¹⁷¹Ta ε decay **1974La24,1970Re11**

	Histor	y	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin, E. A. Mccutchan	NDS 151, 334 (2018)	30-Jun-2018

Parent: ¹⁷¹Ta: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=23.3 \text{ min } 3$; $Q(\varepsilon)=3710 \ 40$; $\%\varepsilon+\%\beta^+$ decay=100.0

1974La24, 1970Re11: sources from ¹⁶⁵Ho(¹²C,6n), $E(^{12}C)=80$ MeV and ¹⁵⁹Tb(¹⁶O,4n), $E(^{16}O)=93$ MeV; metallic Ho and Tb targets, chemical separation; measured $E\gamma$, $I\gamma$ (Ge(Li), Si(Li)), $\gamma\gamma$ coin, $\gamma\gamma(t)$ 3-parameter coin. Incomplete transition data and unknown g.s. feeding (first-forbidden transition) prevent construction of complete decay scheme. See comment with 198.9 γ concerning data from 1987Sz03.

Other: 1972Ch45.

The tentative decay scheme is based on that of 1974La24; however, the ¹⁷¹Ta parent configuration adopted here is $5/2^+$ 5/2[402], not 7/2[404] as proposed by 1974La24. The decay scheme has not been normalized because $\varepsilon + \beta^+$ feeding to the g.s. is likely ($\Delta J \leq 1, \Delta \pi = no$) buts its magnitude is unknown. The strongest branches feed ($3/2^-$), ($5/2^-$) and ($7/2^-$) states (50, 142, 255, 506, 560 levels), as might be expected from a ($5/2^-$) parent; however, significant branches also appear to feed ($9/2^-$) and (11/2) states and, although considerable I γ remains unplaced, it does not appear adequate to explain all such feeding. Many of those J^{π} assignments are very tentative and may in fact be incorrect. Note that, even in the absence of g.s. feeding, log *ft* would exceed 5.9 for the strongest branches to excited states.

¹⁷¹Hf Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	7/2 ⁽⁺⁾	12.1 h 4	T _{1/2} : from Adopted Levels. Additional information 1.
21.94 [@] 9	$1/2^{(-)}$	29.5 s 9	$T_{1/2}$: from Adopted Levels.
49.52 ^{&} 7	(5/2 ⁻)		$I(\gamma+ce)$ imbalance At level: 56 16.
61.86 [#] 6	$(9/2^+)$		
88.69 [@] 9	$(3/2^{-})$		
102.55 [@] 8	$(5/2^{-})$		
141.62 ^{&} 9	$(7/2^{-})$		$I(\gamma+ce)$ imbalance At level: 38 8.
146.02 [#] 11	$(11/2^+)$		
254.90 [@] 9	$(7/2^{-})$		$I(\gamma+ce)$ imbalance At level: 25 4.
258.67 & 8	(9/2-)		
278.01 [@] 9	(9/2 ⁻)		
399.14 ^{&} 11	$(11/2^{-})$		
492.57 ^b 9	$(5/2^+)$		
493.97 [°] 10	$(5/2^{-})$		
506.22 ^{<i>d</i>} 7	(7/2 ⁻)		$I(\gamma+ce)$ imbalance At level: 44 6. Additional information 2.
508.67 [@] 11	$(11/2^{-})$		
537.38 [@] 11	(13/2 ⁻)		
554.53? ^b 8	$(7/2^+)$		$I(\gamma+ce)$ imbalance At level: 20.1 17.
560.00 ^{<i>a</i>} 10	$(3/2^{-})$		$I(\gamma+ce)$ imbalance At level: 25.8 18.
565.02° 14	(7/2)		
592.39^{a} 11	(9/2)		$I(\alpha \mid \alpha \alpha)$ imbalance At level: 20.0.14
709.85^{a} 11	(3/2) $(7/2^{-})$		$I(\gamma+ce)$ initialitie At level. 20.0 14.
767.62 7	(72)		
788.98 7	$(7/2, 9/2^+)$		
832.51? ^{<i>a</i>} 14	$(9/2^{-})$		
899.14 9 1001.35 8	(3/2,5/2,7/2) (9/2 ⁻)		

¹⁷¹Hf Levels (continued)

Comments

E(level)[†]

1007.91 8 $(7/2^+, 9/2^-)$ I(γ +ce) imbalance At level: 26.0 24.

1077.02 9

[†] From least-squares fit to $E\gamma$, excluding the 607 γ and 622 γ from the 710 level, neither of which fits its placement well. The reduced χ^2 for the fit is then reduced from 3.8 to 2.3 (cf. Critical value of 1.8).

[‡] From Adopted Levels.

[#] Band(A): 7/2[633] band.

[@] Band(B): 1/2[521] band.

[&] Band(C): 5/2[512] band.

^a Band(D): 3/2[521]? band. Analogous to band known In isotone ¹⁶⁹Yb.

^b Band(E): 5/2[642]? band. Band known In isotone ¹⁶⁹Yb.

^c Band(F): 5/2[523]? band. Band known In isotone ¹⁶⁹Yb.

^d Band(G): 7/2[514]? band.

					$^{171}\mathbf{T}$	a ε decay 1	974La24,1970Re11	(continued)		1
							$\gamma(^{171}\text{Hf})$			
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	δ	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}$	Comments
(14.1)		102.55	(5/2 ⁻)	88.69	(3/2 ⁻)				≥14	unobserved transition; existence ($I(\gamma+ce)\geq 14~6$) suggested by intensity balance At 103 level. E γ from level energy difference
(21.91 12)		21.94	1/2 ⁽⁻⁾	0.0	7/2 ⁽⁺⁾	[E3]		5.47×10 ⁵ 20	131 17	ce(L)/(γ +ce)=0.704 20; ce(M)/(γ +ce)=0.234 11; ce(N+)/(γ +ce)=0.062 4 ce(N)/(γ +ce)=0.066 3; ce(O)/(γ +ce)=0.0064 4; ce(P)/(γ +ce)=3.53×10 ⁻⁶ 18 E _{γ} : from level energy difference. E γ =22.2 in 1974La24. I(γ +ce): 131 17 from intensity balance At 22 level, assuming No ε + β ⁺ branch to this level (Δ J=(2), $\Delta\pi$ =(yes)
49.6 <i>1</i>	100 10	49.52	(5/2-)	0.0	7/2 ⁽⁺⁾	(E1)		0.447		ranshion) and %11=100 from 22 fevel. $\alpha(L)=0.347$ 6; $\alpha(M)=0.0791$ 12; $\alpha(N+)=0.0207$ 4 $\alpha(N)=0.0182$ 3; $\alpha(O)=0.00243$ 4; $\alpha(P)=9.42\times10^{-5}$ 14
61.9 <i>I</i>	9.1 ^{<i>a</i>} 9	61.86	(9/2+)	0.0	7/2 ⁽⁺⁾	(M1+E2)	≈0.2	≈3.57		$\alpha(L) \approx 2.75; \ \alpha(M) \approx 0.640; \ \alpha(N+) \approx 0.174$ $\alpha(N) \approx 0.1508; \ \alpha(O) \approx 0.0219; \ \alpha(P) \approx 0.001107$ δ : from intensity balance at 61.9 level (assuming no $\varepsilon + \beta^+$ feeding of level; $\log f^{lu} > 8.5$ for $(\% \varepsilon + \beta^+ c^5)$
66.7 1	4.5 ^{<i>a</i>} 5	88.69	(3/2 ⁻)	21.94	1/2 ⁽⁻⁾	(M1+E2)		16 <i>3</i>		$\alpha(K)=6$ 5; $\alpha(L)=7$ 6; $\alpha(M)=1.9$ 15; $\alpha(N+)=0.5$ 4 $\alpha(N)=0.4$ 4; $\alpha(Q)=0.06$ 5; $\alpha(P)=0.0005$ 4
80.7 1	4.2 4	102.55	(5/2 ⁻)	21.94	1/2 ⁽⁻⁾	[E2]		8.35		$\begin{aligned} \alpha(K) = 0.447, \ \alpha(C) = 0.0005, \ \alpha(1) = 0.00054\\ \alpha(K) = 1.311 \ 19; \ \alpha(L) = 5.359; \\ \alpha(M) = 1.338 \ 21; \ \alpha(N+) = 0.3496\\ \alpha(N) = 0.3105; \ \alpha(O) = 0.03896; \\ \alpha(P) = 9.63 \times 10^{-5} \ 14 \end{aligned}$
84.3 1	1.60 <i>16</i>	146.02	(11/2 ⁺)	61.86	(9/2+)	M1+E2 [@]	-0.18 [@] +12-14	6.56		$\alpha(K)=5.3 \ 3; \ \alpha(L)=0.96 \ 22; \ \alpha(M)=0.22 \ 6; \ \alpha(N+)=0.061 \ 15 \ \alpha(N)=0.052 \ 13; \ \alpha(O)=0.0078 \ 16; \ \alpha(P)=0.000454 \ 25$
92.2 1	10.9 ^a 11	141.62	(7/2 ⁻)	49.52	(5/2 ⁻)	(M1+E2) [@]		4.96 13		$ \begin{aligned} &\alpha(\text{K}) = 2.7 \ 16; \ \alpha(\text{L}) = 1.8 \ 11; \ \alpha(\text{M}) = 0.4 \ 3; \\ &\alpha(\text{N}+) = 0.11 \ 8 \\ &\alpha(\text{N}) = 0.10 \ 7; \ \alpha(\text{O}) = 0.013 \ 8; \\ &\alpha(\text{P}) = 0.00022 \ 15 \end{aligned} $
117.1 <i>1</i>	5.5 6	258.67	(9/2-)	141.62	(7/2-)	M1(+E2) [@]	-0.11 [@] +11-12	2.54 5		α(K)=2.11 7; α(L)=0.338 24;

ω

From ENSDF

 $^{171}_{72}\mathrm{Hf}_{99}\mathrm{-}3$

 $^{171}_{72}\mathrm{Hf}_{99}\text{--}3$

				¹⁷¹ Ta	ε decay 197	4La24,1970Re1	1 (continued	1)	
$\gamma(^{171}\text{Hf})$ (continued)									
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	${ m J}^{\pi}_i$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	δ	$\alpha^{\boldsymbol{b}}$	Comments	
								α (M)=0.077 7; α (N+)=0.0211 16 α (N)=0.0182 15; α (O)=0.00277 17; α (P)=0.000179 6	
140.5 <i>1</i>	0.80 8	399.14	(11/2 ⁻)	258.67 (9/2-) M1(+E2) [@]	$-0.04^{(0)}$ 10	1.517 24	$\alpha(K)=1.263\ 24;\ \alpha(L)=0.197\ 5;\ \alpha(M)=0.0445\ 13;$ $\alpha(N+)=0.0123\ 4$ $\alpha(N)=0.0106\ 2;\ \alpha(Q)=0.00162\ 4;\ \alpha(D)=0.0001072\ 21$	
152.4 <i>I</i>	5.8 6	254.90	(7/2 ⁻)	102.55 (5/2-) [M1,E2]		0.97 24	$\begin{array}{l} \alpha(N)=0.0100\ 5,\ \alpha(O)=0.00102\ 4,\ \alpha(\Gamma)=0.0001072\ 21\\ \alpha(K)=0.7\ 4;\ \alpha(L)=0.22\ 7;\ \alpha(M)=0.054\ 19;\\ \alpha(N+)=0.014\ 5\\ \alpha(N)=0.013\ 5;\ \alpha(O)=0.0017\ 5;\ \alpha(P)=5.E-5\ 4 \end{array}$	
166.3 <i>1</i>	19.2 ^{<i>a</i>} 19	254.90	(7/2 ⁻)	88.69 (3/2-) E2 [@]		0.540	α (K)=0.277 4; α (L)=0.200 3; α (M)=0.0494 7; α (N+)=0.01298 19 α (N)=0.01148 17; α (O)=0.001488 22; α (P)=1.748×10 ⁻⁵ 25	
175.5 1	16.0 <i>16</i>	278.01	(9/2 ⁻)	102.55 (5/2-) E2 [@]		0.448	$\begin{aligned} &\alpha(\mathbf{K}) = 0.240 \ 4; \ \alpha(\mathbf{L}) = 0.1588 \ 23; \ \alpha(\mathbf{M}) = 0.0391 \ 6; \\ &\alpha(\mathbf{N}+) = 0.01030 \ 15 \\ &\alpha(\mathbf{N}) = 0.00910 \ 13; \ \alpha(\mathbf{O}) = 0.001184 \ 17; \\ &\alpha(\mathbf{P}) = 1.527 \times 10^{-5} \ 22 \end{aligned}$	
^x 198.9 ^{&} 209.2 <i>1</i>	2.9 3	258.67	(9/2 ⁻)	49.52 (5/2-) [E2]		0.247	α (K)=0.1476 21; α (L)=0.0762 11; α (M)=0.0187 3; α (N+)=0.00493 7 α (N)=0.00434 7; α (O)=0.000573 8; α (P)=9.78×10 ⁻⁶ 14	
x240.8 1	0.60 6	506.00	(7)2-)	259 (7 (0)2-	\ \				
247.5° 253.8 1	1.30 13	506.22 508.67	(1/2) $(11/2^{-})$	258.67 (9/2) $254.90 (7/2)^{-1}$) $E2^{@}$		0.1325	Seen in coincidence spectrum only (19/4La24). $\alpha(K)=0.0865 \ 13: \ \alpha(L)=0.0352 \ 5: \ \alpha(M)=0.00854 \ 12:$	
			(,			α (N+)=0.00227 4 α (N)=0.00199 3; α (O)=0.000267 4; α (P)=5.98×10 ⁻⁶ 9	
257.5 ^{<i>a</i>} 1	1.10 ^a 11	399.14	(11/2 ⁻)	141.62 (7/2-) E2 [@]		0.1266	$\alpha(K)=0.0831 \ 12; \ \alpha(L)=0.0332 \ 5; \ \alpha(M)=0.00807 \ 12; \ \alpha(N+)=0.00214 \ 3$	
259.2 ^a 1	0.50 ^a 5	537.38	(13/2 ⁻)	278.01 (9/2-) E2 [@]		0.1240	$\alpha(N)=0.00188 \ 3; \ \alpha(O)=0.000253 \ 4; \ \alpha(P)=5.76\times10^{-6} \ 8$ $\alpha(K)=0.0817 \ 12; \ \alpha(L)=0.0324 \ 5; \ \alpha(M)=0.00786 \ 11;$ $\alpha(N+)=0.00209 \ 3$	
ro(7.10.1	0.500.5							α (N)=0.00183 3; α (O)=0.000246 4; α (P)=5.67×10 ⁻⁶ 8	
^x 281.7 ^a 1	$0.50^{a} 5$ $0.70^{a} 7$							Placed from 537.1 level by 1974La24, but that $13/2^{-1}$ to $7/2^{-1}$ placement seems unlikely.	
352.4 <i>I</i>	3.1 <i>3</i>	493.97 624 85	$(5/2^{-})$	$141.62 (7/2^{-})$)				
x377.1 1	1.50** 15	024.03	(J/2)	234.70 (1/2)			E_{γ} : from 1974La24.	
×392.9 1 406.7 1	0.80 8 4.6 5	899.14	(3/2,5/2,7/2)	492.57 (5/2+)			$E\gamma$ compatible with placement from 899 level.	

4

$\gamma(^{171}\text{Hf})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Comments
409.1 ^e 1		554.53?	$(7/2^+)$	146.02	$(11/2^+)$	E _v : from 1974La24.
423.4 1	3.5 4	565.02	$(7/2^{-})$	141.62	$(7/2^{-})$	
432.1 ^{<i>a</i>} 1	1.20 ^a 12	709.85	$(7/2^{-})$	278.01	$(9/2^{-})$	
444.4 ^C 1	15.6 ^{ca} 16	493.97	$(5/2^{-})$	49.52	$(5/2^{-})$	
444.4 ^C 1	15.6 [°] 16	506.22	$(7/2^{-})$	61.86	$(9/2^+)$	
446.5 ^a 1	3.4 ^a 3	592.39	$(9/2^{-})$	146.02	$(11/2^+)$	
454.7 1	4.5 5	709.85	$(7/2^{-})$	254.90	$(7/2^{-})$	
457.5 ^a 1	1.90 ^a 19	560.00	$(3/2^{-})$	102.55	$(5/2^{-})$	
^x 461.6 ^a 1	2.0^{a} 2					
463.8 1		1001.35	$(9/2^{-})$	537.38	$(13/2^{-})$	
^x 467.4 1						E_{γ} : from 1974La24.
471.3 <i>1</i>	9.0 9	560.00	$(3/2^{-})$	88.69	$(3/2^{-})$	
492.7 [°] 1	13.2 ^c 15	492.57	(5/2 ⁺)	0.0	7/2 ⁽⁺⁾	I_{γ} : deduced from total $I_{\gamma}=14.7$ 15 for three placements and $I_{\gamma}=1.5$ 2 for 1001.3-level placement. $I_{\gamma} \ge 4.6$ 16 is obtained for 492.6-level placement based on intensity balance at the 493 level.
492.7 ^c 1	13.2 ^c 15	554.53?	$(7/2^+)$	61.86	$(9/2^+)$	
492.7 <mark>d</mark> 1	1.5^{d} 2	1001.35	$(9/2^{-})$	508.67	$(11/2^{-})$	L _x : deduced from intensity balance at $(11/2^{-})$ 508.7 level (to which no significant $\varepsilon + \beta^{+}$
501.9.7	226 = 22	1007.01	$(7/2^+ 0/2^-)$	506.22	$(7/2^{-})$	feeding is expected because $\Delta J=3$).
501.8 1	22.0 25	50(.22	(1/2, 9/2)	500.22	(1/2)	
500.4 1	54 <i>5</i>	500.22	(1/2)	102.55	$1/2^{(1)}$	Le such state services that the superstant Le 10 mm internal data have been used to be the 110 (see in 10700-11)
522.5 I x526 2 1	11.0 11	024.83	(3/2)	102.55	(5/2)	1_{γ} : evaluator assumes that the reported $1\gamma = 1.0$ was intended to be $1\gamma = 11.0$ (as in 1970ke11).
520.2 1 530 A^{C} 1	3.0° /	502 30	$(0/2^{-})$	61.86	$(0/2^+)$	
530.4° 1	$3.9 + 3.0^{\circ}$	788.08	$(\frac{9}{2})$	258 67	$(9/2^{-})$	
536.0.1	5.9 - 7 7 8	624.85	(7/2, 9/2)	88.69	$(3/2^{-})$	
538.0.1	14 9 15	560.00	$(3/2^{-})$	21.94	(3/2)	
554 5 <mark>0</mark> 1	$60^{\circ}7$	554 532	$(3/2^{+})$	0.0	$\frac{1}{2}(+)$	
554 5 ^C 1	$6.9^{\circ} 7$	832 512	(1/2) $(0/2^{-})$	278.01	$(0/2^{-})$	
570.9.1	323	1077.02	()/2)	506.22	$(\frac{9}{2})$	
x573.4 1	0.40.4	1077.02		500.22	(1/2)	
606.8 1	3.9 4	709.85	$(7/2^{-})$	102.55	$(5/2^{-})$	
621.7 <i>1</i>	3.6 4	709.85	$(7/2^{-})$	88.69	$(3/2^{-})$	
x630.5 1	2.50 25					
665.0 <i>1</i>	2.50 25	767.62		102.55	$(5/2^{-})$	
^x 678.4 1	2.9 <i>3</i>					
^x 702.8 1	1.50 15					
718.2 <i>1</i>	2.30 23	767.62		49.52	$(5/2^{-})$	
723.3 1	2.50 25	1001.35	(9/2 ⁻)	278.01	(9/2 ⁻)	
727.1 <i>1</i>	4.1 4	788.98	$(7/2, 9/2^+)$	61.86	$(9/2^+)$	
^x 731.6 <i>1</i>	1.50 15					
*736.9 1	1.30 13	1001 25	(0/2-)	054.00	(7.0-)	
/46./ 1	4.5 4	1001.35	(9/2)	254.90	$(1/2^{-})$	

S

 $^{171}_{72}\mathrm{Hf}_{99}\text{--}5$

$\gamma(^{171}\text{Hf})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$	Comments
767.6 1	9.0 9	767.62		0.0	7/2 ⁽⁺⁾	
x782.3 1	2.10 21					
788.9 <i>1</i>	4.5 5	788.98	$(7/2, 9/2^+)$	0.0	$7/2^{(+)}$	
^x 796.7 1	3.3 <i>3</i>					$E\gamma$ compatible with placement from 899 level.
^x 802.3 1	3.3 <i>3</i>					
^x 836.8 1	1.80 18					
861.4 ^e 1	1.70 17	1007.91	$(7/2^+, 9/2^-)$	146.02	$(11/2^+)$	
^x 876.8 1	1.70 17					
899.0 <i>1</i>	1.60 16	899.14	(3/2, 5/2, 7/2)	0.0	$7/2^{(+)}$	
^x 906.7 1	2.0 2				,	
$x^{x}920.1^{a}$ 1	1.20 ^{<i>a</i>} 12					
957.8 ^e 1	1.80 18	1007.91	$(7/2^+, 9/2^-)$	49.52	$(5/2^{-})$	
^x 987.1 1	8.6 9				., ,	
^x 997.0 1	3.1 <i>3</i>					
1001.3 <i>1</i>	2.7 3	1001.35	$(9/2^{-})$	0.0	$7/2^{(+)}$	
1007.8 <i>1</i>	3.4 <i>3</i>	1007.91	$(7/2^+, 9/2^-)$	0.0	$7/2^{(+)}$	
1027.4 <i>1</i>	1.80 18	1077.02		49.52	$(5/2^{-})$	
^x 1087 1						E_{γ} : from 1972Ch45; assignment to ¹⁷¹ Ta decay is probable (T _{1/2} =23.4 min 17).
^x 1435.0 1						E_{v} : from 1974La24.
^x 1527.0 1						$E_{\gamma}^{'}$: from 1974La24.

6

[†] From 1970Re11, except as noted.

[‡] Photon intensity relative to $I\gamma(49.6\gamma)=100$; from 1970Re11, except as noted.

[#] From ce data (measured, but not quoted, by evaluators of 1974Ho38), except where noted.

[@] From Adopted Gammas.

& From 1987Sz03; attributed to ¹⁷¹Ta decay on basis of growth/decay and excitation function data (previously attributed to otherwise unknown 6.3-min ¹⁷¹Ta). E γ and growth/decay data are also consistent with ¹⁶⁸Ta decay, but experimental conditions were inappropriate for production of ¹⁶⁸Ta and other gammas associated with that decay were not observed by 1987Sz03. Transition is intense relative to other ¹⁷¹Ta γ 's, but 1987Sz03 do not discuss findings as they relate to present decay scheme.

^{*a*} From 1974La24. No uncertainties are indicated in 1974La24: however, the same authors, in 1970Re11, report $\Delta E=0.1$ keV and $\Delta I\gamma < 10\%$ for the many transitions reported in both 1970Re11 and 1974La24. The evaluator, therefore, assigns the same uncertainties to data reported in 1974La24 alone.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*c*} Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

^e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁷¹Ta ε decay 1974La24,1970Re11

Decay Scheme

¹⁷¹₇₂Hf₉₉

$^{171}{\rm Ta}~\varepsilon$ decay 1974La24,1970Re11

8

¹⁷¹Ta ε decay 1974La24,1970Re11

¹⁷¹₇₂Hf₉₉

Band(G): 7/2[514]? band

(9/2⁻) 592.39

Band(F): 5/2[523]? band

(7/2⁻) 565.02

(7/2⁻) 506.22

(5/2⁻) 493.97

 $^{171}_{72}{
m Hf}_{99}$