⁹⁶Ru(⁷⁸Kr,2pnγ) 2003Ba32

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Coral M. Baglin, E. A. Mccutchan	NDS 151, 334 (2018)	30-Jun-2018			

2003Ba32: $E(^{78}\text{Kr})\approx 363 \text{ MeV}$ (mid-target); 96.52% enriched ⁹⁶Ru target; JUROSPHERE Ge detector array at target (15 EUROGAM-type detectors, 5 NORDBALL-type detectors and 5 TESSA-type detectors); RITU gas-filled recoil-separator with 16 position-sensitive Si strip detectors In focal plane, preceded by a multiwire proportional avalanche counter and followed by a Ge detector; α -decay tagging technique allowing \leq 130 ms between recoil implant and α decay; measured E γ , I γ , $\gamma\gamma$ coin, $\gamma(\theta)$, recoil- α - γ and parent-daughter α correlations.

Other: 2010Sc02 (E=348 MeV); observed 445 γ , 605 γ , 670 γ prompt gammas, with 90 γ and 323 γ from decay of 0.9 μ s isomer In delayed coincidence.

¹⁷¹Pt Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0+x [#]	$(13/2)^+$
445.0+x [#] 2	$(17/2)^+$
1049.7+x [#] 3	$(21/2)^+$
1060.9+x 3	
1719.1+x [#] 4	$(25/2)^+$
2404.0+x [#] 4	

[†] From E γ . values are relative to E(13/2⁺ level)=x; from Adopted Levels, x=412.6 10, not 0 as assumed by the authors.

[‡] From 2003Ba32, based on deduced $i_{13/2}$ band structure.

[#] Band(A): Band based on $(13/2^+)$ level. Either $\nu i_{13/2}$ weakly coupled to vibrational core or decoupled $\nu i_{13/2}$ rotational band with $i_{13/2}^2$ alignment.

(171 DO)

						γ(Ft)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.
^x 156.4 4	1.9 3					
x236.5 3	2.5 3					
^x 252.4 3	2.2 3					
x285.8 3	4.9 <i>4</i>					
^x 340.0 3	6.6 7					
x350.5 3	1.9 <i>3</i>					
^x 374.5 3	4.3 4					
^x 382.7 3	1.8 <i>3</i>					
445.0 2	100 4	445.0+x	$(17/2)^+$	0.0+x	$(13/2)^+$	Q
^x 462.2 3	4.5 4					
x515.6 3	8.6 13					
^x 520.5 3	23.4 19					
^x 528.8 4	12.3 11					
^x 554.0 2	8.2 6					
^x 586.5 3	5.2 5					
604.7 2	72.7 24	1049.7+x	$(21/2)^+$	445.0+x	$(17/2)^+$	Q
615.9 2	14.5 8	1060.9+x		445.0+x	$(17/2)^+$	
^x 633.0 4	5.8 7					
^x 651.7 3	4.8 5					
669.4 2	37.1 <i>13</i>	1719.1+x	$(25/2)^+$	1049.7+x	$(21/2)^+$	Q
684.9 2	20.1 11	2404.0+x		1719.1+x	$(25/2)^+$	
^x 747.8 3	4.9 5					
^x 758.2 3	6.3 6					

Continued on next page (footnotes at end of table)

⁹⁶Ru(⁷⁸Kr,2pnγ) 2003Ba32 (continued)

$\gamma(^{171}\text{Pt})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)
^x 772.7 3	14.0 9	

x1208.0 5 10.7 9

[†] From 2003Ba32.

[±] Intensity relative to I(445 γ)=100; from 2003Ba32.

[#] From $\gamma(\theta)$ plots shown in figure 2 of 2003Ba32.

 $x \gamma$ ray not placed in level scheme.

 $^{171}_{78}{\rm Pt}_{93}$

¹⁷¹₇₈Pt₉₃