Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Coral M. Baglin, E. A. Mccutchan	NDS 151, 334 (2018)	30-Jun-2018						

 $Q(\beta^{-}) = -11040 \ SY; \ S(n) = 11.88 \times 10^{3} \ 20; \ S(p) = -1448 \ 10; \ Q(\alpha) = 7085 \ 11 \ 2017Wa10 \ \Delta Q(\beta^{-}) = 300 \ (2017Wa10).$

S(2n)=21920 (syst) 300; S(2p)=50 30 (2017Wa10).

Identification: ⁹⁶Ru(⁷⁸Kr,p2n); E=389 MeV, (α =171 implant)- α -6410 α (¹⁶⁷Ir) correlation (1997Da07); E=375 MeV, (α =171 implant)- ρ - α (¹⁷⁰Pt) correlation (1999Po09).

Recent calculations of partial p and/or α T_{1/2} and/or Q value: 2018Zh02, 2017Bu14, 2017Sa54, 2016Li04, 2016Qi02, 2016Te03, 2016Wa26, 2016Zd01, 2015Sh03, 2014Ca27, 2014Gu28, 2014Wa16, 2014Zh39, 2012Qi03, 2012Ro17, 2011Pa02, 2011Ro36, 2011Sa60.

¹⁷¹Au Levels

Cross Reference (XREF) Flags

A 96 Ru(78 Kr,p2n γ)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	(1/2 ⁺)	22 µs +3-2	A	⁶ / _p =100 (2004Ke06) $T_{1/2}$: from 2004Ke06. Others: 17 μs +9–5 (1999Po09), 37 μs +7–5 (2003Bb21). ⁶ / _p : from 2004Ke06. Other: existence of a p decay branch is implied in 1997Da07 by observation of ¹⁷⁰ Pt α decay following unobserved ¹⁷¹ Au p decay. J^{π} : configuration=(π s _{1/2}) (1999Po09, 2004Ke06) based on consistency between proton partial $T_{1/2}$ calculated for s _{1/2} orbital (using WKB approximation) and observed partial $T_{1/2}$: analogous to low-lying structure of neighboring nuclides.
259 13	(11/2 ⁻)	1.04 ms <i>3</i>	Α	biserved partial $\mu_{1/2}$, analogous to row fying structure of heighboring indendes. $\%\alpha = 60.6$; $\%p = 40.6$ $\%\alpha$: weighted average of 66.4 (2004Ke06) and 54.4 (1997Da07). $T_{1/2}$: weighted average of 1.09 ms 3 (2004Ke06) and 1.014 ms 19 (2003Bb21). The value from 2004Ke06 is an average of 1.13 ms 5 from p(t) and 1.07 ms 3 from α (t) while the value from 2003Bb21 is combined from measured α and p branches. Other: 1.02 ms 10 (1997Da07). E(level): from E(p)=1694.6 to 170 Pt g.s. from this level and E(p)=1437.12 from 171 Au(g.s.) to 170 Pt g.s. in 2004Ke06. Others: 250.16 (1999Po09), based on E(p)=1692.6 (1997Da07) and E(p)=1444.17 (1999Po09), respectively, for protons feeding the 170 Pt g.s from this level and from the 171 Au g.s. Also, based on observed E(p) from this level compared with E(p) limits calculated for the (1/2 ⁺) level using 1 μ s \leq T _{1/2} \leq 30 μ s and the WKB barrier transmission approximation, 1997Da07 estimate E \geq 100 keV and E \leq 260 keV for the (11/2 ⁻) level. 1997Da07 obtain an independent estimate of E=220.110 for this state, based on trends of the (1/2 ⁺) to (11/2 ⁻) level-energy differences from 151 Tm to 167 Ir. J ^{π} : configuration=(π h _{11/2}) (1997Da07, 2004Ke06) based on comparison of proton partial T _{1/2} calculated for h _{11/2} orbital (using WKB approximation) with the observed value. An isomeric 11/2[505] level also occurs In 173 Au At comparable energy (E=214 23, 1999Po09).
870 <i>13</i>			Α	
1804 14			Α	

[†] From $E\gamma$, except where noted.

Adopted Levels, Gammas (continued)

 $\gamma(^{171}\mathrm{Au})$

E _i (level)	Eγ [†]	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
870	611 3	100	259	$(11/2^{-})$
1804	954 5	100	870	

[†] From (⁷⁸Kr,p2n γ).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁷¹₇₉Au₉₂