	Histor	у	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin, E. A. Mccutchan	NDS 151, 334 (2018)	30-Jun-2018

 $Q(\beta^{-})=-7890 \ 40$; $S(n)=8447 \ 20$; $S(p)=2678 \ 29$; $Q(\alpha)=5371 \ 4$ 2017Wa10 S(2n)=19720 30; S(2p)=3962 24; Q(\varepsilon p)=5698 22 (2017Wa10).

Identification: excitation functions for 156 Dy(20 Ne,xn) and known positions for α 's from 172 Os, 173 Os, 174 Os; Q(α) consistent with α -decay systematics (1972To06).

Decay α observed following ²⁰Ne+¹⁵⁶Dy and ¹³⁶Xe+¹³⁶Xe studies (2009Og03). α : Additional information 1.

¹⁷¹Os Levels

The band structure is adopted from 1999Ba13.

 $(21/2^{-})$

 $(23/2^+)$

1642.95[#] 10

1752.95^h 13

BC

BC

Cross Reference	e (XREF) Flags
-----------------	----------------

Α	175 Pt α	decav
-	11.12.1	uccav

- $\begin{array}{c} \mathbf{B} & {}^{144}\mathrm{Sm}({}^{30}\mathrm{Si},3\mathrm{n}\gamma) \\ \mathbf{B} & {}^{1165}\mathrm{G}({}^{58}\mathrm{Ni};2) \end{array}$

				$C = \frac{110}{\mathrm{Sn}(30}\mathrm{Ni},2\mathrm{pn}\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	(5/2 ⁻)	8.3 s 2	ABC	 %ε+%β⁺=98.20 21; %α=1.80 21 %α: weighted average of 1.7 3 (1979Ha10) (deduced from intensity ratio of ¹⁷¹Os daughter α's and ¹⁷⁵Pt parent α's in same spectrum) and 1.9 3 (1995Hi02) (assuming mult=E2 for the 190γ(¹⁷¹Re) produced in ¹⁷¹Os ε decay). T_{1/2}: from 5241α(t) (1995Hi02). Others: 7.8 s 10 (1978Sc26), 8.2 s 8 (1972To06), 10.0 s 10 (1995Hi02, 190γ(t)), 8.0 s 24 (1995Hi02, 705γ(t)) and 8 s 2 (1995Hi02, 5166α(t)). Weighted average of all data is also 8.3 s 2.
76.70 [@] 7	$(7/2^{-})$		ABC	
186.32 ^b 13	$(13/2^+)$		BC	
207.57 [#] 7	(9/2 ⁻)		ABC	
211.0 4	$(7/2^-, 9/2^-)$		Α	J^{π} : M1 134.1 γ to (7/2 ⁻).
440.12 ^b 13	$(17/2^+)$		BC	
445.20 [@] 8	$(11/2^{-})$		BC	
601.16 [#] 8	$(13/2^{-})$		BC	
626.00 ^C 15	$(15/2^+)$		С	
887.26 ^b 12	$(21/2^+)$		BC	
894.97 [@] 9	$(15/2^{-})$		BC	
1067.99 [°] 15	$(19/2^+)$		С	
1110.10 [#] 9	$(17/2^{-})$		BC	
1138.2 ⁸ 3	$(17/2^+)$		С	
1285.89 ^f 22	$(19/2^+)$		С	
1400.39 [@] 10	$(19/2^{-})$		BC	
1454.04 ^b 12	$(25/2^+)$		BC	
1538.7 <mark>8</mark> <i>3</i>	$(21/2^+)$		С	
1547.3 3	(22 (24))		C	
1619.61° <i>15</i>	$(23/2^{+})$		C	

Adopted Levels, Gammas (continued)

E(level) [†]	J ^π ‡	XREF	E(level) [†]	Jπ‡	XREF	E(level) [†]	J ^π ‡	XREF
1801 525 22	(22/2+)		2720.2.7			2068 72@ 10	(20/2-)	DC
1801.32 22	$(25/2^{+})$	C	2720.57		C	3908.75 - 19	(39/2)	BC
1878.2 8		С	2725.77 ⁰ 13	$(33/2^+)$	BC	4054.72 [×] 16	$(41/2^{-})$	BC
1910.98 [@] 10	$(23/2^{-})$	BC	2793.55 [°] 18	$(31/2^+)$	С	4082.29 ^c 25	$(39/2^+)$	С
2017.5 ^g 3	$(25/2^+)$	С	2840.48 [@] 12	$(31/2^{-})$	BC	4159.60 ^e 20	$(41/2^+)$	С
2081.73 ^b 13	$(29/2^+)$	BC	2893.80 ^{&} 12	$(33/2^{-})$	BC	4299.0 [#] 5	$(41/2^{-})$	С
2141.07 [#] 10	$(25/2^{-})$	BC	3078.1 ^{<i>f</i>} 4	$(31/2^+)$	С	4459.14 ^a 22	$(43/2^{-})$	С
2161.88 ^h 12	$(27/2^+)$	BC	3115.31 ^a 13	$(35/2^{-})$	BC	4538.94 ^d 19	$(45/2^+)$	BC
2201.88 ^c 16	$(27/2^+)$	С	3117.8 [#] 4	$(33/2^{-})$	С	4635.5 [@] 5	$(43/2^{-})$	С
2247.2 5		С	3174.7 <mark>8</mark> 5	$(33/2^+)$	С	4766.75 ^{&} 24	$(45/2^{-})$	BC
2337.15 ^{&} 19	$(25/2^{-})$	С	3333.39 ^d 14	$(37/2^+)$	BC	4791.9 ^c 4	$(43/2^+)$	С
2359.36 [@] 11	$(27/2^{-})$	BC	3372.74 [@] 15	$(35/2^{-})$	BC	4883.7 ^e 3	$(45/2^+)$	С
2413.56 ^a 12	$(27/2^{-})$	BC	3415.76 ^{&} <i>13</i>	$(37/2^{-})$	BC	5219.0 ^a 5	$(47/2^{-})$	С
2423.27 ^{<i>f</i>} 25	$(27/2^+)$	С	3415.79 ^c 22	$(35/2^+)$	С	5277.81 ^d 24	$(49/2^+)$	BC
2520.94 ^{&} 12	$(29/2^{-})$	BC	3505.79 <mark>b</mark> 16	$(37/2^+)$	BC	5503.2 ^{&} 4	$(49/2^{-})$	С
2559.5 <mark>8</mark> 4	$(29/2^+)$	С	3666.8 [#] 4	$(37/2^{-})$	С	5644.5 ^e 4	$(49/2^+)$	С
2629.55 [#] 25	(29/2-)	BC	3725.93 ^a 15	(39/2-)	BC	6109.5 ^d 11	$(53/2^+)$	С
2675.99 ^a 12	$(31/2^{-})$	BC	3897.10 ^d 15	$(41/2^+)$	BC	6260.2 ^{&} 21	$(53/2^{-})$	С

¹⁷¹Os Levels (continued)

[†] From least-squares adjustment of adopted $E\gamma$.

[‡] Tentative values based on inferred γ -ray multipolarities, coincidence data, and rotational structure in (HI,xn γ) (1999Ba13), except where noted. Particle-rotor calculations place Fermi surface close to 5/2[523] orbital; energy difference between 441.1 and 186.9 levels matches expectations for $17/2^+$ to $13/2^+$ transition in decoupled band (1990Ba29).

[#] Band(A): 5/2[523], α =+1/2 band. E band; becomes EBC band as J increases.

[@] Band(a): 5/2[523], $\alpha = -1/2$ band. F band; becomes FBC band as J increases.

& Band(B): $(v 5/2[523])(i_{13/2})^2 \alpha = +1/2$ band. EAB band; becomes EABCD band as J increases.

^{*a*} Band(b): $(v 5/2[523])(i_{13/2})^2 \alpha = -1/2$ band. FAB band; becomes FABCD band as J increases.

^b Band(C): $i_{13/2}$, $\alpha = +1/2$ band. A band.

^c Band(D): $i_{13/2}$, $\alpha = -1/2$ band. B band; becomes BAD band as J increases.

^{*d*} Band(E): ABC, $\alpha = +1/2$ band. Yrast for J \geq 37/2.

^{*e*} Band(F): ACD, $\alpha = +1/2$ band.

^{*f*} Band(G): A \otimes (γ vibration), α =-1/2 band.

^{*g*} Band(H): A⊗(β vibration), α =+1/2 band.

^{*h*} Band(I): B \otimes (octupole vibration), $\alpha = -1/2$ band. $i_{13/2}$, $\alpha = -1/2$ band tentatively suggested in (1990Ba29) but assignment revised in (1999Ba13) (first author for both publications is the same).

					Ad	lopted Lev	els, Gamı	nas (continued)
							$\gamma(^{171}\text{Os}$	<u>)</u>
E _i (level)	J^{π}_i	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α	Comments
76.70	(7/2 ⁻)	76.60 10	100	0.0	(5/2 ⁻)	M1	12.02	$\alpha(K)=9.89\ 15;\ \alpha(L)=1.639\ 24;\ \alpha(M)=0.376\ 6;\ \alpha(N)=0.0919\ 14;\ \alpha(O)=0.01586\ 23\ \alpha(P)=0.001179\ 18\ E_{\gamma}:\ other:\ 76.7\ 3\ from\ \alpha\ decay.$
207.57	(9/2 ⁻)	130.78 4	100 13	76.70	(7/2 ⁻)	M1	2.61	Mult: from α (K)exp in α decay. α (K)=2.16 3; α (L)=0.350 5; α (M)=0.0803 12; α (N)=0.0196 3; α (O)=0.00338 5 α (P)=0.000252 4 I _{\gamma} : weighted average from (³⁰ Si,3n γ) and (⁵⁸ Ni,2pn γ). E _w : other: 130.8 4 from α decay.
		207.64 9	24 7	0.0	(5/2 ⁻)	[E2]	0.293	Mult.: from $\alpha(K)$ exp in α decay. $\alpha(K)=0.1538\ 22;\ \alpha(L)=0.1051\ 15;\ \alpha(M)=0.0264\ 4;\ \alpha(N)=0.00636\ 9;\ \alpha(O)=0.000964\ 14$ $\alpha(P)=1.451\times10^{-5}\ 21$
211.0	(7/2 ⁻ ,9/2 ⁻)	134.1 4		76.70	(7/2 ⁻)	M1	2.43	I_{γ} : weighted average from (³⁰ Si,3nγ) and (³⁸ Ni,2pnγ). E_{γ} : other: 207.9 5 from α decay. $\alpha(K)=2.01 4$; $\alpha(L)=0.326 6$; $\alpha(M)=0.0747 13$; $\alpha(N)=0.0182 3$; $\alpha(O)=0.00315 6$ $\alpha(P)=0.000234 4$ E_{γ} : from α decay.
		211.2 5		0.0	(5/2-)			Mult.: from $\alpha(\mathbf{K})$ exp in α decay. E _y : from α decay.
440.12	$(17/2^+)$	253.80 3	100	186.32	$(13/2^+)$, <u>-</u>
445.20	(11/2)	237.49 5 368.58 4	31.4 <i>27</i> 100 <i>10</i>	207.57	(9/2) $(7/2^{-})$			
601.16	$(13/2^{-})$	155.76 12	4.3 3	445.20	$(11/2^{-})$			
(0(00	(15/0+)	393.61 4	100 5	207.57	$(9/2^{-})$			
626.00	(15/2*)	185.84 <i>12</i> 439.64 <i>12</i>	30 4 100 79	440.12	$(1/2^{+})$ $(13/2^{+})$			
887.26	$(21/2^{+})$	447.16 3	100 19	440.12	$(17/2^+)$	0		E_{γ} : other: 447.7 2 in (³⁰ Si.3n γ).
894.97	(15/2-)	449.78 5	100	445.20	$(11/2^{-})$			
1067.99	$(19/2^+)$	441.94 9	78 6	626.00	$(15/2^+)$			
1110.10	$(17/2^{-})$	627.82 <i>13</i>	100 10	440.12	$(1^{2}/2^{-1})$			E : other: 500 8 2 in $({}^{30}Si 2nc)$
1138.2	$(17/2^+)$	951.93	100	186.32	$(13/2^+)$			E_{γ} . outer. 503.6 2 III ($-51,511\gamma$).
1285.89	$(19/2^+)$	845.50 22	100	440.12	$(17/2^+)$			
1400.39	(19/2 ⁻)	505.42 4	100	894.97	(15/2-)			E_{γ} : other: 506.1 2 in (³⁰ Si,3n γ).
1454.04	$(25/2^+)$	566.79 <i>3</i>	100	887.26	$(21/2^+)$	Q		E_{γ} : other: 567.6 2 in (³⁰ Si,3n γ).
1538.7	$(21/2^+)$	400.56 <i>17</i> 1098.5 <i>3</i>	47 5 100 <i>11</i>	1138.2 440.12	$(17/2^+)$ $(17/2^+)$			
1547.3		659.99 27	100	887.26	$(21/2^+)$			
1619.61	$(23/2^+)$	551.57 7	100 5	1067.99	(19/2+)			
		732.42 18	39 <i>3</i>	887.26	$(21/2^+)$			

ω

From ENSDF

 $^{171}_{76}\mathrm{Os}_{95}$ -3

L

Adopted Levels, Gammas (continued)

$\gamma(^{171}\text{Os})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	δ#	Comments
1642.95	$(21/2^{-})$	532.84 4	100	1110.10	$(17/2^{-})$			
1752.95	$(23/2^+)$	865.65 8	100	887.26	$(21/2^+)$	D+Q	+4.3 +24-14	E_{γ} : other: 866.3 2 in (³⁰ Si,3n γ).
1801.52	$(23/2^+)$	515.26 26	43 6	1285.89	$(19/2^+)$			
1979.0		914.60 24	100 9	887.26	$(21/2^+)$			
10/0.2	$(22/2^{-})$	990.9 7 510.60 <i>4</i>	100 1	007.20 1400.20	$(21/2^{+})$ $(10/2^{-})$			E : other: 511.2.2 in $(30\text{Si}, 2na)$
1910.98	(23/2)	1022 0 1	13 1 13	887.26	(19/2) $(21/2^+)$			E_{γ} : other: 511.5 2 III (* SI,SII γ).
2017.5	$(25/2^{+})$	478.86 13	100	1538.7	$(21/2^{+})$ $(21/2^{+})$			
2081.73	$(29/2^+)$	627.66 4	100	1454.04	$(25/2^+)$	0		E_{x} ; other: 628.6.2 in (³⁰ Si.3ny)
2141.07	$(25/2^{-})$	498.13 4	100	1642.95	$(21/2^{-})$	×		E_{γ} : other: 498.7 2 in (³⁰ Si.3n γ).
2161.88	$(27/2^+)$	408.96 5	74 3	1752.95	$(23/2^+)$	0		E_{ν} ; other: 409.8 3 in (³⁰ Si.3n ν).
		518.32 24	23.6 21	1642.95	$(21/2^{-})$			
		708.05 9	100 5	1454.04	$(25/2^+)$			E_{γ} : other: 708.7 2 in (³⁰ Si,3n γ).
2201.88	$(27/2^+)$	582.23 7	100 5	1619.61	$(23/2^+)$			
		748.24 23	27.0 26	1454.04	$(25/2^+)$			
2247.2	(25/2-)	793.2 4	100	1454.04	$(25/2^+)$			
2337.15	(25/2)	582.9 5	100	1/52.95	$(23/2^{-})$			E_{γ} : fits placement very poorly (deviates from expected value by $\approx 4\sigma$).
2339.30	$(27/2^{-})$	440.43 J 502 13 12	57 1	1910.98	$(23/2^{-})$			F : other: 503.5.3 in (30 Si 3na)
2415.50	(21/2)	050 54 12	100.6	1454.04	$(25/2^+)$			E_{γ} , other: 960.5.3 in (30,517).
		JJJ.J+12	100 0	17,7,07	(25/2)			Mult: $AI=1$ transition from $\gamma(\theta)$ in (HLxn γ).
2423.27	$(27/2^+)$	621.77 25	96 11	1801.52	$(23/2^+)$			
		969.2 <i>3</i>	100 11	1454.04	$(25/2^+)$			
2520.94	$(29/2^{-})$	183.37 17	6.8 8	2337.15	$(25/2^{-})$			
		359.10 4	100 4	2161.88	$(27/2^+)$	D		E_{γ} : other: 359.7 2 in (³⁰ Si,3n γ).
		379.92 8	36.1 19	2141.07	$(25/2^{-})$			I_{γ} : other: 26 5 in (³⁰ Si,3n γ).
2550.5	$(20)(2^+)$	439.04 10	33.8 19	2081.73	$(29/2^+)$			
2559.5	$(29/2^+)$	541.94 19	100	2017.5	$(25/2^+)$			F_{1} (1, 490.0.2; $300:2$)
2629.55	(29/2)	488.48 22	100 5	2141.07	(25/2)	0		E_{γ} : other: 489.2 3 in (* \$1,3n γ).
2075.99	(31/2)	202.30 5	100 J 65 3	2415.50	$(27/2^{-})$	Q		$1 : \text{other: } 30 \ 10 \text{ in } ({}^{30}\text{Si} 3\text{ne})$
2720.3		1266.3.6	100	1454.04	$(27/2^{+})$ $(25/2^{+})$			r_{γ} . other. 55 To in (51,517).
2725.77	$(33/2^+)$	644.04 4	100	2081.73	$(29/2^+)$	0		E_{x} : other: 644.8 2 in (³⁰ Si.3ny).
2793.55	$(31/2^+)$	591.67 7	100	2201.88	$(27/2^+)$	Č.		
2840.48	$(31/2^{-})$	481.12 5	100	2359.36	$(27/2^{-})$			
2893.80	$(33/2^{-})$	372.86 4	100	2520.94	$(29/2^{-})$	Q		E_{γ} : other: 373.5 2 in (³⁰ Si,3n γ).
3078.1	$(31/2^+)$	654.86 21	100	2423.27	$(27/2^+)$			
3115.31	$(35/2^{-})$	439.31 5	100	2675.99	$(31/2^{-})$			
3117.8	$(33/2^{-})$	488.3 3	100	2629.55	$(29/2^{-})$			
31/4./	$(33/2^+)$ $(37/2^+)$	013.24 24 607.62 4	100	2009.0 7775 77	$(29/2^+)$ $(33/2^+)$	0		E : other: $608.4.2$ in $({}^{30}Si.3nd)$
3353.39	$(37/2^{-})$	532.26.8	100	2123.11	(35/2) $(31/2^{-})$	Q		E_{γ} . 00051. 000.4 2 III (31,317 γ).
3415.76	$(37/2^{-})$	521.96 5	100	2893.80	$(33/2^{-})$	0		
	(= ./=)				(,-)	×.		

4

From ENSDF

Adopted Levels, Gammas (continued)

$\gamma(^{171}\text{Os})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
3415.79	$(35/2^+)$	622.24 12	100	2793.55 (3	$31/2^+$)		
3505.79	$(37/2^+)$	780.03 10	100	2725.77 (3	$33/2^+$)		
3666.8	$(37/2^{-})$	548.92 9	100	3117.8 (3	33/2-)		
3725.93	$(39/2^{-})$	610.62 8	100	3115.31 (3	35/2-)		
3897.10	$(41/2^+)$	563.71 6	100	3333.39 (3	37/2+)		E_{γ} : other: 564.4 2 in (³⁰ Si,3n γ).
3968.73	$(39/2^{-})$	595.99 12	100	3372.74 (3	35/2-)		E_{γ} : other: 597.1 <i>3</i> in (³⁰ Si,3n γ).
4054.72	$(41/2^{-})$	638.96 8	100	3415.76 (3	37/2-)	Q	E_{γ} : other: 640.1 2 in (³⁰ Si,3n γ).
4082.29	$(39/2^+)$	666.50 12	100	3415.79 (3	35/2+)		·
4159.60	$(41/2^+)$	653.83 15	100 8	3505.79 (3	37/2+)		
		826.15 23	60 <i>6</i>	3333.39 (3	37/2+)		
4299.0	$(41/2^{-})$	632.20 16	100	3666.8 (3	37/2-)		
4459.14	$(43/2^{-})$	733.21 16	100	3725.93 (3	39/2-)		20
4538.94	$(45/2^+)$	641.84 <i>11</i>	100	3897.10 (4	41/2+)		E_{γ} : other: 642.7 2 in (³⁰ Si,3n γ).
4635.5	$(43/2^{-})$	666.8 4	100	3968.73 (3	39/2-)		
4766.75	$(45/2^{-})$	712.02 18	100	4054.72 (4	41/2-)		
4791.9	$(43/2^+)$	709.6 3	100	4082.29 (3	39/2 ⁺)		
4883.7	$(45/2^{+})$	724.06 17	100	4159.60 (4	$\frac{11}{2^{+}}$		
5219.0	(4//2)	759.9 4	100	4459.14 (4	43/2)		
5277.81	$(49/2^+)$	738.86 15	100	4538.94 (4	45/2 ⁺)		E_{γ} : other: 740.1 3 in (⁵⁰ S1,3n γ).
5503.2	(49/2)	736.5 3	100	4/66.75 (4	45/2) 45/2+)		
5644.5	$(49/2^+)$	/00.8 3	100	4885./ (4	$\frac{1}{10}(2^+)$		
0109.5	$(53/2^{-})$	831./ <i>10</i>	100	5502.2 (4	$\frac{19}{2^{-}}$		
0200.2	(55/2)	151.0 20	100	5505.2 (4	+9/2)		

 \mathbf{v}

[†] From ¹¹⁶Sn(⁵⁸Ni,2pn γ), except where noted. [‡] Relative photon branching from each level; values are from ¹¹⁶Sn(⁵⁸Ni,2pn γ), except as noted. [#] From $\gamma(\theta)$ in (³⁰Si,3n γ).

Level Scheme

Intensities: Relative photon branching from each level

¹⁷¹₇₆Os₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁷¹₇₆Os₉₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁷¹₇₆Os₉₅

¹⁷¹₇₆Os₉₅

