171 Er β^- decay **1972Gr09**

	History	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin, E. A. Mccutchan	NDS 151, 334 (2018)	30-Jun-2018

Parent: ¹⁷¹Er: E=0.0; $J^{\pi}=5/2^{-}$; T_{1/2}=7.516 h 2; Q(β^{-})=1491.3 13; % β^{-} decay=100.0

The decay scheme and all data are from 1972Gr09, except where noted.

1972Gr09: sources from neutron bombardment of Er oxide (targets enriched to 96% in 170 Er); measured E γ , I γ (Ge(Li)), E(ce), Ice (iron-free mag spect), prompt and delayed $\beta\gamma$ and $\gamma\gamma$ coin.

1961Ar15: measured E β , I β with double-focusing magnetic spectrometer (momentum resolution=0.5%).

 $\gamma\gamma(\theta)$ and/or ce $\gamma(\theta)$: 1965Ag02, 1968Ka14, 1972Ag03, 1972Be85, 1975Go06, 1976Pa16, 1978Ba03.

Nuclear orientation: 1972Kr18 (looked for forward-backward asymmetries in strongly hindered 296 γ and 308 γ from polarized ¹⁷¹Er; saw no definitive evidence for parity mixing).

 γ polarization: 1974Ku16 (determined absence of substantial γ polarization in measurement of average polarization of 295.9 γ +308.3 γ).

Others: 1948De05, 1948Ke11, 1951Ke44, 1956Ko21, 1957Ha19, 1957Jo12, 1958Cr84, 1961Ar15, 1961B113, 1963Or01, 1963Sc18, 1964Su02, 1965Bo34, 1966Be51, 1966El01, 1968Me02, 1968Ra09, 1970El10, 1970Kn04, 1972TuZV, 1973El13, 1973FoZX, 1976Kr21.

 α : Additional information 1.

¹⁷¹Tm Levels

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	1/2+	1.92 y <i>1</i>	
5.028 [#] 5	3/2+	4.77 ns 8	$T_{1/2}$: cece(t) (1972TuZV). Other values: 3.76 ns <i>14</i> (1961B113), 2.88 ns <i>17</i> (1966Be51).
116.653 [#] 5	5/2+	55 ps <i>13</i>	$T_{1/2}$: cece(t) (1964Su05).
129.044 [#] 6	7/2+	415 ps 20	$T_{1/2}$: $\gamma\gamma(t)$ (1973FoZX). Other value: 362 ps 15 (1964Su05).
326.88 [#] 10	9/2+		
424.948 [@] 12	7/2-	2.60 µs 2	$T_{1/2}$: βγ(t) (1972Gr09). Other values: 2.59 μs 3 (1958Cr84), 2.63 μs 5 (1966Be51). Others: 1948De05, 1963Or01, 1970Kn04.
635.57 <i>3</i>	7/2+	1.26 ns 6	$T_{1/2}$: $\gamma\gamma(t)$ (1975Go06).
675.88 ^{&} 6	3/2+		
737.40 ^{&} 6	$(5/2)^+$		
822.41 ^{&} 15	$(7/2^+)$		
913.02 ^{<i>a</i>} 5	5/2+		
998.59 ^{<i>u</i>} 7	$(7/2)^+$		
1225.7 4	$(3/2^+, 5/2, 1/2^+)$ $(5/2)^+$		
1296.45 20	(3/2)		
1391.1 4	$3/2^{(-)}, 5/2, 7/2$		
1400.6 3	$(5/2^+)$		

[†] From least-squares fit to $E\gamma$, by evaluations. Normalized χ^2 of 6.58 larger than the criticial value of 1.43.

[‡] Adopted values.

Band(A): 1/2[411] band.

[@] Band(B): 7/2[523] band.

[&] Band(C): 3/2[411] band.

^a Band(D): 5/2[402] band.

¹⁷¹Er β^- decay **1972Gr09** (continued)

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(90.7 13)	1400.6	0.0063 9	7.05 7	av E β =23.58 37
$(100.2 \ 14)$	1391.1	0.0264 12	6.56 <i>3</i>	av $E\beta = 26.16 \ 38$
(194.9 13)	1296.45	0.020 5	7.58 11	av E β =52.91 39
(206.3 13)	1284.97	0.332 16	6.441 23	av $E\beta = 56.28 \ 39$
(265.6 14)	1225.7	0.0107 5	8.281 22	av $E\beta = 74.08 \ 42$
(492.7 13)	998.59	0.50 3	7.49 <i>3</i>	av $E\beta = 147.92 \ 45$
(578.3 13)	913.02	2.19 8	7.081 17	av E β =177.73 46
				E(decay): other: 575 (1961Ar15).
(668.9 13)	822.41	0.029 5	9.18 8	av E β =210.30 48
(753.9 13)	737.40	0.055 17	9.08 14	av E β =241.66 49
(815.4 13)	675.88	0.190 17	8.66 4	av E β =264.82 50
(855.7 13)	635.57	≈0.02	≈9.7	av E β =280.18 50
(1066.4 13)	424.948	94 <i>4</i>	6.382 19	av E β =362.59 52
				$Ice(K)(308.3\gamma)/I\beta(1065\beta)=0.0106\ 4\ (1961Ar15).$
				E(decay): other: 1065 2 (1961Ar15).
(1164.4 13)	326.88	0.020 10	$10.83^{1u} 22$	av E β =404.78 51
(1491.3 13)	0.0	2.3 2	9.36 ¹ <i>u</i> 4	av $E\beta = 533.8053$
				E(decay): other: 1492 7 from analysis of β^- spectrum (1961Ar15); I β is for
				0.0+5.0 levels combined.
				I β^- : from 1961Ar15 for 0.0+5.0 levels combined.

[†] β^- feedings are from intensity imbalance at each level assuming I β =2.3% 2 (1961Ar15) for decay to 0.0+5.0 levels combined. [‡] Absolute intensity per 100 decays. $\gamma(^{171}{\rm Tm})$

I γ normalization: from Σ [(I(γ +ce) to 0.0+5.0 levels) minus (Ti(5.0 γ))]=97.7%; based on combined β^- feeding to (0.0+5.0) levels of 2.3% 2 (1961Ar15).

E_{γ}^{\dagger}	I_{γ}^{b}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	<i>δ</i> # <i>a</i>	α	$I_{(\gamma+ce)}^{b}$	Comments
5.025@ 6		5.028	3/2+	0.0	1/2+	M1+E2&	0.021 1	1.29×10 ³ 6	900 <i>30</i>	$\alpha(M)=1.03\times10^3 5; \ \alpha(N)=236 \ 10; \ \alpha(O)=30.9$ 12; $\alpha(P)=1.103 \ 16$ I _($\gamma+ce$) : from Σ I($\gamma+ce$) to 5.0 level, corresponding to $0\% \beta^-$ feeding of level; I($\gamma+ce$) could range up to I($\gamma+ce$)=933, corresponding to 2.3% β^- feeding of level. M1:M2:M3=100:38 3:42 5.
12.385 [@] 8	0.313 18	129.044	7/2+	116.653	5/2+	M1+E2&	0.021 4	255 5	82 4	α(L)=198 4; α(M)=44.9 8; α(N)=10.46 18; α(O)=1.475 23; α(P)=0.0748 11 I(γ+ce): from Σ (I(γ+ce)) to 129.0 level less Ti(124.0γ) (1961Ar15 determined absence of measurable β- feeding to either the 116.7 or 129.0 levels). Iγ: deduced from I(γ+ce) and α. M1:M2:M3=100:17 2:8.3 16; M:N:O=100:25 3:4 1 (1965Bo34).
										δ : deduced from subshell ratios using BrIccMixing program.
85.6 [@] 1	0.60 4	998.59	(7/2)+	913.02	5/2+	M1+E2&	0.22 4	4.89 8		 α(K)=3.93 8; α(L)=0.75 5; α(M)=0.170 12; α(N)=0.039 3; α(O)=0.0054 3; α(P)=0.000240 5 α(L)exp=0.15 5 (Ice(L) from 1961Ar15); L1:L2:L3=100:18 6:19 6 (1972Gr09). δ: deduced from ce and subshell ratios using BrIccMixing program.
111.621 4	205 8	116.653	5/2+	5.028	3/2+	M1+E2&	-0.160 3	2.26		α(K)=1.87 3; α(L)=0.303 5; α(M)=0.0680 10; α(N)=0.01588 23; α(O)=0.00225 4 α(P)=0.0001142 16 α(K)exp=1.72 10 (Ice(K) from 1961Ar15); K/L=6.2 7 (1961Ar15); L1:L2:L3=100:13.1 2:5.2 2 (1972Gr09); K/L=5.9 2 (1965Bo34). δ: from L subshell ratios; sign from nuclear orientation (1972Kr18). Other values: -0.16 3 (γγ(θ), 1972Ag03); -0.19 3 (nuclear orientation, 1972Kr18); 1965Ag02.
116.656 6	23.0 6	116.653	5/2+	0.0	1/2+	E2&		1.723		$\alpha(K)=0.724 \ 11; \ \alpha(L)=0.764 \ 11; \ \alpha(M)=0.187 \ 3; \ \alpha(N)=0.0425 \ 6; \ \alpha(O)=0.00497 \ 7 \ \alpha(P)=3.05 \times 10^{-5} \ 5$

ω

						171 Er β^- d	ecay 19720	Gr09 (conti	inued)		
$\gamma(^{171}\text{Tm})$ (continued)											
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ ^{#a}	α	Comments		
									α (K)exp=0.68 9 (Ice(K) from 1961Ar15); L1:L2:L3=10:41 5:39 5 (the L2 and L3 values were inverted in 1972Gr09, but subsequently corrected in a private communication from authors); K:L:M=1.6 2:1.7 2:0.44 5 (1961Ar15).		
124.017 4	91 3	129.044	7/2+	5.028	3/2+	E2 ^{&}		1.376	$\begin{array}{l} \alpha(\mathrm{K}) = 0.619 \; 9; \; \alpha(\mathrm{L}) = 0.580 \; 9; \; \alpha(\mathrm{M}) = 0.1414 \; 20; \; \alpha(\mathrm{N}) = 0.0322 \; 5; \\ \alpha(\mathrm{O}) = 0.00378 \; 6 \\ \alpha(\mathrm{P}) = 2.62 \times 10^{-5} \; 4 \\ \alpha(\mathrm{K}) \exp = 0.55 \; 6 \; (\mathrm{Ice}(\mathrm{K}) \; \mathrm{from} \; 1961 \mathrm{Ar} 15); \; \mathrm{L1:L2:L3} = 10:45 \; 4:37 \\ 3 \; (\mathrm{the} \; \mathrm{L2} \; \mathrm{and} \; \mathrm{L3} \; \mathrm{values} \; \mathrm{were} \; \mathrm{inverted} \; \mathrm{in} \; 1972 \mathrm{Gr} 09, \; \mathrm{but} \\ \mathrm{subsequently} \; \mathrm{corrected} \; \mathrm{in} \; \mathrm{a} \; \mathrm{private} \; \mathrm{communication} \; \mathrm{from} \end{array}$		
X166 A 2									authors); K:L:M=5.1 5:5.0 5:1.7 2 (1961Ar15).		
175.63 4	0.89 9	913.02	5/2+	737.40	(5/2)+	[M1]		0.628	α (K)=0.527 8; α (L)=0.0791 11; α (M)=0.01763 25; α (N)=0.00413 6; α (O)=0.000593 9 α (P)=3.22×10 ⁻⁵ 5		
197.7 [@] 2	0.27 5	326.88	9/2+	129.044	7/2+	[M1]		0.452			
210.1 [@] 2	≈0.07	326.88	9/2+	116.653	5/2+	[E2]		0.221	$\alpha(\mathbf{K}) = 0.1420 \ 21; \ \alpha(\mathbf{L}) = 0.0605 \ 9; \ \alpha(\mathbf{M}) = 0.01450 \ 21; \\ \alpha(\mathbf{N}) = 0.00332 \ 5; \ \alpha(\mathbf{O}) = 0.000406 \ 6 \\ \alpha(\mathbf{P}) = 6.74 \times 10^{-6} \ 10$		
210.60 3	6.42 <i>19</i>	635.57	7/2+	424.948	7/2-	E1		0.0470	I_{γ} : from coincidence data. $\alpha(K)=0.0394$ 6; $\alpha(L)=0.00589$ 9; $\alpha(M)=0.001308$ 19; $\alpha(N)=0.000303$ 5; $\alpha(O)=4.17\times10^{-5}$ 6 $\alpha(P)=1.94\times10^{-6}$ 3		
237.14 4	3.02 10	913.02	5/2+	675.88	3/2+	M1+E2	+0.13 5	0.272 5	α (K)exp=0.040 2. α (K)=0.228 4; α (L)=0.0344 5; α (M)=0.00767 11; α (N)=0.00179 3; α (O)=0.000257 4 α (P)=1.386×10 ⁻⁵ 24		
261.4 [@] 2 277.43 5	<0.2 5.8 2	998.59 913.02	(7/2) ⁺ 5/2 ⁺	737.40 635.57	(5/2) ⁺ 7/2 ⁺	(M1+E2)	-0.305 18	0.171 3	α(K)exp=0.246 <i>I</i> 6. Observed only in coincidence spectra. α(K)=0.1429 22; α(L)=0.0222 4; α(M)=0.00496 7; α(N)=0.001159 <i>I</i> 7; α(O)=0.0001652 24 α(P)=8.63×10 ⁻⁶ <i>I</i> 4 α(K)exp=0.168 9; K/L>6 (1961Ar15). Mult.: α(K)exp more consistent with M1 than M1+E2, but γγ(θ) data imply an E2 admixture. δ: from A ₂ =+0.102 <i>I</i> 3, A ₄ =+0.029 34 for 277γ-210γ(θ) (1978Ba03). Other data: δ =-0.37 7 (nuclear oriention, 1972Kr18); A ₂ =+0.124 5, δ =-0.336 +7-2 if δ (D,Q)<0.025 for 210γ (277γ-210γ(θ), 1975Go06); A ₂ =+0.140 <i>II</i> if attenuation is 0.85 5, δ =-0.360 <i>I</i> 7 (γ-210γ(θ), 1976Pa16)		

4

171 Er β^- decay 1972Gr09 (continued)													
γ ⁽¹⁷¹ Tm) (continued)													
E_{γ}^{\dagger}	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ ^{#a}	α	Comments				
286.5 [@] 2	≈0.08	1284.97	(5/2)+	998.59	(7/2)+	[M1]		0.1640	$\alpha(K)=0.1377 \ 20; \ \alpha(L)=0.0205 \ 3; \ \alpha(M)=0.00456 \ 7; \\ \alpha(N)=0.001066 \ 15; \ \alpha(O)=0.0001535 \ 22 \\ \alpha(P)=8.37\times10^{-6} \ 12 $				
295.901 14	289 8	424.948	7/2-	129.044	7/2+	E1&		0.0199					
308.291 <i>18</i>	644 16	424.948	7/2-	116.653	5/2+	El&		0.0180	α(K) = 0.01515 22; α(L) = 0.00221 3; α(M) = 0.000489 7;				
362.91 14	0.197 11	998.59	(7/2)+	635.57	7/2+	[M1]		0.0873	$\alpha(K)=0.0734 \ II; \ \alpha(L)=0.01083 \ I6; \ \alpha(M)=0.00241 \ 4; \ \alpha(N)=0.000563 \ 8; \ \alpha(O)=8.12\times10^{-5} \ I2 \ \alpha(D)=4.41\times10^{-6} \ 7.$				
371.96 9	2.57 10	1284.97	(5/2)+	913.02	5/2+	M1+E2	-0.28 2	0.0786 12	$\alpha(r) = 4.44 \times 10^{-6} / \alpha(L) = 0.00992 \ 15; \ \alpha(M) = 0.00221 \ 4;$ $\alpha(N) = 0.000517 \ 8; \ \alpha(O) = 7.41 \times 10^{-5} \ 11$ $\alpha(P) = 3.97 \times 10^{-6} \ 7$ $\alpha(K) \exp = 0.068 \ 7; \ K/L \approx 2 \ (1961 \text{Ar15}; \text{ value not consistent with}$ assigned multipolarity (K/L ≈ 7 for M1, ≈ 4 for E2)). δ : from nuclear orientation (1972Kr18). Other data: $\delta = +0.18 \ 5$ $(\gamma\gamma(\theta), 1972 \text{Be85}); \ A_2 = +0.018 \ 12, \ \delta = +0.33 \ 4 \ (\gamma - 277\gamma(\theta))$ if $\delta(277r_{1}) = 0.24 \ 2.1075 C(206)$				
419.9 <i>3</i>	0.83 4	424.948	7/2-	5.028	3/2+	M2		0.203	$\alpha(K)=0.1651\ 24;\ \alpha(L)=0.0295\ 5;\ \alpha(M)=0.00673\ 10;\alpha(N)=0.001578\ 23;\ \alpha(O)=0.000225\ 4\alpha(P)=1.166\times10^{-5}\ 17\alpha(K)exp=0.161\ 11.$				
424.9 5	0.224 23	424.948	7/2-	0.0	1/2+	E3		0.0856	δ: 19/2Kr18 report -0.3≤δ(E3,M2)≤+0.3 (nuclear orientation). α(K)=0.0544 8; α(L)=0.0239 4; α(M)=0.00579 9; α(N)=0.001334 20; α(O)=0.0001673 25				

S

	$\frac{171}{\mathrm{Er}\beta^{-}\mathrm{decay}} \qquad 1972\mathrm{Gr09}\;(\mathrm{continued})$												
	$\gamma(^{171}\text{Tm})$ (continued)												
E_{γ}^{\dagger}	I_{γ}^{b}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ ^{#a}	α	Comments				
									$\alpha(P)=3.37\times10^{-6}$ 5 $\alpha(K)\exp=0.065$ 11. Mult.: $\alpha(K)\exp$ consistent with M1 or E3, but decay scheme rules out M1.				
$x455.6^{\textcircled{0}}2$	0.06 2												
487.9 [@] 2	0.05 2	913.02	$5/2^{+}$	424.948	$7/2^{-}$								
495.4 [@] 2	0.02 1	822.41	$(7/2^+)$	326.88	$9/2^+$								
506.9 6	0.227 20	635.57	7/2+	129.044	7/2+	[M1]		0.0365	$\alpha(K)=0.0307 5; \alpha(L)=0.00449 7; \alpha(M)=0.000997 15; \alpha(N)=0.000233 4; \alpha(O)=3.36\times10^{-5} 5 \alpha(P)=1.85\times10^{-6} 3$				
519.2 6	0.177 16	635.57	7/2+	116.653	5/2+	[M1]		0.0343	$\alpha(K) = 0.0289 5; \alpha(L) = 0.00422 6; \alpha(M) = 0.000936 14; \alpha(N) = 0.000219 4; \alpha(O) = 3.16 \times 10^{-5} 5 \alpha(P) = 1.737 \times 10^{-6} 25$				
547.8 5	0.17 4	1284.97	$(5/2)^+$	737.40	$(5/2)^+$				$\alpha(1) = 1.757 \times 10^{-2.5}$ $\alpha(K) \exp \approx 0.041.$				
559.5 4	0.466 19	675.88	3/2+	116.653	5/2+	M1		0.0283	$\alpha(K) = 0.0239 \ 4; \ \alpha(L) = 0.00347 \ 5; \ \alpha(M) = 0.000771 \ 11; \alpha(N) = 0.000181 \ 3; \ \alpha(O) = 2.60 \times 10^{-5} \ 4 \alpha(P) = 1.433 \times 10^{-6} \ 21 \alpha(K) = x_0 = 0.022 \ 10$				
573.5 [@] 2	0.098 15	998.59	$(7/2)^+$	424,948	$7/2^{-}$								
$586.0^{@}$ 2	0.04 2	913.02	$5/2^+$	326.88	$9/2^+$								
608.6 [@] 2	≈0.37	737.40	$(5/2)^+$	129.044	7/2+				α (K)exp(608.6 γ +609.0 γ)=0.027 5. I $_{\gamma}$: from coincidence data; I γ (exp)=0.470 26 for 608.6 γ and 609.0 γ combined.				
609.0 [@] 2	≈0.2	1284.97	$(5/2)^+$	675.88	3/2+				$\alpha(K)\exp(608.6\gamma+609.0\gamma)=0.027$ 5.				
621.03 <i>23</i>	0.89 <i>3</i>	737.40	(5/2)+	116.653	5/2+	M1		0.0217	I _γ : see comment with 608.6γ. $\alpha(K)=0.0183 \ 3; \ \alpha(L)=0.00266 \ 4; \ \alpha(M)=0.000590 \ 9;$ $\alpha(N)=0.0001380 \ 20; \ \alpha(O)=1.99\times10^{-5} \ 3$ $\alpha(P)=1.097\times10^{-6} \ 16$ $\alpha(K)=0.026 \ 10.$				
630.7 [@] 2	0.05 1	635.57	7/2+	5.028	3/2+	[E2]		0.00969	$\alpha(K)=0.00785 \ 11; \ \alpha(L)=0.001426 \ 20; \ \alpha(M)=0.000324 \ 5; \ \alpha(N)=7.52\times10^{-5} \ 11$				
670.7 [@] 2	2.52 5	675.88	3/2+	5.028	3/2+	M1+E2	-0.05 10	0.0178 4	$\alpha(O)=1.029\times10^{-5} \ 15; \ \alpha(P)=4.39\times10^{-7} \ 7$ $\alpha(K)=0.0150 \ 3; \ \alpha(L)=0.00217 \ 4; \ \alpha(M)=0.000482 \ 8; \ \alpha(N)=0.0001127 \ 19; \ \alpha(O)=1.63\times10^{-5} \ 3$ $\alpha(P)=8.97\times10^{-7} \ 17 \ \alpha(K)exp=0.019 \ 2. \ \delta: \ deduced \ from \ \alpha(exp) \ and \ \delta \ of \ 1972Kr18 \ using \ BrIccMixing$				
671.7 [@] 2 676.1 <i>3</i>	0.22 <i>5</i> 2.85 <i>6</i>	998.59 675.88	$(7/2)^+$ $3/2^+$	326.88 0.0	9/2+ 1/2+	M1+E2	+0.12 7	0.0174 <i>4</i>	program. Sign from 1972Kr18. Other: $-0.06 \ 10 \ (1972Kr18)$. I _{γ} : from coincidence data. $\alpha(K)=0.0147 \ 3; \ \alpha(L)=0.00213 \ 4; \ \alpha(M)=0.000471 \ 8;$				

I

					171 Er β^- (lecay 1972Gr0	(continued)					
$\gamma(^{171}\text{Tm})$ (continued)												
${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ ^{#a}	α	Comments				
								α (N)=0.0001103 <i>19</i> ; α (O)=1.59×10 ⁻⁵ <i>3</i> α (P)=8.77×10 ⁻⁷ <i>17</i> α (K)exp=0.018 <i>2</i> . Other δ : +0.14 <i>8</i> (1972Kr18).				
693.9 5	0.150 16	822.41	$(7/2^+)$	129.044 7/2+								
705.8 ^(@) 2 732.5 3	0.12 <i>4</i> 0.976 <i>24</i>	822.41 737.40	$(7/2^+)$ $(5/2)^+$	116.653 5/2 ⁺ 5.028 3/2 ⁺	M1		0.01435	$\alpha(K)=0.01211 \ 17; \ \alpha(L)=0.001745 \ 25; \ \alpha(M)=0.000387 \ 6; \ \alpha(N)=9.06\times10^{-5} \ 13$				
^x 745.0 5	0.066 8							$\alpha(O)=1.308\times10^{-5}$ 19; $\alpha(P)=7.23\times10^{-5}$ 11 $\alpha(K)\exp=0.016$ 2.				
^x 767.8 [@] 2	0.045 5											
784.09 17	2.40 5	913.02	5/2+	129.044 7/2+	M1+E2	+0.34 10	0.0115 4	$\alpha(K)=0.0097 \ 4; \ \alpha(L)=0.00140 \ 5; \ \alpha(M)=0.000311 \ 10; \alpha(N)=7.28\times10^{-5} \ 23; \ \alpha(O)=1.05\times10^{-5} \ 4 \alpha(P)=5.75\times10^{-7} \ 22$				
796.55 13	6.40 13	913.02	5/2+	116.653 5/2+	M1+E2	+0.56 +20-16	0.0102 8	α (K)exp=0.0088 <i>17</i> . α (K)=0.0086 <i>7</i> ; α (L)=0.00126 <i>9</i> ; α (M)=0.000280 <i>18</i> ; α (N)=6.6×10 ⁻⁵ <i>5</i> ; α (O)=9.4×10 ⁻⁶ <i>7</i> α (D)=5 1×10 ⁻⁷ <i>5</i>				
								$\alpha(F) = 5.1 \times 10^{-5} \text{ s}$ $\alpha(K) \exp = 0.0095 7.$ $\delta: \text{ from nuclear orientation (1972Kr18). Other value:}$ $+0.06 4 (272(\theta) (1972Be85))$				
860.0 [@] 2	0.0150 24	1284.97	(5/2)+	424.948 7/2-	[E1]		0.00190	$\alpha(K)=0.001619\ 23;\ \alpha(L)=0.000222\ 4;\ \alpha(M)=4.89\times10^{-5}$ 7; $\alpha(N)=1.139\times10^{-5}\ 16$				
869.7 <i>3</i>	0.55 5	998.59	(7/2)+	129.044 7/2+	(M1+E2)	-0.24 8	0.00911 22	$ α(O)=1.629\times10^{-6} 23; α(P)=8.77\times10^{-6} 13 $ $α(K)=0.00770 19; α(L)=0.001106 25; α(M)=0.000245 6; α(N)=5.74\times10^{-5} 13$ $α(O)=8.28\times10^{-6} 19; α(P)=4.57\times10^{-7} 12$ $α(K)\exp(869.7\gamma+871.5\gamma)=0.0076 23.$ Mult.: uncertain because of interference from 871.5γ. δ: from nuclear orientation (1972Kr18); value subject to				
e								undetermined correction due to interference from 871.5γ .				
871.5 ^{^w 2}	0.20 5	1296.45		424.948 7/2-				α (K)exp(869.7 γ +871.5 γ)=0.0076 23.				
882.0 4	0.385 19	998.59	(7/2)+	116.653 5/2+	M1+E2	+0.11 3	0.00899	α (K)=0.00760 <i>11</i> ; α (L)=0.001089 <i>16</i> ; α (M)=0.000241 <i>4</i> ; α (N)=5.65×10 ⁻⁵ <i>9</i> ; α (O)=8.16×10 ⁻⁶ <i>12</i> α (P)=4.52×10 ⁻⁷ <i>7</i>				
907.7 4	6.35 13	913.02	5/2+	5.028 3/2+	M1+E2	+0.33 3	0.00803 14	$\alpha(K) = 0.00678 \ 12; \ \alpha(L) = 0.000975 \ 16; \ \alpha(M) = 0.000216 \ 4; \alpha(N) = 5.06 \times 10^{-5} \ 8; \ \alpha(O) = 7.30 \times 10^{-6} \ 12 \alpha(P) = 4.02 \times 10^{-7} \ 7 \alpha(K) \exp = 0.0070 \ 4.$				

7

I

				1	71 Er β^{-}	decay 1972Gr09 (continued)	
						γ ⁽¹⁷¹ Tm) (continued)	
E_{γ}^{\dagger}	Ιγ ^b	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}		Comments
912.6 5	0.77 5	913.02	5/2+	0.0	$1/2^{+}$	α (K)exp=0.0056 17.	
966.1 4	0.264 8	1391.1	$3/2^{(-)}, 5/2, 7/2$	424.948	7/2-		
976.2 [@] 5	0.007 3	1400.6	$(5/2^+)$	424.948	$7/2^{-}$		
994.0 [@] 5	0.006 3	998.59	$(7/2)^+$	5.028	$3/2^{+}$		
$x_{1051.0}^{@}$ 5	0.004 2						
1096.9 8	0.0106 19	1225.7	$(3/2^+, 5/2, 7/2^+)$	129.044	$7/2^{+}$		
1109.0 5	0.0679 21	1225.7	$(3/2^+, 5/2, 7/2^+)$	116.653	$5/2^{+}$		
1156.0 [@] 5	0.0060 15	1284.97	$(5/2)^+$	129.044	$7/2^{+}$		
1168.4 [@] 5	0.0184 15	1284.97	$(5/2)^+$	116.653	$5/2^{+}$		
^x 1172.9 [@] 5	0.008 3						
$x_{1182.0}^{@} 5$	0.003 2						
1220.5 [@] 8	0.028 2	1225.7	$(3/2^+, 5/2, 7/2^+)$	5.028	3/2+		
1271.2 [@] 5	0.0034 15	1400.6	$(5/2^+)$	129.044	$7/2^{+}$		
1279.9 [@] 5	0.025 2	1284.97	$(5/2)^+$	5.028	$3/2^{+}$		
1284.4 [@] 5	0.024 2	1284.97	$(5/2)^+$	0.0	$1/2^{+}$		
1395.5 [@] 5	0.028 8	1400.6	(5/2+)	5.028	$3/2^{+}$		
1400.5 [@] 5	0.025 1	1400.6	$(5/2^+)$	0.0	$1/2^{+}$		

[†] From 1968Ra09, except where noted; (Ge(Li), cryst).

[‡] From $\alpha(K)$ exp and presence of prompt coincidences, except where noted; see comment with 308.3 γ for normalization of the photon and ce intensity scales. [#] From 1976Kr21, except where noted (these values are based on angular correlation, nuclear orientation, and ce data).

[@] From 1972Gr09; uncertainties are from subsequent private communication from authors.

[&] From ce subshell ratios.

^{*a*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^b For absolute intensity per 100 decays, multiply by 0.100 3.

 $x \gamma$ ray not placed in level scheme.

 $^{171}_{69}\mathrm{Tm}_{102}$