7 <mark>a</mark> 20     | 1664.87 | $(23/2^{-})$         | D <sup>a</sup>          |
|               |                  | 498.2 <sup><i>a</i></sup> 2 | 100 <sup><i>a</i></sup> 4  | 1421.45 | $(21/2^{-})$         | Q <sup>a</sup>          |
|               |                  | 685.2 <sup><i>a</i></sup> 2 | 33 <sup>a</sup> 4          | 1234.29 | $(23/2^+)$           | $D^a$                   |
| 1938.18       | $(29/2^+)$       | 213.8 <sup><i>a</i></sup> 2 | 8.1 <sup><i>a</i></sup> 5  | 1724.43 | $(27/2^+)$           |                         |
|               |                  | 502.3 <sup>a</sup> 2        | 100.0 <sup>a</sup> 17      | 1435.90 | $(25/2^+)$           | Q <sup>a</sup>          |
| 1971.7        | 1/2,3/2          | 1205.4 <sup>@</sup> 10      | 100                        | 766.3   | $(3/2^+)$            |                         |
| 1986.1        | $(23/2^+)$       | 371.7 <sup>a</sup> 5        | 38 <sup>a</sup> 8          | 1614.4  | $(19/2^+)$           |                         |
|               |                  | 691.6 <sup>a</sup> 2        | 100 <b>a</b> 13            | 1294.54 | $(21/2^{-})$         | D <sup>a</sup>          |
| 2006.8        | 1/2,3/2          | 1240.5 <sup>@d</sup> 10     | 100                        | 766.3   | $(3/2^+)$            |                         |
| 2049.1        | 1/2,3/2          | 1141.9 <sup>@</sup> 15      | 100                        | 907.2   | 1/2,3/2              |                         |
| 2059.89       | $(25/2^+)$       | 224.9 <sup>a</sup> 5        | 31 <sup><i>a</i></sup> 4   | 1834.79 | $(23/2^+)$           | D+Q <sup>a</sup>        |
|               |                  | 433.7 <sup>a</sup> 2        | 100 <sup><i>a</i></sup> 12 | 1626.17 | $(21/2^+)$           |                         |
|               |                  | 825.6 <sup><i>a</i></sup> 2 | 58 <sup>a</sup> 8          | 1234.29 | $(23/2^+)$           |                         |
| 2069.9        | $(23/2^+)$       | 413.2 <sup><i>a</i></sup> 5 | 88 <sup>a</sup> 25         | 1656.41 | $(19/2^+)$           |                         |
|               |                  | 634.0 <sup>a</sup> 5        | 100 <sup><i>a</i></sup> 25 | 1436.63 | $(19/2^+)$           |                         |
|               |                  | 835.2 <sup>a</sup> 5        | 75 <sup>a</sup> 25         | 1234.29 | $(23/2^+)$           |                         |
| 2087.3        | $(25/2^+)$       | 422.0 <sup><i>a</i></sup> 5 | 88 <sup>a</sup> 13         | 1665.22 | $(21/2^+)$           |                         |
|               |                  | 853.0 <sup>a</sup> 5        | 100 <sup><i>a</i></sup> 25 | 1234.29 | $(23/2^+)$           | $D^{a}$                 |
| 2138.4        | $(1/2^-, 3/2^-)$ | 804.7 <sup>@d</sup> 15      | 100@                       | 1331.2  | (3/2-)               |                         |
|               |                  | 1099 <sup>@</sup> 2         | 25 <sup>@</sup>            | 1039.4  | $(1/2^{-}, 3/2^{-})$ |                         |
| 2179.83       | $(27/2^{-})$     | 260.1 <sup><i>a</i></sup> 5 | 11.4 <sup>a</sup> 21       | 1919.57 | $(25/2^{-})$         |                         |
|               |                  | 514.9 <sup>a</sup> 2        | 100 <b>a</b> 5             | 1664.87 | $(23/2^{-})$         | Q <sup>a</sup>          |
|               |                  | 744.3 <sup>a</sup> 5        | 24 <sup><i>a</i></sup> 5   | 1435.90 | $(25/2^+)$           |                         |
| 2261.4        | 1/2,3/2          | 2194.7 <sup>@</sup> 20      | 100                        | 66.732  | 3/2-                 |                         |
| 2293.86       | $(31/2^+)$       | 355.6 <sup>a</sup> 5        | 10.9 <sup>a</sup> 22       | 1938.18 | $(29/2^+)$           |                         |
|               |                  | 569.4 <sup>a</sup> 2        | 100 <sup><i>a</i></sup> 3  | 1724.43 | $(27/2^+)$           | $Q^a$                   |
| 2306.14       | $(27/2^+)$       | 246.5 <sup>a</sup> 5        | 23 <sup>a</sup> 3          | 2059.89 | $(25/2^+)$           | $D^{a}$                 |
|               |                  | 471.4 <sup>a</sup> 2        | 100 <b>a</b> 11            | 1834.79 | $(23/2^+)$           | Q <sup>a</sup>          |
| 2318.7        | $(25/2^+)$       | 433.9 <sup>a</sup> 2        | 100 <b>a</b> 21            | 1884.8  | $(21/2^+)$           |                         |
|               |                  | 544.4 <sup>a</sup> 5        | 43 <sup>a</sup> 7          | 1774.2  | $(23/2^{-})$         |                         |
| 2334.3        | $(27/2^+)$       | 898.4 <sup><i>a</i></sup> 5 | 100 <sup><i>a</i></sup>    | 1435.90 | $(25/2^+)$           |                         |
| 2358.8        | $(27/2^+)$       | 922.9 <sup><i>a</i></sup> 5 | 100 <sup><i>a</i></sup>    | 1435.90 | $(25/2^+)$           | ~                       |
| 2359.8        | $(27/2^{-})$     | 585.6 <sup>a</sup> 2        | 100 <b>a</b>               | 1774.2  | $(23/2^{-})$         | $Q^{a}$                 |
| 2392.9        | $(29/2^{-})$     | 585.2 <sup>a</sup> 2        | 100 <sup><i>a</i></sup>    | 1807.6  | $(25/2^{-})$         | Q <sup>a</sup>          |

18

 $^{171}_{70} \rm Yb_{101}\text{--}18$ 

 $^{171}_{70} \rm Yb_{101} \text{--} 18$ 

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$                | $I_{\gamma}^{\ddagger}$    | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup>       |
|---------------|----------------------|---------------------------------------|----------------------------|------------------|------------------------|--------------------------|
| 2428.5        | $(27/2^+)$           | 442.4 <sup><i>a</i></sup> 2           | 87 <sup>a</sup> 13         | 1986.1           | $(23/2^+)$             | $O^a$                    |
|               |                      | 620.9 <sup>a</sup> 2                  | 100 <sup>a</sup> 13        | 1807.6           | $(25/2^{-})$           | $\tilde{\mathbf{D}^{a}}$ |
| 2446.9        | 1/2.3/2              | $909.7^{@}20$                         | $100^{@}$                  | 1536.9           | 1/2.3/2                |                          |
| 211002        | -,-,-,-              | $11160^{@}20$                         | 34@                        | 1331.2           | $(3/2^{-})$            |                          |
| 2447 23       | $(29/2^{-})$         | $267.6^{a}.5$                         | $14^{a} 4$                 | 2179.83          | $(3/2^{-})$            |                          |
| 2117.23       | (2)/2 )              | $527.7^{a}$ 2                         | $100^{a} 8$                | 1919.57          | $(25/2^{-})$           |                          |
|               |                      | 722.8 <sup><i>a</i></sup> 2           | 54 <sup>a</sup> 8          | 1724.43          | $(27/2^+)$             |                          |
| 2468.0        | $(1/2^{-}, 3/2^{-})$ | 2401.3 <sup>@d</sup> 20               | 100                        | 66.732           | 3/2-                   |                          |
| 2479.0        | $(1/2^{-}, 3/2^{-})$ | $776.4^{@}$ 15                        | $100^{@}$                  | 1702.6           | 1/2.3/2                |                          |
| 2             | (1/2 ,0/2 )          | $1491.0^{\circ}$ 15                   | < 54 @                     | 988.2            | $(1/2^{-} 3/2^{-})$    |                          |
|               |                      | $2479^{@} 2$                          | 83@                        | 0.0              | $(1/2^{-}, 3/2^{-})$   |                          |
| 2509.0        | $(33/2^+)$           | $570.9^{a}.2$                         | $100^{a}$                  | 1938-18          | $(29/2^+)$             | $O^{a}$                  |
| 2566.6        | $(29/2^+)$           | $260.1^{a}$ 5                         | $20^{a}$ 3                 | 2306.14          | $(27/2^+)$             | X                        |
| 2000.0        | (2)/2 )              | $506.6^{a}$ 2                         | $100^{a}$ 11               | 2059.89          | $(25/2^+)$             |                          |
| 2578.1        | $(27/2^+)$           | $508.4^{a}$ 5                         | $100^{a} 22$               | 2069.9           | $(23/2^+)$             |                          |
|               |                      | 639.8 <sup><i>a</i></sup> 5           | 53 <sup>a</sup> 10         | 1938.18          | $(29/2^+)$             |                          |
| 2596.3        | $(29/2^+)$           | 509.0 <sup>a</sup> 5                  | 100 <sup><i>a</i></sup>    | 2087.3           | $(25/2^+)$             |                          |
| 2717.10       | $(31/2^{-})$         | 269.6 <sup>a</sup> 5                  | 8.0 <sup><i>a</i></sup> 25 | 2447.23          | $(29/2^{-})$           |                          |
|               |                      | 537.2 <sup>a</sup> 2                  | 100 <sup>a</sup> 10        | 2179.83          | $(27/2^{-})$           |                          |
|               |                      | 779.3 <sup>a</sup> 5                  | 35 <sup>a</sup> 5          | 1938.18          | $(29/2^+)$             | D <sup>a</sup>           |
| 2820.8        | $(29/2^+)$           | 461.0 <sup><i>a</i></sup> 5           | <5 <sup>a</sup>            | 2359.8           | $(27/2^{-})$           |                          |
|               |                      | 502.1 <sup><i>a</i></sup> 2           | 100 <sup><i>a</i></sup> 18 | 2318.7           | $(25/2^+)$             |                          |
| 2846.1        | $(31/2^+)$           | 279.1 <sup><i>a</i></sup> 5           | 15 <sup>a</sup> 4          | 2566.6           | $(29/2^+)$             |                          |
|               |                      | 540.1 <sup><i>a</i></sup> 2           | 100 <sup><i>a</i></sup> 12 | 2306.14          | $(27/2^+)$             | ~ <i>d</i>               |
| 2939.1        | $(35/2^+)$           | 645.2 <sup>d</sup> 2                  | 1004                       | 2293.86          | $(31/2^+)$             | Qu                       |
| 2944.6        | $(31/2^{+})$         | 516.14 2                              | $100^{a}$ 13               | 2428.5           | $(27/2^{+})$           |                          |
| 2004.0        | $(22/2^{-1})$        | $551.7^{a}$ 5                         | $31^{\circ} 0$             | 2392.9           | (29/2)                 |                          |
| 2984.0        | (33/2)               | $557.2^{-5}$<br>501.0 <sup>4</sup> .5 | $100^{-23}$                | 2447.23          | (29/2)                 |                          |
|               |                      | $591.0 \ 5$                           | $\frac{05}{75a}$ 13        | 2392.9           | (29/2)                 | ъa                       |
| 3015.1        | $(31/2^{-})$         | $655.3^{a}.5$                         | $100^{a}$                  | 2295.80          | $(31/2^{-})$           | D                        |
| 3059.0        | $(31/2^{-})$         | $612.1^{a}$ 5                         | $26^{a}$ 9                 | 2337.0           | $(29/2^{-})$           |                          |
| 5057.0        | (33/2)               | $666.0^{a}$ 2                         | $100^{a} 8$                | 2392.9           | $(29/2^{-})$           |                          |
| 3142.7        | $(33/2^+)$           | $297.1^{a}$ 5                         | $15^{a} 5$                 | 2846.1           | $(31/2^+)$             |                          |
|               | (                    | 575.6 <sup>a</sup> 5                  | $100^{a} 25$               | 2566.6           | $(29/2^+)$             |                          |
| 3146.5        | $(37/2^+)$           | 637.5 <sup><i>a</i></sup> 2           | 100 <sup><i>a</i></sup>    | 2509.0           | $(33/2^+)$             |                          |
| 3281.8        | (35/2-)              | 564.7 <sup>a</sup> 2                  | 100 <sup>a</sup> 17        | 2717.10          | $(31/2^{-})$           | $Q^{a}$                  |

# $\gamma(^{171}$ Yb) (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$  | $E_f$      | $J_f^{\pi}$ Mult.                | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$      | $I_{\gamma}^{\ddagger}$    | $E_f$  | $\mathbf{J}_f^{\pi}$ |
|------------------------|----------------------|-----------------------------|--------------------------|------------|----------------------------------|---------------|----------------------|-----------------------------|----------------------------|--------|----------------------|
| 3281.8                 | $(35/2^{-})$         | 773.0 <sup>a</sup> 5        | 19 <sup><i>a</i></sup> 5 | 2509.0 (33 | $B/2^{+})$ D <sup><i>a</i></sup> | 3882.7        | $(39/2^{-})$         | 600.8 <sup><i>a</i></sup> 5 | 100 <sup><i>a</i></sup> 17 | 3281.8 | $(35/2^{-})$         |
| 3389.8                 | $(33/2^+)$           | 569.0 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 2820.8 (29 | $9/2^{+})$                       |               |                      | 736.3 <sup>a</sup> 5        | 17 <b>a</b> 6              | 3146.5 | $(37/2^+)$           |
| 3448.0                 | $(35/2^+)$           | 601.9 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 2846.1 (31 | $(2^{+})$                        | 4103.0        | $(39/2^+)$           | 655.0 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>    | 3448.0 | $(35/2^+)$           |
| 3538.3                 | $(35/2^+)$           | 593.7 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 2944.6 (31 | $(2^{+})$                        | 4197.6        | $(41/2^{-})$         | 630 <sup>a</sup> 1          | 100 <sup>a</sup>           | 3567.6 | $(37/2^{-})$         |
| 3567.6                 | $(37/2^{-})$         | 583.8 <sup>a</sup> 5        | 100 <sup>a</sup> 17      | 2984.0 (33 | 3/2-)                            | 4442.5        | $(43/2^+)$           | 786.0 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>    | 3656.5 | $(39/2^+)$           |
|                        |                      | 628.2 <sup><i>a</i></sup> 5 | 13 <sup>a</sup> 8        | 2939.1 (35 | $5/2^+)$                         | 4468.1?       | $(41/2^+)$           | 689 <sup>ad</sup> 1         | 100 <sup><i>a</i></sup>    | 3779.1 | $(37/2^+)$           |
| 3656.5                 | $(39/2^+)$           | 717.4 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 2939.1 (35 | $5/2^{+})$                       | 4527.7        | $(43/2^{-})$         | 645 <sup>a</sup> 1          | ≤100 <sup><i>a</i></sup>   | 3882.7 | $(39/2^{-})$         |
| 3746.7                 | $(35/2^{-})$         | 731.6 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 3015.1 (31 | /2-)                             |               |                      | 680 <sup>ad</sup> 1         | ≤100 <sup><i>a</i></sup>   | 3848.0 | $(41/2^+)$           |
| 3772.5                 | $(37/2^{-})$         | 713.5 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 3059.0 (33 | 3/2-)                            | 4612.1        | $(45/2^+)$           | 764.1 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>    | 3848.0 | $(41/2^+)$           |
| 3779.1                 | $(37/2^+)$           | 636.4 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 3142.7 (33 | 3/2+)                            | 4812.0        | $(43/2^+)$           | 709.0 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>    | 4103.0 | $(39/2^+)$           |
| 3848.0                 | $(41/2^+)$           | 701.5 <sup>a</sup> 5        | 100 <sup><i>a</i></sup>  | 3146.5 (37 | //2+)                            | 4879.7?       | $(45/2^{-})$         | 682 <sup>ad</sup> 1         | 100 <sup><i>a</i></sup>    | 4197.6 | $(41/2^{-})$         |

<sup>†</sup> From <sup>171</sup>Lu  $\varepsilon$  decay (8.24 d), except where noted. <sup>‡</sup> Relative photon branching from each level; values are from <sup>171</sup>Lu  $\varepsilon$  decay (8.24 d), except where noted. Upper limits are given for photon branchings affected by multiple placement.

# From <sup>170</sup>Er( $\alpha$ ,3n $\gamma$ ) E=34 MeV. @ From <sup>170</sup>Yb(n, $\gamma$ ) E=thermal.

<sup>&</sup> From Coulomb excitation. <sup>*a*</sup> From  $^{170}\text{Er}(\alpha,3n\gamma)$  E=35,40 MeV.

<sup>b</sup> From Coulomb excitation.

<sup>c</sup> Multiply placed.

20

<sup>d</sup> Placement of transition in the level scheme is uncertain.

#### Level Scheme

Intensities: Relative photon branching from each level

--- κ γ Decay (Uncertain)

Legend



 $^{171}_{70} \rm{Yb}_{101}$ 

Legend

# Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)



 $^{171}_{70} \mathrm{Yb}_{101}$ 

Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain) ----



stable

### **Adopted Levels, Gammas**

Legend

### Level Scheme (continued)



 $^{171}_{70}$ Yb $_{101}$ 

Legend

# Level Scheme (continued)



 $^{171}_{70} \rm{Yb}_{101}$ 

### Level Scheme (continued)

Intensities: Relative photon branching from each level



 $^{171}_{70}$ Yb $_{101}$ 



 $^{171}_{70} \rm{Yb}_{101}$ 

#### Level Scheme (continued)

Intensities: Relative photon branching from each level



 $^{171}_{70} \mathrm{Yb}_{101}$ 



 $^{171}_{70} Yb_{101} \\$ 



 $^{171}_{70} \mathrm{Yb}_{101}$ 



 $^{171}_{70} \rm{Yb}_{101}$ 

Band(N): Possible 3/2[512] band

(7/2<sup>-</sup>) 1486

(5/2-) 1395

(3/2<sup>-</sup>) 1331.2

Band(M): 5/2[642] band

(13/2<sup>+</sup>) 1119

(9/2)+ 984.037

 $^{171}_{70} \rm{Yb}_{101}$