Adopted Levels, Gammas

	History	y	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin, E. A. Mccutchan	NDS 151, 334 (2018)	30-Jun-2018

 $Q(\beta^{-})=-8950 \ 80; \ S(n)=9240 \ 80; \ S(p)=1400 \ SY; \ Q(\alpha)=6607 \ 3$ 2012Wa38 $\Delta S(p)=120 \ (2012Wa38).$

Identification: excitation functions for 112 Sn(63 Cu,pxn) and relative positions for α 's from known Pt activities (1981De22); genetic relationship to 167 Os daughter (1981Ho10).

Calculation of α decay half-life: 2013Ha05 (modified barrier penetration formula; good agreement with experimental value); 2011Ta23 (semiempirical, one-parameter model).

¹⁷¹Pt Levels

Cross Reference (XREF) Flags

			A 175 B 96 C 116	Hg α decay D 96 Ru(78 Kr,2pn γ) Mo(78 Kr,3n γ) E 171 Pt IT decay Sn(58 Ni,3n γ), Sn(60 Ni,xn γ)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(7/2 ⁻)	45.5 ms 25	A E	 %α=90 7; %ε+%β⁺=10 7 %α: unweighted average of 83 3 (2010Sc02) and 96 5 (2004GoZZ). Only α decay of ¹⁷¹Pt has been observed (1981De22,1981Ho10,1982En03,1997Uu01,2004GoZZ,2010Sc02). Gross β decay theory predicts a partial β halflife≈2 s (1973Ta30), implying %ε+%β⁺≈2. %ε+%β⁺: from 100-%α. J^π: M1 90γ from (9/2⁻) 90 level; unhindered α decay to (7/2⁻) ¹⁶⁷Os g.s same As g.s. J^π for ¹⁶⁹Pt but not ¹⁷³Pt. T_{1/2}: unweighted average of 40 ms 10 (1981De22), 43 ms 3 (1996Pa01), 51 ms 2 (2002Ro17), 48 ms 1 (2010Sc02); the weighted average is 48.1 ms 12. Other values:>20 ms (1981Ho10), 20 ms 6 (1982En03), 25 ms +11-6 (1997Uu01).
89.5 7	(9/2-)		E	J^{π} : M2 323 γ from (13/2 ⁺) 413 level.
412.6 [#] 10	(13/2 ⁺)	901 ns 9	BCDE	%IT=100 T _{1/2} : from 2010Sc02 In ¹⁷¹ Pt IT decay.
857.6 [#] 10	$(17/2^+)$		BCD	
1462.3 [#] 10 1473.5 10	$(21/2^+)$		BCD D	
2131.7 [#] 10	$(25/2^+)$		BCD	
2816.6 [#] 10	$(29/2^+)$		BCD	
3516.6? [#]	$(33/2^+)$		В	

[†] From adopted $E\gamma$ data.

[±] From (⁷⁸Kr,3n γ), except as noted; based on the very close similarity between level spacings in ¹⁷¹Pt and in the g.s. band of ¹⁷²Pt, 1998Se20 suggest that the states excited in their fusion-evaporation reaction (which is expected to strongly populate (ν i_{13/2}) bands) result from the coupling of a rotationally-aligned i_{13/2} neutron to 0⁺, 2⁺, ..., 10⁺ excitations of the core.

[#] Band(A): probable $i_{13/2}$, $\alpha = +1/2$ band. Either $\nu i_{13/2}$ weakly coupled to vibrational core or decoupled $\nu i_{13/2}$ rotational band with $i_{13/2}^2$ alignment (2003Ba32).

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.‡	α &	Comments
89.5	(9/2 ⁻)	89.5 [#] 7	100	0.0	$(7/2^{-})$	M1	9.15 25	Mult.: from $\alpha(K)$ exp In IT decay.
412.6	$(13/2^+)$	323.1 [#] 6	100	89.5	(9/2-)	M2	0.926 15	B(M2)(W.u.)=0.165 3
								Mult.: from α (K)exp and sub-shell ratios In IT decay.
857.6	$(17/2^+)$	445.0 2	100	412.6	$(13/2^+)$	(E2)	0.0331	
1462.3	$(21/2^+)$	604.7 2	100	857.6	(17/2 ⁺)	(E2)	0.01581	E_{γ} : other: 605.4 2 In ¹¹⁶ Sn(⁵⁸ Ni,3n γ), Sn(⁶⁰ Ni,xn γ).
1473.5		615.9 2	100	857.6	$(17/2^+)$			
2131.7	(25/2 ⁺)	669.4 2	100	1462.3	$(21/2^+)$	(E2)	0.01260	E_{γ} : other: 670.2 3 In ¹¹⁶ Sn(⁵⁸ Ni,3nγ), Sn(⁶⁰ Ni,xnγ).
2816.6	$(29/2^+)$	684.9 <i>2</i>	100	2131.7	$(25/2^+)$			
3516.6?	$(33/2^+)$	700 [@] a	100	2816.6	$(29/2^+)$			

[†] From ⁹⁶Ru(⁷⁸Kr,2pn γ), except as noted. [‡] From $\gamma(\theta)$ In ⁹⁶Ru(⁷⁸Kr,2pn γ), assigning $\Delta \pi$ =(No) to intraband transitions, except As noted.

[#] From IT decay.

[@] From ${}^{96}Mo({}^{78}Kr,3n\gamma)$, uncertainty unstated by authors.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.


```
Level Scheme
```

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

¹⁷¹₇₈Pt₉₃

Adopted Levels, Gammas

¹⁷¹₇₈Pt₉₃