¹⁷⁰Lu ε decay **1990AbZT,1972Ca21,1970Dz11**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Parent: ¹⁷⁰Lu: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.012 \text{ d } 30$; $Q(\varepsilon)=3458 \ 17$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁷⁰Lu sources produced, typically, by ¹⁶⁹Tm(α ,3n) and ¹⁸¹Ta(p,X).

1993Ku09: measured I γ , Ice, I(internal e⁺e⁻ pairs) in vicinity of 2820 keV; set upper limit of 2×10⁻⁸ e/¹⁷⁰Lu decay for a postulated 2820-keV M0 transition (1988Gr29) connecting the 2819.6 level to the 0⁺ g.s.

1990AbZT: measured ce spectra for E=100-600 keV using a 0.06% resolution β spectrometer; deduced mult for 13 transitions based on unenumerated α (K)exp values.

1980Bu28: measured I(ce) for 84-keV transition, deduced subshell ratios for this 2⁺ to 0⁺ transition.

1972Ca21: measured Ey, $I\gamma$, $\gamma\gamma$ -coin and ce(K). Much better resolution than that of 1971Bo09.

1971Bo09: measured E γ , I γ , $\gamma\gamma$ -coin, cece-coin and ce γ -coin. Deduced α (K)exp using ce data from 1968Ba54. See also 1969Bo10 and 1968Ba54.

1970Dz11, 1973TeZT: measured I(ce) in complex segments of ce spectrum with greater precision than 1968Ba54 and, in some cases, resolved peaks which were complex in 1968Ba54. 1973TeZT also assign to ¹⁷⁰Lu 14 transitions reported In 1972Dz02 to belong to decays of ¹⁶⁹Lu or ¹⁷⁰Lu or ¹⁷²Lu.

Others: 1960Dz02, 1960Ha18, 1969PaZR.

The adopted decay scheme is that of 1972Ca21 with the addition of a very large number of placements shown In the evaluation by 1988DzZW and a much smaller number of placements proposed In 1990Gr19. Additional 0⁺ levels tentatively proposed by 1990Gr19 At 1770.0, 2147.8 and 2177.9 have not been included; In each case, the transition to the 0⁺ g.s. had been observed In the γ spectrum so 1990Gr19 assumed it formed a doublet with the required E0 transition, and most or all of the other deexciting transitions had alternative placements. Interpretation of this decay is greatly complicated by the large number of transitions (many of them multiply-placed) and the inability of α (K)exp data for singly-placed transitions to differentiate between M2 and E0+M1+E2 transitions.

¹⁷⁰Yb Levels

E(level) [†]	Jπ‡	T _{1/2} #	E(level) [†]	Jπ‡	E(level) [†]	J ^π ‡
0.0	0+		2268.08 17	1-	2969.45 13	1-
84.262 4	2+	1.58 ns 7	2275.49 5	1-	2975.32 11	1-
277.44 4	4+		2289.37 10	1+	3007.6 <i>3</i>	1-
1069.36 6	0^{+}		2328.0? 4	(0^{+})	3042.46 17	1^{+}
1138.55 <i>3</i>	2+		2351.71 6	$0^{-}, 1^{-}, 2^{-}$	3065.36 12	1^{+}
1145.72 5	2+		2364.06 4	1-	3067.62 10	1-
1225.35 6	$(3)^{+}$		2367.65 5	(1) ⁻	3070.52 19	0,1
1228.84 10	0^{+}		2400.10 6	1-	3091.93 11	1
1306.39 5	2+		2429.05 11	$1^+, 2^+$	3099.64 9	$1^{(-)}$
1364.53 4	1-		2436.01 11	$(2,3)^{-}$	3115.58 11	1-
1397.05 <i>13</i>	(3)-		2496.20 5	1-	3123.94 12	1-
1425.24 4	$(2)^{-}$		2498.19 7	$0^{-}, 1^{-}, 2^{-}$	3131.10 16	1+
1479.91 6	0^{+}		2523.07 14	1+	3140.60 13	(1)
1512.37 4	1-		2536.97 6	1-	3146.03 9	1^{+}
1534.57 4	2+		2661.02 12	1+	3149.09 9	1-
1566.38 8	0^{+}		2667.19 4	$1^{(+)}$	3161.02 17	(1^{-})
1634.84 8	(1^{+})		2748.08 5	1-	3165.59 [@] 9	1-
1658.06 9	$(2)^{+}$		2768.34 8	$0^{-}, 1^{-}$	3169.59 12	1-
1717.95 4	$(2)^{-}$		2775.66 8	1-	3179.76 16	1-
1838.2? <i>3</i>	$(2)^{+}$		2783.12 10	1+	3186.66 13	(1^{-})
1985.64 9	$1^{-}, 2^{-}$		2819.77 4	$0^{-}, 1^{-}$	3195.58 8	1-
2039.85 8	1^{+}		2929.60 8	1-	3202.94 13	1^{+}
2052.59 7	$0^{-}, 1^{-}, 2^{-}$		2939.73 5	1-	3213.27 13	1-
2115.90 7	1-		2947.84 6	1-	3258.18 10	1^{+}
2126.14 5	1-		2956.55 11	1+	3268.91 15	$1^{(+)}$
2200.91 9	1-,2-		2965.66 8	1+	3274.17 14	1-

Continued on next page (footnotes at end of table)

170 Lu ε decay 1990AbZT,1972Ca21,1970Dz11 (continued)

¹⁷⁰Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
3291.82 21 3301.95 11 3314.42 11	1^+ 1^+ 1
3366.40 <i>11</i> 3384.87 <i>17</i> 3423.2? 8	$1 \\ 1^{-} \\ (0^{-})$

[†] From least-squares fit to Eγ, omitting data for multiply-placed transitions and data for which authors did not report the uncertainty.

[‡] From Adopted Levels.

[#] From $\gamma\gamma$ (t) (1959Si74). [@] Possible doublet; see comment in Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(35 17)	3423.2?	0.06 4	5.7 9	0.06 4	εL=0.65 23; εM+=0.35 23
(73 17)	3384.87	0.097 19	6.3 4	0.097 19	εK=0.14 25; εL=0.62 17; εM+=0.24 8
(92 17)	3366.40	0.16 4	6.5 4	0.16 4	εK=0.40 24; εL=0.44 17; εM+=0.16 7
(144 17)	3314.42	0.20 6	7.03 22	0.20 6	εK=0.65 5; εL=0.26 4; εM+=0.088 13
(156 17)	3301.95	0.37 5	6.87 16	0.37 5	εK=0.68 4; εL=0.243 25; εM+=0.081 10
(166 17)	3291.82	0.19 5	7.24 18	0.19 5	εK=0.69 3; εL=0.232 20; εM+=0.077 8
(184 17)	3274.17	0.22 4	7.30 15	0.22 4	εK=0.712 20; εL=0.217 15; εM+=0.071 6
(189 17)	3268.91	0.20 3	7.37 13	0.20 3	εK=0.717 19; εL=0.213 14; εM+=0.070 5
$(200\ 17)$	3258.18	0.27 4	7.31 <i>13</i>	0.27 4	εK=0.726 16; εL=0.207 12; εM+=0.067 5
(245 17)	3213.27	0.27 8	7.53 16	0.27 8	εK=0.753 9; εL=0.187 7; εM+=0.0599 23
(255 17)	3202.94	0.46 12	7.35 14	0.46 12	εK=0.758 8; εL=0.184 6; εM+=0.0587 21
(262 17)	3195.58	0.52 5	7.33 9	0.52 5	εK=0.760 7; εL=0.182 6; εM+=0.0579 19
(271 17)	3186.66	0.57 5	7.32 8	0.57 5	εK=0.764 7; εL=0.179 5; εM+=0.0571 18
(278 17)	3179.76	0.50 4	7.41 8	0.50 4	εK=0.766 6; εL=0.178 5; εM+=0.0564 17
(288 17)	3169.59	0.11 4	8.10 17	0.11 4	εK=0.769 6; εL=0.175 4; εM+=0.0556 15
(292 17)	3165.59	1.13 6	7.10 7	1.13 6	εK=0.770 6; εL=0.174 4; εM+=0.0553 15
					Iɛ,log ft: for possible doublet; see comment in Adopted Levels.
(297 17)	3161.02	0.153 23	7.99 9	0.153 23	εK=0.772 5; εL=0.174 4; εM+=0.0549 14
(309 17)	3149.09	0.60 5	7.44 7	0.60 5	εK=0.775 5; εL=0.171 4; εM+=0.0541 13
(312 17)	3146.03	0.49 3	7.53 7	0.49 <i>3</i>	εK=0.775 5; εL=0.171 4; εM+=0.0539 12
(317 17)	3140.60	0.364 18	7.68 7	0.364 18	εK=0.777 5; εL=0.170 3; εM+=0.0535 12
(327 17)	3131.10	0.23 5	7.91 <i>11</i>	0.23 5	εK=0.779 4; εL=0.168 3; εM+=0.0530 11
(334 17)	3123.94	0.29 7	7.83 12	0.29 7	εK=0.780 4; εL=0.167 3; εM+=0.0526 10
(342 17)	3115.58	2.11 13	7.00 6	2.11 13	εK=0.782 4; εL=0.166 3; εM+=0.0521 10
(358 17)	3099.64	1.58 8	7.17 6	1.58 8	εK=0.785 3; εL=0.1638 23; εM+=0.0514 9
(366 17)	3091.93	0.24 8	8.01 16	0.24 8	εK=0.786 3; εL=0.1629 22; εM+=0.0510 8
(387 17)	3070.52	0.23 12	8.08 24	0.23 12	εK=0.789 3; εL=0.1605 19; εM+=0.0501 7
(390 17)	3067.62	0.61 5	7.67 6	0.61 5	εK=0.790 3; εL=0.1602 19; εM+=0.0500 7
(393 17)	3065.36	0.34 8	7.93 12	0.34 8	εK=0.7901 25; εL=0.1600 18; εM+=0.0499 7
(416 17)	3042.46	0.21 4	8.19 10	0.21 4	εK=0.7930 22; εL=0.1578 16; εM+=0.0492 6
(450 17)	3007.6	0.26 7	8.18 13	0.26 7	εK=0.7968 18; εL=0.1550 13; εM+=0.0481 5
(483 17)	2975.32	0.70 6	7.82 6	0.70 6	εK=0.7998 15; εL=0.1529 11; εM+=0.0473 4
(489 17)	2969.45	0.62 4	7.88 <i>5</i>	0.62 4	εK=0.8003 15; εL=0.1525 11; εM+=0.0472 4
(492 17)	2965.66	2.32 13	7.32 5	2.32 13	εK=0.8006 15; εL=0.1523 11; εM+=0.0471 4
(501 17)	2956.55	0.501 25	8.00 4	0.501 25	εK=0.8013 14; εL=0.1518 10; εM+=0.0469 4
(510 17)	2947.84	3.35 15	7.19 4	3.35 15	εK=0.8020 14; εL=0.1513 10; εM+=0.0468 4

Continued on next page (footnotes at end of table)

¹⁷⁰Lu ε decay **1990AbZT**,1972Ca21,1970Dz11 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(518 17)	2939.73		7.3 4	6.87 4	7.3 4	εK=0.8026 13: εL=0.1508 10: εM+=0.0466 4
(528 17)	2929.60		3.68 20	7.18 4	3.68 20	εK=0.8033 13; εL=0.1503 9; εM+=0.0464 4
(638 17)	2819.77		5.9 3	7.16 4	5.9 <i>3</i>	εK=0.8094 8; εL=0.1458 6; εM+=0.04480 21
(675 17)	2783.12		1.60 9	7.78 4	1.60 9	εK=0.8109 7; εL=0.1447 5; εM+=0.04439 19
(682 17)	2775.66		2.81 15	7.54 <i>4</i>	2.81 15	εK=0.8112 7; εL=0.1445 5; εM+=0.04431 18
(690 17)	2768.34		1.16 6	7.94 <i>4</i>	1.16 6	εK=0.8115 7; εL=0.1443 5; εM+=0.04423 18
(710 17)	2748.08		4.73 22	7.36 <i>3</i>	4.73 22	εK=0.8122 7; εL=0.1437 5; εM+=0.04404 17
(791 17)	2667.19		0.38 4	8.55 5	0.38 4	εK=0.8148 5; εL=0.1419 4; εM+=0.04336 13
(797 17)	2661.02		0.29 5	8.68 8	0.29 5	εK=0.8149 5; εL=0.1418 4; εM+=0.04332 13
(921 17)	2536.97		0.39 4	8.68 5	0.39 4	εK=0.8178 4; εL=0.1396 3; εM+=0.04255 10
(935 17)	2523.07		0.32 11	8.78 15	0.32 11	εK=0.8181 4; εL=0.13941 25; εM+=0.04247 9
(960 17)	2498.19		1.12 7	8.26 4	1.12 7	εK=0.8186 4; εL=0.13907 24; εM+=0.04235 9
(962 17)	2496.20		1.77 11	8.06 4	1.77 11	εK=0.8186 4; εL=0.13904 24; εM+=0.04234 9
(1090 17)	2367.65		5.16 25	7.71 3	5.16 25	ε K=0.8207 3; ε L=0.13753 18; ε M+=0.04180 7
(1094 17)	2364.06		14.9 7	7.26 3	14.9 7	εK =0.8207 3; εL =0.13750 78; εM +=0.04178 7
(1106 17)	2351.71		2.64 13	8.02 3	2.64 13	ε K=0.8209 3; ε L=0.13737 18; ε M+=0.04174 7
(1130 + 17)	2328.0?		0.055 23	9.72 19	0.055 23	εK=0.8212 3; εL=0.13714 17; εM+=0.04166 6
(1183 17)	2275.49		1.88 12	8.23 4	1.88 12	ε K=0.8218 2; ε L=0.13667 15; ε M+=0.04149 6
(1190 [‡] 17)	2268.08		0.11 6	9.47 24	0.11 6	εK=0.8219 2; εL=0.13660 15; εM+=0.04146 6
(1257 17)	2200.91		0.58 7	8.79 6	0.58 7	εK=0.8226 2; εL=0.1361 2; εM+=0.04127 5
(1332 17)	2126.14	0.0024 6	10.4 5	7.592 25	10.4 5	av E β =155.8 78; ϵ K=0.8232 2; ϵ L=0.1355 2; ϵ M+=0.04107 5
(1342 [‡] <i>17</i>)	2115.90		0.15 14	9.4 4	0.15 14	εK=0.8233 1; εL=0.1354 2; εM+=0.04104 5
(1405 17)	2052.59		0.217 20	9.32 5	0.217 20	εK=0.8236; εL=0.1350 2; εM+=0.04089 5
(1418 17)	2039.85	0.0025 5	3.84 20	8.08 3	3.84 20	av E β =194.9 77; ε K=0.8236; ε L=0.1349 2; ε M+=0.04086 4
(1472 17)	1985.64	0.00032 19	0.28 16	9.25 25	0.28 16	av E β =219.2 76; ε K=0.8236; ε L=0.1345 2; ε M+=0.04073 4
(1620 [‡] 17)	1838.2?	0.00021 8	0.061 22	10.00 16	0.061 22	av E β =284.5 75; ε K=0.8226 3; ε L=0.1335 2; ε M+=0.04037 5
(1740 17)	1717.95	0.00034 10	0.26 7	$10.47^{1u} \ 12$	0.26 7	av E β =353.2 76; ε K=0.8150 <i>I</i> ; ε L=0.14073 <i>I</i> 8; ε M+=0.04300 7
(1823 17)	1634.84	0.0016 4	0.15 4	9.72 12	0.15 4	av E β =374.1 75; ε K=0.8179 7; ε L=0.13175 17; ε M+=0.03980 6
(1892 17)	1566.38	0.0050 8	0.35 5	9.39 7	0.35 5	av E β =404.1 75; ε K=0.8152 8; ε L=0.13104 19; ε M+=0.03957 6
(1946 17)	1512.37	0.010 3	0.58 18	9.19 14	0.59 18	av E β =427.9 75; ε K=0.8127 9; ε L=0.13043 21; ε M+=0.03938 7
(1978 [‡] <i>17</i>)	1479.91	0.0022 18	0.11 9	9.9 4	0.11 9	av Eβ=442.1 75; εK=0.8109 10; εL=0.13004 22; εM+=0.03926 7
(2061 17)	1397.05	0.0092 8	0.340 23	9.47 4	0.349 24	av E β =478.5 75; ε K=0.8059 12; ε L=0.12895 25; ε M+=0.03891 8
(2093 17)	1364.53	0.03 1	0.9 3	9.07 15	0.9 3	av Eβ=492.8 75; εK=0.8036 13; εL=0.1285 3; εM+=0.03877 8
(2229 17)	1228.84	0.032 5	0.70 11	9.23 8	0.73 12	av E β =552.5 75; ε K=0.7923 16; ε L=0.1263 3; ε M+=0.03809 10
(3458 17)	0.0	0.24 4	0.56 9	9.71 8	0.80 13	av E β =1100.6 77; ε K=0.582 4; ε L=0.0912 6; ε M+=0.02743 18 E(decu)) other 3467 20 from ℓ^{+} and point ensure
						of 2445 20 (1960Dz02). Other: β^+ endpoint

energy = 2390 50 (1965Ha30). $I\beta^+$: from decay scheme and $I(\beta^+$ to g.s.)/I(84 ce)=0.0041 8 (1965Ha30) assuming α(84)=6.28. 1965Ha30 deduce $I\beta$ =0.19% 5 based on

Continued on next page (footnotes at end of table)

170 Lu ε decay 1990AbZT,1972Ca21,1970Dz11 (continued)

ϵ, β^+ radiations (continued)

E(decay) E(level) Comments

Ti(84)=53% 10 derived from their I(84 γ)/I(K x ray), γ -84 γ coin and $\beta\gamma$ coin data combined with I(ce(K)).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

¹⁷⁰Lu ε decay **1990AbZT**,**1972Ca21**,**1970Dz11** (continued)

 $\gamma(^{170}\text{Yb})$

Iγ normalization: from I(β⁺ to g.s.)/I(84 ce)=0.0041 8 (1965Ha30), β⁺/ε(g.s.) theory, α(84)=6.28 and Σ (I(γ+ce) to g.s.). Uncertainty does not include possible contributions from unplaced γ-rays. Total unplaced Iγ is ≈ 3%.

 $\alpha(K) \exp Data.$

 $a(\mathbf{K}) \exp Data$

Large ammount of data are from 1972Ca21, or from a combination of I γ from 1972Ca21 and I(ce) from 1973TeZT, 1972Dz02, 1970Dz11 or 1968Ba54, as noted for each datum (I(ce) from 1960Ha18 lack uncertainty estimates and appear to be insufficiently reliable to be useful). Due to the complexity of the spectrum, 1972Ca21 limited their use of ce data to peaks which are well defined and for which the intensity uncertainty is≤10%. Since Δ I γ values for the relevant peaks do not exceed 10%, the uncertainty in these measured α (K)exp can be assumed to be≤15%. 1972Ca21 used the 193, 1139, 1144.6, 1145.9, 1396 and 1535 E2 transitions and the 1280 and 1365 E1 transitions for α (K)exp normalization. α (K)exp values deduced by the evaluator from I γ of 1972Ca21 and I(ce) of 1970Dz11 or 1968Ba54 agree well with those deduced by 1972Ca21 for E below≈1600. However, at higher energies, α (K)exp values from 1972Ca21 tend to fall increasingly far below data from other sources and theory (by as much as a factor of 2); since I γ from 1972Ca21 and 1971Bo09 remain consistent, the high-energy I(ce) normalization in 1972Ca21 may be at fault. For E>1600, α (K)exp is based on I(ce) from sources other than 1972Ca21 when possible. Additional α (K)exp values for many transitions are deduced In 1988DzZW, an evaluation of ¹⁷⁰Lu ε decay data. since these are based on ce measurements other than those of 1972Ca21 and appear to be deduced from literature which is not readily accessible, the evaluator quotes those α (K)exp values also and attributes them to 1988DzZW (except when adequate values can be deduced using I(ce(K)) In 1968Ba54, 1970Dz11, 1972Dz02 or 1973TeZT). Note that 1988DzZW normalized their α (K)exp values using 985 γ , 151 2γ , 2126 γ , 2364 γ , 2496 γ , 2748 γ , 2783 γ , 2940 γ and 2966 γ , all of which feed the 0⁺ g.s.; this leads to α (K)exp values that are 10% lower than ones deduced using 1972Ca21's normalization, but the evaluator has not adjusted α (K)exp from 1988DzZW accordingly since the statistical un

E_{γ}^{\dagger}	I_{γ} [‡] <i>e</i>	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	α^{f}	Comments
84.262 4	195×10 ² 10	84.262	2+	0.0	0+	E2 ^{&}	6.28	α (K)=1.406 20; α (L)=3.72 6; α (M)=0.919 13; α (N+)=0.233 4 α (N)=0.209 3; α (O)=0.0239 4; α (P)=6.36×10 ⁻⁵ 9
118.80 15	72 7	1425.24	(2)-	1306.39	2+	[E1]	0.217	%I γ =8.72 24 assuming present I γ normalization. α (K)=0.180 3; α (L)=0.0289 5; α (M)=0.00646 10; α (N+)=0.001696 25 α (N)=0.001490 22; α (O)=0.000198 3; α (P)=8.14×10 ⁻⁶ 12
119.90 20	15.0 15	2939.73	1-	2819.77	$0^{-}, 1^{-}$	[M1,E2]	1.81 20	$\alpha(K) = 1.2.5; \ \alpha(L) = 0.49.24; \ \alpha(M) = 0.12.6; \ \alpha(N+) = 0.031.16$
134.05 15	28 3	3099.64	1 ⁽⁻⁾	2965.66	1 ⁺	[E1]	0.1579	$\alpha(N)=0.027$ 14; $\alpha(O)=0.0033$ 15; $\alpha(P)=7.E-5.4$ $\alpha(K)=0.1313$ 19; $\alpha(L)=0.0207$ 3; $\alpha(M)=0.00464$ 7; $\alpha(N+)=0.001220$ 18 $\alpha(N)=0.001071$ 16; $\alpha(O)=0.0001432$ 21; $\alpha(P)=6.04\times10^{-6}$ 0
142.50 ^a 15	21.0 20	3258.18	1^{+}	3115.58	1-	[E1]	0.1344	$\alpha(N)=0.00107176$, $\alpha(C)=0.00145221$, $\alpha(T)=0.04\times10^{-5}$ $\alpha(K)=0.111976$; $\alpha(L)=0.01753$; $\alpha(M)=0.003926$; $\alpha(N+)=0.00103315$
152.60 <i>3</i>	610 20	2819.77	0-,1-	2667.19	1 ⁽⁺⁾	[E1]	0.1123	α (N)=0.000906 <i>13</i> ; α (O)=0.0001216 <i>18</i> ; α (P)=5.19×10 ⁻⁶ 8 α (K)=0.0936 <i>14</i> ; α (L)=0.01456 <i>21</i> ; α (M)=0.00325 <i>5</i> ; α (N+)=0.000858 <i>12</i> α (N)=0.000753 <i>11</i> ; α (O)=0.0001014 <i>15</i> ; α (P)=4.38×10 ⁻⁶ 7 Mult.: α (K)exp=1.09 (I(ce), 1960Ha18; I γ , 1972Ca21) suggests mult=M1;
								K/L implies E1 or M1(+E2). Uncertainties may, however, be large. M1

inconsistent with placement.

			1′	⁷⁰ Lu ε deca	y 199	90AbZT,1972	2Ca21,197	0Dz11 (continued)
						<u>γ(¹⁷⁰Yb)</u> (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	$\mathrm{I}_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
160.2		1228.84	0+	1069.36	0+	E0		$\alpha(\exp) \ge 7 (1990 \text{AbZT})$ E _{\gamma} ,Mult.: from 1990 AbZT.
166.70 ^{<i>h</i>} 20	13.5 ^h 15	2367.65	(1) ⁻	2200.91	1-,2-	[M1,E2]	0.64 15	$\alpha(K)=0.47\ 20;\ \alpha(L)=0.14\ 4;\ \alpha(M)=0.032\ 10;\ \alpha(N+)=0.0084\ 23$ $\alpha(N)=0.0074\ 22;\ \alpha(O)=0.00094\ 19;\ \alpha(P)=2.6\times10^{-5}\ 14$
166.70 ^{ha} 20	13.5 ^h 15	3123.94	1-	2956.55	1+	[E1]	0.0890	α (K)=0.0743 <i>11</i> ; α (L)=0.01147 <i>17</i> ; α (M)=0.00256 <i>4</i> ; α (N+)=0.000677 <i>10</i> α (N)=0.000593 <i>9</i> ; α (O)=8.02×10 ⁻⁵ <i>12</i> ; α (P)=3.52×10 ⁻⁶ <i>5</i>
170.80 ^h 20	7.0 ^h 10	3146.03	1+	2975.32	1-			
170.80^{ha} 20	$7.0^{h}10$	3213.27	1-	3042.46	1+			
193.13 5	463×10 ¹ 15	277.44	4 ⁺	84.262	2+	E2	0.302	$\begin{aligned} &\alpha(\text{K}) = 0.182 \ 3; \ \alpha(\text{L}) = 0.0918 \ 13; \ \alpha(\text{M}) = 0.0222 \ 4; \ \alpha(\text{N}+) = 0.00572 \ 8 \\ &\alpha(\text{N}) = 0.00510 \ 8; \ \alpha(\text{O}) = 0.000613 \ 9; \ \alpha(\text{P}) = 8.45 \times 10^{-6} \ 12 \\ &\alpha(\text{K}) \exp = 0.179 \ (1972\text{Ca21}) \\ &\text{K}: (\text{L}1 + \text{L}2):\text{L}3:\text{M} = 35:13:6.6:5 \ (1960\text{Ha}18). \end{aligned}$
199.65 ^{ha} 15	20.0 ^h 20	2947.84	1-	2748.08	1-	[M1]	0.478	α (K)=0.401 6; α (L)=0.0606 9; α (M)=0.01357 20; α (N+)=0.00367 6 α (N)=0.00319 5; α (O)=0.000456 7; α (P)=2.43×10 ⁻⁵ 4
199.65 ^{ha} 15	20.0 ^{<i>h</i>} 20	3291.82	1+	3091.93	1	[E1]	0.0557	$\alpha(K)=0.0466\ 7;\ \alpha(L)=0.00708\ 10;\ \alpha(M)=0.001579\ 23;\ \alpha(N+)=0.000418\ 6$
201.75 15	35 3	1566.38	0+	1364.53	1-	[E1]	0.0542	$ \begin{aligned} \alpha(N) &= 0.000366 \ 6; \ \alpha(O) &= 4.99 \times 10^{-5} \ 7; \ \alpha(P) &= 2.26 \times 10^{-6} \ 4 \\ \alpha(K) &= 0.0454 \ 7; \ \alpha(L) &= 0.00688 \ 10; \ \alpha(M) &= 0.001535 \ 22; \\ \alpha(N+) &= 0.000407 \ 6 \end{aligned} $
205.55 20	17.5 15	1717.95	(2)-	1512.37	1-	(M1+E2)	0.34 10	$\alpha(N)=0.000356 5; \alpha(O)=4.86\times10^{-5} 7; \alpha(P)=2.20\times10^{-6} 4$ $\alpha(K)=0.26 11; \alpha(L)=0.063 8; \alpha(M)=0.0148 24; \alpha(N+)=0.0039 6$ $\alpha(N)=0.0034 5; \alpha(O)=0.00045 3; \alpha(P)=1.5\times10^{-5} 8$ Mult.: based on unenumerated ce data of 1990AbZT.
209.90 ^a 20	16.5 15	3301.95	1+	3091.93	1			
220.90 15	42.5 15	2496.20	1-	2275.49	1-	[M1,E2]	0.28 9	$\alpha(K)=0.21 \ 9; \ \alpha(L)=0.049 \ 4; \ \alpha(M)=0.0115 \ 13; \ \alpha(N+)=0.0030 \ 3 \ \alpha(N)=0.0027 \ 3; \ \alpha(O)=0.000351 \ 8; \ \alpha(P)=1.2\times10^{-5} \ 7 \ \alpha(K)\exp{\leq}0.21 \ (1972Ca21)$
222.40 ^{ha} 15	90 ^h 3	2498.19	0-,1-,2-	2275.49	1-	[M1]	0.355	α (K)=0.297 5; α (L)=0.0449 7; α (M)=0.01005 15; α (N+)=0.00272 4 α (N)=0.00236 4; α (O)=0.000338 5; α (P)=1.81×10 ⁻⁵ 3 α (K)exp=0.267 (1972Ca21); mult=M1(+E2) for doubly-placed γ .
222.40 ^{ha} 15	90 ^h 3	3314.42	1	3091.93	1	[M1]	0.355	$\alpha(K)=0.297\ 5;\ \alpha(L)=0.0449\ 7;\ \alpha(M)=0.01005\ 15;\ \alpha(N+)=0.00272\ 4$ $\alpha(N)=0.00236\ 4;\ \alpha(O)=0.000338\ 5;\ \alpha(P)=1.81\times10^{-5}\ 3$ $\alpha(K)=0.0271\ (1072\ co^{-2});\ mult=M1(+E2)\ for\ doubly,\ placed\ a_{1}$
^x 223.40 <i>15</i>	45.0 15					M1	0.351	$\alpha(K) \propto p = 0.207 (1972Ca21), \text{ mut-Mi(+E2) for doubly-placed } \gamma.$ $\alpha(K) \approx p = 0.332 (1972Ca21)$ $\alpha(K) = 0.294 5; \alpha(L) = 0.0444 7; \alpha(M) = 0.00993 14; \alpha(N+) = 0.00268 4$ $\alpha(N) = 0.00233 4; \alpha(O) = 0.000334 5; \alpha(P) = 1.78 \times 10^{-5} 3$
225.45 ^h 20	13.0 ^{<i>h</i>} 20	2351.71	0-,1-,2-	2126.14	1-	[M1,E2]	0.26 8	α (K)=0.20 9; α (L)=0.046 3; α (M)=0.0107 11; α (N+)=0.00283 22 α (N)=0.00249 22; α (O)=0.000327 6; α (P)=1.2×10 ⁻⁵ 6

 $^{170}_{70} \rm Yb_{100} \text{-} 6$

From ENSDF

 $^{170}_{70} \rm Yb_{100}\text{-}6$

				¹⁷⁰ Lu	ODz11 (continued)			
						γ ⁽¹⁷⁰ Yb) (c	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡ <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^{f}	Comments
225.45 ^{ha} 20	13.0 ^h 20	2661.02	1+	2436.01	(2,3)-	[E1]	0.0407	α (K)=0.0342 5; α (L)=0.00514 8; α (M)=0.001145 17; α (N+)=0.000304 5
228.05 15	80 5	1534.57	2+	1306.39	2+	E0+M1+E2	≈0.65	$\alpha(N)=0.000266 \ 4; \ \alpha(O)=3.65\times10^{-5} \ 6; \ \alpha(P)=1.680\times10^{-6} \ 24 \ \alpha(K)\exp=0.542 \ (1972Ca21) \ \alpha; \ \text{estimated from } (\alpha(K)\exp=0.54)x1.2.$
231.15 ^{ha} 20	13.0 ^h 15	2667.19	1 ⁽⁺⁾	2436.01	(2,3)-	[E1]	0.0382	$\alpha(K)=0.0321$ 5; $\alpha(L)=0.00481$ 7; $\alpha(M)=0.001073$ 16; $\alpha(N+)=0.000285$ 4
231.15 ^h 20	13.0 ^h 15	2768.34	0-,1-	2536.97	1-	[M1,E2]	0.24 8	$\alpha(N)=0.000249 \ 4; \ \alpha(O)=3.42\times10^{-5} \ 5; \ \alpha(P)=1.582\times10^{-6} \ 23$ $\alpha(K)=0.19 \ 8; \ \alpha(L)=0.0423 \ 21; \ \alpha(M)=0.0098 \ 9; \ \alpha(N+)=0.00259 \ 16$ $\alpha(N)=0.00228 \ 17; \ \alpha(O)=0.000301 \ 5; \ \alpha(P)=1.1\times10^{-5} \ 6$
235.55 ^h 15	88 ^h 8	2351.71	0-,1-,2-	2115.90	1-	[M1,E2]	0.23 8	$\alpha(K) = 0.18 \ 8; \ \alpha(L) = 0.0397 \ 15; \ \alpha(M) = 0.0092 \ 7; \ \alpha(N+) = 0.00243 \ 12$ $\alpha(K) = 0.00214 \ 13; \ \alpha(O) = 0.000283 \ 7; \ \alpha(P) = 1.0\times10^{-5} \ 6$
235.55 ^h 15	88 ^h 8	2436.01	(2,3) ⁻	2200.91	1-,2-	[M1,E2]	0.23 8	α (K)exp=0.192 (1972Ca21), mult=M1+E2 for doubly-placed γ . α (K)=0.18 8; α (L)=0.0397 15; α (M)=0.0092 7; α (N+)=0.00243 12 α (N)=0.00214 13; α (O)=0.000283 7; α (P)=1.0×10 ⁻⁵ 6
238.25 ^{ha} 15	37 ^h 4	2364.06	1-	2126.14	1-	[M1,E2]	0.22 8	α (K)exp=0.192 (1972Ca21), mult=M1+E2 for doubly-placed γ . α (K)=0.17 8; α (L)=0.0382 12; α (M)=0.0089 6; α (N+)=0.00234 10 α (N)=0.00206 11; α (O)=0.000272 8; α (P)=1.0×10 ⁻⁵ 5
238.25 ^h 15	37 ^h 4	2667.19	1 ⁽⁺⁾	2429.05	1+,2+	[M1,E2]	0.22 8	$\alpha(K)=0.17 \ 8; \ \alpha(L)=0.0382 \ 12; \ \alpha(M)=0.0089 \ 6; \ \alpha(N+)=0.00234 \ 10 \ \alpha(N)=0.00206 \ 11; \ \alpha(O)=0.000272 \ 8; \ \alpha(P)=1.0\times10^{-5} \ 5$
238.25 ^{ha} 15	37 ^h 4	3213.27	1-	2975.32	1-	[M1,E2]	0.22 8	$\alpha(\mathbf{K}) = 0.17 \ 8; \ \alpha(\mathbf{L}) = 0.0382 \ 12; \ \alpha(\mathbf{M}) = 0.0089 \ 6; \ \alpha(\mathbf{N}+) = 0.00234 \ 10 \ \alpha(\mathbf{N}) = 0.002021 \ 2; \ \alpha(\mathbf{M}) = 0.00272 \ 3; \ \alpha(\mathbf{M}) = 0.00235 \ 10 \ 10^{-5} \ 5$
241.50 5	510 <i>15</i>	2367.65	(1)-	2126.14	1-	M1	0.283	$\alpha(N)=0.00200\ 11,\ \alpha(O)=0.000272\ 8,\ \alpha(T)=1.0\times10^{-5}\ 5$ $\alpha(K)=0.237\ 4;\ \alpha(L)=0.0358\ 5;\ \alpha(M)=0.00801\ 12;\ \alpha(N+)=0.00216\ 3$ $\alpha(N)=0.00188\ 3;\ \alpha(O)=0.000269\ 4;\ \alpha(P)=1.439\times10^{-5}\ 21$ $\alpha(K)=n=0\ 238\ (1972Ca21)$
249.95 ^{hb} 20	8.5 ^h 25	2289.37	1+	2039.85	1+	[M1,E2]	0.19 7	$\alpha(\mathbf{R}) \approx 0.157$; $\alpha(\mathbf{L}) = 0.0325$ 5; $\alpha(\mathbf{M}) = 0.0075$ 3; $\alpha(\mathbf{N}+) = 0.00199$ 4 $\alpha(\mathbf{N}) = 0.00175$ 5; $\alpha(\mathbf{O}) = 0.000233$ 13; $\alpha(\mathbf{P}) = 9$ E=6 5
249.95 ^h 20	8.5 ^h 25	2748.08	1-	2498.19	0-,1-,2-	[M1,E2]	0.19 7	$\alpha(\mathbf{K}) = 0.157; \ \alpha(\mathbf{L}) = 0.03255; \ \alpha(\mathbf{M}) = 0.00753; \ \alpha(\mathbf{N}+) = 0.001994$ $\alpha(\mathbf{K}) = 0.001755; \ \alpha(\mathbf{O}) = 0.00023343; \ \alpha(\mathbf{P}) = 0.655$
251.0		1479.91	0+	1228.84	0+	E0		a(K)=0.00175, a(G)=0.00025575, a(G)=9.E=0.57 $a(K)\exp\ge 2.5 (1972Ca21)$ ce(K)/ce=0.87.
251.75 10	105 5	2367.65	(1)-	2115.90	1-	[M1,E2]	0.19 7	I(ce(K))/I(1396 γ)=0.0051 from α (K)exp>2.5 if I γ <10 (1972Ca21). α (K)=0.15 7; α (L)=0.0318 5; α (M)=0.00736 24; α (N+)=0.00195 4 α (N)=0.00171 4: α (O)=0.000227 13: α (P)=9 E=6 5
272.40 15	20.5 20	2939.73	1-	2667.19	1(+)	[E1]	0.0253	$\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00315 \ 5; \ \alpha(M)=0.000702 \ 10; \\ \alpha(N+)=0.000187 \ 3 \\ \alpha(N)=0.0001633 \ 23; \ \alpha(O)=2.25\times10^{-5} \ 4; \ \alpha(P)=1.066\times10^{-6} \ 15 \\ E_{\gamma}: \text{ also placed by } 1988DaZW \text{ from } 3213 \text{ level, but } E_{\gamma} \text{ does not fit that placement.}$
^x 275.40 20	10.0 10							

 $^{170}_{70}$ Yb $_{100}$ -7

 $^{170}_{70} Yb_{100}$ -7

¹⁷⁰ Lu ε decay 1990AbZT ,1972Ca21,1970Dz11 (continued)												
$\gamma(^{170}$ Yb) (continued)												
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments				
279.40 15	47 3	2775.66	1-	2496.20	1-	[M1,E2]	0.14 5	$\alpha(K)=0.115; \alpha(L)=0.0226 15; \alpha(M)=0.00521 17; \alpha(N+)=0.00138 7$				
283.05 10	445 15	2819.77	0-,1-	2536.97	1-	M1	0.184	$\alpha(N)=0.00121$ 3; $\alpha(O)=0.000165$ 18; $\alpha(P)=6.E-6$ 4 $\alpha(K)=0.1543$ 22; $\alpha(L)=0.0232$ 4; $\alpha(M)=0.00518$ 8; $\alpha(N+)=0.001400$ 20 $\alpha(N)=0.001217$ 17; $\alpha(O)=0.0001742$ 25; $\alpha(P)=9.33\times10^{-6}$ 13 $\alpha(K)\exp=0.124$ (1972Ca21)				
286.60 5	1010 <i>30</i>	1425.24	(2)-	1138.55	2+	E1	0.0223	$\alpha(K)\exp[-0.124 (1972Ca21)] \alpha(K)\exp[-0.018 (1972Ca21)] \alpha(K)=0.0187 3; \alpha(L)=0.00277 4; \alpha(M)=0.000617 9; \alpha(N+)=0.0001643 23 \alpha(N)=0.0001435 21; \alpha(O)=1.98\times10^{-5} 3; \alpha(P)=9.45\times10^{-7} 14$				
292.55 ^h 20	11.0 ^h 10	1717.95	(2)-	1425.24	(2)-	[M1,E2]	0.12 5	α (K)=0.10 5; α (L)=0.0195 17; α (M)=0.0045 3; α (N+)=0.00119 9 α (N)=0.00105 7; α (O)=0.000141 19; α (P)=6.E–6 3				
292.55 ^{ha} 20	11.0 ^h 10	3258.18	1^{+}	2965.66	1+	[M1,E2]	0.12 5	$\alpha(K)=0.105; \alpha(L)=0.0195 17; \alpha(M)=0.0045 3; \alpha(N+)=0.001199$				
^x 295.15 20	10.0 10					M1	0.1644	$\begin{aligned} \alpha(\text{N}) = 0.00165 \ \gamma, \ \alpha(\text{S}) = 0.000141 \ \Gamma \text{y}, \ \alpha(1) = 0.12-6 \ S} \\ \alpha(\text{K}) = 0.1379 \ 20; \ \alpha(\text{L}) = 0.0207 \ 3; \ \alpha(\text{M}) = 0.00462 \ 7; \ \alpha(\text{N}+) = 0.001249 \ 18 \\ \alpha(\text{N}) = 0.001086 \ 16; \ \alpha(\text{O}) = 0.0001554 \ 22; \ \alpha(\text{P}) = 8.33 \times 10^{-6} \ 12 \\ 4 \ \text{placements possible based on } \text{E}\gamma \ (1972\text{Ca}21); \ \text{mult} = \text{M1 from ce data of} \\ 1990\text{AbZT, inconsistent with placements from 1364 and 2957 levels In} \\ 1988\text{DzZW.} \end{aligned}$				
296.70 ^{ha} 20	17.0 ^h 15	2661.02	1+	2364.06	1-	[E1]	0.0205	$\alpha(K)=0.01721 \ 25; \ \alpha(L)=0.00254 \ 4; \ \alpha(M)=0.000565 \ 8; \ \alpha(N+)=0.0001506 \ 22 \ \alpha(N)=0.0001315 \ 19; \ \alpha(O)=1.82\times10^{-5} \ 3; \ \alpha(P)=8.71\times10^{-7} \ 13 \ 3 \ placements \ possible \ based \ on \ E\gamma \ (1972Ca21); \ mult=M1 \ from \ ce \ data \ of \ 1990AbZT.$				
296.70 ^{ha} 20	17.0 ^h 15	3065.36	1+	2768.34	0-,1-	[E1]	0.0205	$\alpha(K)=0.01721\ 25;\ \alpha(L)=0.00254\ 4;\ \alpha(M)=0.000565\ 8;\ \alpha(N+)=0.0001506\ 22$ $\alpha(N)=0.0001315\ 19;\ \alpha(O)=1.82\times10^{-5}\ 3;\ \alpha(P)=8.71\times10^{-7}\ 13$ 3 placements possible based on E γ (1972Ca21); mult=M1 from ce data of 1900Ab7T				
x297.70 20	8.5 10							1770A021.				
300.60 ^{<i>a</i>} 20	10.0 <i>10</i>	3366.40	1	3065.36	1+	M1	0.1565	$\alpha(K)=0.1313 \ 19; \ \alpha(L)=0.0197 \ 3; \ \alpha(M)=0.00440 \ 7; \ \alpha(N+)=0.001189 \ 17$ $\alpha(N)=0.001033 \ 15; \ \alpha(O)=0.0001479 \ 21; \ \alpha(P)=7.93\times10^{-6} \ 12$ $\alpha(K)=n=0.264 \ (1972C_{2}21)$				
301.85 ^{<i>a</i>} 20	13.0 <i>15</i>	3258.18	1+	2956.55	1+	[M1]	0.1548	$\alpha(K)=0.1298 \ I9; \ \alpha(L)=0.0195 \ 3; \ \alpha(M)=0.00435 \ 7; \ \alpha(N+)=0.001175 \ I7$ $\alpha(N)=0.001021 \ I5; \ \alpha(O)=0.0001463 \ 2I; \ \alpha(P)=7.84\times10^{-6} \ II$ $\alpha(K)\exp=0.205 \ (1972Ca21), \ mult=M1 \ for \ doublet.$				
303.20 ^{ha} 20	9.0 ^h 10	2429.05	1+,2+	2126.14	1-	[E1]	0.0194	$\alpha(K)=0.01633\ 23;\ \alpha(L)=0.00240\ 4;\ \alpha(M)=0.000535\ 8;\ \alpha(N+)=0.0001427\ 21$ $\alpha(N)=0.0001246\ 18;\ \alpha(O)=1.726\times10^{-5}\ 25;\ \alpha(P)=8.28\times10^{-7}\ 12$ $\alpha(K)=0.0051246\ 18;\ \alpha(O)=1.726\times10^{-5}\ 25;\ \alpha(P)=8.28\times10^{-7}\ 12$				
303.20 ^{ha} 20	9.0 ^h 10	2667.19	1(+)	2364.06	1-	[E1]	0.0194	$\alpha(K) = 0.01633 \ 23; \ \alpha(L) = 0.00240 \ 4; \ \alpha(M) = 0.000535 \ 8; \ \alpha(N+) = 0.0001427 \ 21 \ \alpha(N) = 0.0001246 \ 18; \ \alpha(O) = 1.726 \times 10^{-5} \ 25; \ \alpha(P) = 8.28 \times 10^{-7} \ 12 \ \alpha(K) \exp = 0.205 \ (1972 \text{Ca21}), \ \text{mult} = \text{M1 for doublet.}$				

 ∞

				170 Lu ε dec	ay 1990AbZ	T,1972Ca21,1	970Dz11 (continued)
					$\gamma(^{170}Y)$	(continued)	<u>)</u>
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^π	$E_f = J_f'$	f Mult. [#]	α^{f}	Comments
311.80 20	16.0 <i>15</i>	2351.71	0-,1-,2-	2039.85 1+	[E1]	0.0181	$\alpha(K)=0.01525\ 22;\ \alpha(L)=0.00224\ 4;\ \alpha(M)=0.000499\ 7;\ \alpha(N+)=0.0001331\ 19$ $\alpha(N)=0.0001162\ 17;\ \alpha(Q)=1.611\times10^{-5}\ 23;\ \alpha(P)=7.76\times10^{-7}\ 11$
323.57 5	770 25	2819.77	0-,1-	2496.20 1-	M1	0.1285	Mult=M1+E2 from unenumerated ce data of 1990AbZT is inconsistent with this placement. $\alpha(K)=0.1078$ 15; $\alpha(L)=0.01612$ 23; $\alpha(M)=0.00360$ 5;
			,				α (N+)=0.000974 <i>14</i> α (N)=0.000846 <i>12</i> ; α (O)=0.0001212 <i>17</i> ; α (P)=6.50×10 ⁻⁶ <i>10</i> α (K)exp=0.085 (1972Ca21); α (K)exp=0.17 5 (1972Ca21, I γ ;
x229 5					E0 + M1 + E	20	1968Ba54, I(ce)).
329.3 2	25.0 20	3149.09	1-	2819.77 0 ⁻ ,	1 ⁻ M1	0.1226	$\alpha(K)=0.1029 \ 15; \ \alpha(L)=0.01538 \ 22; \ \alpha(M)=0.00344 \ 5;$
							α(N+)=0.000929 13
							$\alpha(N)=0.000807/12; \alpha(O)=0.0001156/17; \alpha(P)=6.21\times10^{-6}/9$ Mult : based on ce data of 1990AbZT
337.5		1566.38	0^{+}	1228.84 0+	E0		ce(K)/ce=0.87.
							$\alpha(K)\exp\geq0.15 (1972Ca21).$ $I(ce(K))/I(1482\gamma)=0.00111 \text{ from } \alpha(K)\exp>0.15 \text{ if } I_{Y}<10 (1972Ca21)$
339.45 ^{ha} 20	7.0 ^h 10	2768.34	$0^{-}, 1^{-}$	2429.05 1+,	2+		((((x))))((((x)))) = 0.00111 from u((x))(x) > 0.10 fr 1/(((x)))(((x)))(x)))
339.45 ^{ha} 20	7.0 ^h 10	3115.58	1-	2775.66 1			
339.45 ^{ha} 20	7.0 <mark>h</mark> 10	3314.42	1	2975.32 1-			
340.90 ^h 15	34.0 ^h 15	3123.94	1-	2783.12 1+	[E1]	0.01461	α (K)=0.01231 <i>18</i> ; α (L)=0.00180 <i>3</i> ; α (M)=0.000400 <i>6</i> ; α (N+)=0.0001068 <i>15</i>
L -	L						$\alpha(N)=9.32\times10^{-5}$ 13; $\alpha(O)=1.296\times10^{-5}$ 19; $\alpha(P)=6.31\times10^{-7}$ 9
340.90 ^{na} 15	34.0 ⁿ 15	3161.02	(1 ⁻)	2819.77 0 ⁻ ,	1 ⁻ [M1]	0.1118	α (K)=0.0938 14; α (L)=0.01401 20; α (M)=0.00313 5; α (N+)=0.000846 12
accarba in	- coh - co		0- 4- 0-	100 7 (1 1-	-		$\alpha(N)=0.000735 \ 11; \ \alpha(O)=0.0001053 \ 15; \ \alpha(P)=5.66\times10^{-6} \ 8$
366.35^{ha} 15	$54.0^{h} 20$	2351.71	0,1,2	1985.64 1,	2		α (K)exp=0.17 7 (1988DZZW) for multiply-placed γ .
366.35^{ha} 15	$54.0^{h} 20$	3149.09	1	2/83.12 1			$\alpha(\mathbf{K})\exp[=0.17.7]$ (1988DZZW) for multiply-placed γ .
368.30 20	20.0 <i>10</i>	3314.42 2768.34	$1^{0^{-},1^{-}}$	2947.84 1 2400.10 1 ⁻	[M1,E2]	0.07 3	$\alpha(\text{K})\exp=0.1777(1988D22\text{ w})$ for multiply-placed γ . $\alpha(\text{K})=0.053\ 23;\ \alpha(\text{L})=0.0096\ 18;\ \alpha(\text{M})=0.0022\ 4;\ \alpha(\text{N}+)=0.00059\ 11$ $\alpha(\text{N})=0.00051\ 9;\ \alpha(\text{O})=7.0\times10^{-5}\ 16;\ \alpha(\text{P})=3.1\times10^{-6}\ 15$
369.80 ^a 15	58 <i>3</i>	2496.20	1-	2126.14 1-			
371.90 15	68 4	2498.19	0 ⁻ ,1 ⁻ ,2 ⁻	2126.14 1-	(M1)	0.0887	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0745 \ 11; \ \alpha(\mathbf{L}) = 0.01110 \ 16; \ \alpha(\mathbf{M}) = 0.00248 \ 4; \\ &\alpha(\mathbf{N}+) = 0.000670 \ 10 \\ &\alpha(\mathbf{N}) = 0.000582 \ 9; \ \alpha(\mathbf{O}) = 8.34 \times 10^{-5} \ 12; \ \alpha(\mathbf{P}) = 4.48 \times 10^{-6} \ 7 \end{aligned}$
~							α(K)exp<0.21 (1972Ca21)
374.55 ^{<i>a</i>} 20	10.0 10	3314.42	$1 \\ 0^{-} 1^{-} 2^{-}$	2939.73 1-	(11)	0.0925	(W) 0.0002 10. (J.) 0.01021 15. (M) 0.00220 4.
382.33 10	150.5	2498.19	0,1,2	2115.90 1	(1411)	0.0825	$\alpha(\mathbf{N}) = 0.0092 \ 10; \ \alpha(\mathbf{L}) = 0.01051 \ 15; \ \alpha(\mathbf{M}) = 0.00230 \ 4; \ \alpha(\mathbf{N}+) = 0.000622 \ 9$

 $^{170}_{70}$ Yb $_{100}$ -9

L

	¹⁷⁰ Lu ε decay 1990AbZT,1972Ca21,1970Dz11 (continued)											
					$\gamma(^{170}Y)$	(continued)						
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\mathbf{z}}$	Mult. [#]	α^{f}	Comments					
384.85 ^{<i>a</i>} 15 386.45 20	32.0 <i>15</i> 20.0 <i>15</i>	3314.42 3169.59	1 1-	2929.60 1 ⁻ 2783.12 1 ⁺	M1(+E2+E0) [E1]	0.01087	$\begin{aligned} &\alpha(\text{N})=0.000541 \ 8; \ \alpha(\text{O})=7.75\times10^{-5} \ 11; \ \alpha(\text{P})=4.17\times10^{-6} \ 6\\ &\alpha(\text{K})\exp<0.13 \ (1972\text{Ca21}),\approx0.085 \ (1972\text{Ca21}, \text{I}\gamma; \ 1968\text{Ba54}, \text{I(ce)}).\\ &\alpha(\text{K})\exp=0.16 \ 6 \ (1988\text{DzZW})\\ &\alpha(\text{K})=0.00916 \ 13; \ \alpha(\text{L})=0.001328 \ 19; \ \alpha(\text{M})=0.000295 \ 5;\\ &\alpha(\text{N}+)=7.89\times10^{-5} \ 11 \end{aligned}$					
388.80 10	200 6	1534.57	2+	1145.72 2+	M1(+E0+E2)	0.081	α (N)=6.88×10 ⁻⁵ 10; α (O)=9.61×10 ⁻⁶ 14; α (P)=4.74×10 ⁻⁷ 7 α (K)exp=0.060 (1972Ca21) Mult - M1 from 1972Ca21; M1+E0+E2 from 1990Ab7T					
390.40 ^{<i>hb</i>} 15	125 ^h 5	2819.77	0-,1-	2429.05 1+,	2 ⁺ [E1]	0.01061	$\alpha(K)=0.00895 \ 13; \ \alpha(L)=0.001296 \ 19; \ \alpha(M)=0.000288 \ 4; \\ \alpha(N+)=7.70\times10^{-5} \ 11 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 38\times10^{-6} \ 14; \ \alpha(P)=4 \ 63\times10^{-7} \ 7 \\ \alpha(N)=6 \ 72\times10^{-5} \ 10; \ \alpha(\Omega)=9 \ 10; \ \alpha$					
390.40 ^{ha} 15	125 ^h 5	3366.40	1	2975.32 1-			Mult.: M1+E2 from ce data of 1990AbZT for doubly-placed γ . $\alpha(K)=0.047\ 21;\ \alpha(L)=0.0083\ 18;\ \alpha(M)=0.0019\ 4;\ \alpha(N+)=0.00055$					
395.95 10	420 12	1534.57	2^{+}	1138.55 2+	M1(+E0+E2)	0.077	Mult.: M1+E2 from ce data of 1990AbZT for doubly-placed γ . α (K)exp=0.060 (1972Ca21); α (K)exp=0.075 7 (1988DzZW) Mult : M1 from 1972Ca21: M1+E0+E2 from 1990AbZT					
401.30 20	19 6	3169.59	1-	2768.34 0 ⁻ ,	1 ⁻ M1	0.0726	$\alpha(K)=0.0610 \ 9; \ \alpha(L)=0.00906 \ 13; \ \alpha(M)=0.00202 \ 3; \\ \alpha(N+)=0.000547 \ 8 \\ \alpha(N)=0.000475 \ 7; \ \alpha(O)=6.81\times10^{-5} \ 10; \ \alpha(P)=3.67\times10^{-6} \ 6$					
404.00 ^{ha} 15	32.0 ^h 15	3065.36	1+	2661.02 1+	[M1]	0.0714	α (K)exp=0.11 4 (1988DzZW) α (K)=0.0599 9; α (L)=0.00890 13; α (M)=0.00199 3; α (N+)=0.000537 8 α (N)=0.000467 7; α (O)=6.69×10 ⁻⁵ 10; α (P)=3.60×10 ⁻⁶ 5 α (K)exp=0.068 (1972Ca21), 0.122 13 (1988DzZW) for dentity placed to					
404.00 ^{ha} 15	32.0 ^h 15	3179.76	1-	2775.66 1-	[M1]	0.0714	$\alpha(K)=0.0599 \ 9; \ \alpha(L)=0.00890 \ 13; \ \alpha(M)=0.00199 \ 3; \ \alpha(N+)=0.000537 \ 8 \ \alpha(N)=0.000467 \ 7; \ \alpha(O)=6.69\times10^{-5} \ 10; \ \alpha(P)=3.60\times10^{-6} \ 5 \ \alpha(K)\exp=0.068 \ (1972Ca21), \ 0.122 \ 13 \ (1988DzZW) \ for$					
406.25 ^{ha} 15	52 ^h 3	2929.60	1-	2523.07 1+	[E1]	0.00968 14	doubly-placed γ . α =0.00968 14; α (K)=0.00816 12; α (L)=0.001179 17; α (M)=0.000262 4; α (N+)=7.01×10 ⁻⁵ 10 α (N)=6.11×10 ⁻⁵ 9; α (O)=8.55×10 ⁻⁶ 12; α (P)=4.24×10 ⁻⁷ 6 Mult.: E2 from ce data of 1990AbZT and α (K)exp=0.038 5 (1000) α (K)=0.038 5					
406.25 ^{ha} 15	52 ^h 3	3067.62	1-	2661.02 1+	[E1]	0.00968 14	(1988DZZW), not consistent with either placement of γ -ray. α =0.00968 14; α (K)=0.00816 12; α (L)=0.001179 17; α (M)=0.000262 4; α (N+)=7.01×10 ⁻⁵ 10 α (N)=6.11×10 ⁻⁵ 9; α (O)=8.55×10 ⁻⁶ 12; α (P)=4.24×10 ⁻⁷ 6 Mult.: E2 from ce data of 1990AbZT and α (K)exp=0.038 5 (1988DzZW), not consistent with either placement of γ -ray.					

				17	⁰ Lu ε decay	7 1990AbZT ,	1972Ca21	,1970Dz11 (con	ntinued)
						$\gamma(^{170}\text{Yb})$	(continue	d)	
E_{γ}^{\dagger}	Ι _γ ‡ <i>е</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	δ	α^{f}	Comments
^x 407.55 20 410.5	20.0 10	1479.91	0+	1069.36	0+	E0			$\begin{array}{l} \alpha(K) \exp = 0.072 \ 14 \ (1988 DzZW) \\ \alpha(K) \exp \geq 0.23 \ (1972 Ca21); \ \alpha(K) \exp = 0.30 \ 11 \\ (1988 DzZW) \\ ce(K)/ce = 0.87. \\ I(ce(K))/I(1396\gamma) = 0.00103 \ from \ \alpha(K) \exp > 0.23 \ if \ I\gamma < 22 \\ (1972 Ca21). \end{array}$
410.55 ^{<i>a</i>} 15 416.50 20	22 5 13.5 <i>1</i> 5	2947.84 2768.34	1 ⁻ 0 ⁻ ,1 ⁻	2536.97 2351.71	1 ⁻ 0 ⁻ ,1 ⁻ ,2 ⁻	(M1,E2)		0.048 20	α (K)exp=0.040 21 (1988DzZW) α (K)=0.039 17; α (L)=0.0067 15; α (M)=0.0015 3; α (N+)=0.00041 9 α (N)=0.00026 8 α (Q) 4.0×10=5 12 α (D) 2.2×10=6 11
419.65 5	1120 <i>30</i>	2819.77	0 ⁻ ,1 ⁻	2400.10	1-	M1		0.0646	$\alpha(N)=0.00036\ 8;\ \alpha(O)=4.9\times10^{-5}\ 13;\ \alpha(P)=2.3\times10^{-6}\ 11^{-6}\ \alpha(N)=0.00426\ 3;\ \alpha(N)=0.000486\ 7$ $\alpha(N)=0.000422\ 6;\ \alpha(O)=6.05\times10^{-5}\ 9;\ \alpha(P)=3.26\times10^{-6}\ 5$ $\alpha(K)\exp=0.043\ (1972Ca21);\ \alpha(K)\exp=0.049\ 4$ (1988D77W)
427.20 20	19 <i>3</i>	3195.58	1-	2768.34	$0^{-}, 1^{-}$	M1(+E2+E0)		≈0.114	$\alpha(\text{K})\exp=0.095\ 24\ (1988\text{DzZW})$ $\alpha_{\text{K}}\exp=0.095\ 24\ (1988\text{DzZW})$
443.40 ^{<i>a</i>} 15	91 3	2939.73	1-	2496.20	1-	M1,E2		0.040 <i>16</i>	α(K)=0.033 <i>I4</i> ; α(L)=0.0056 <i>I4</i> ; α(M)=0.0013 <i>3</i> ; α(N+)=0.00034 <i>8</i> α(N)=0.00030 7; α(O)=4.1×10 ⁻⁵ <i>I1</i> ; α(P)=1.9×10 ⁻⁶ 9 α(K)exp=0.024 (1972Ca21); α(K)exp=0.043 <i>8</i> (1988DzZW) E_{γ} : placed from 3213 level also by 1988DzZW but E_{γ} does not fit that placement.
447.65 ^a 10	157 5	3195.58	1-	2748.08	1-	M1		0.0546	$\alpha(K)=0.0458 \ 7; \ \alpha(L)=0.00679 \ 10; \ \alpha(M)=0.001516 \ 22; \\ \alpha(N+)=0.000410 \ 6 \\ \alpha(N)=0.000356 \ 5; \ \alpha(O)=5.10\times10^{-5} \ 8; \ \alpha(P)=2.75\times10^{-6} \ 4 \\ \alpha(K)\exp=0.0475 \ (1972Ca21); \ \alpha(K)\exp=0.038 \ 3 \\ (1988DzZW)$
449.25 ^{<i>a</i>} 20	16.0 <i>15</i>	3268.91	1 ⁽⁺⁾	2819.77	0 ⁻ ,1 ⁻	[E1]		0.00769 11	$\alpha = 0.00769 \ 11; \ \alpha(K) = 0.00650 \ 10; \ \alpha(L) = 0.000933 \ 13; \alpha(M) = 0.000207 \ 3; \ \alpha(N+) = 5.54 \times 10^{-5} \ 8 \alpha(N) = 4.83 \times 10^{-5} \ 7; \ \alpha(O) = 6.78 \times 10^{-6} \ 10; \ \alpha(P) = 3.40 \times 10^{-7} 5 \alpha(K) \exp = 0.057 \ 23 \ (1988 DzZW)$
455.50 10	290 10	2819.77	0-,1-	2364.06	1-	M1		0.0521	Mult.: M1 from $\alpha(K)exp$; level scheme requires E1. $\alpha(K)=0.0438$ 7; $\alpha(L)=0.00649$ 9; $\alpha(M)=0.001448$ 21; $\alpha(N+)=0.000391$ 6 $\alpha(N)=0.000340$ 5; $\alpha(O)=4.87\times10^{-5}$ 7; $\alpha(P)=2.63\times10^{-6}$ 4 $\alpha(K)exp\leq0.0465$ (1972Ca21); $\alpha(K)exp=0.042$ 15 (1988D-7W)
457.90 15	48 4	2115.90	1-	1658.06	(2)+	(E1+M2)	0.36 7	0.026 7	$\alpha(K)=0.021 \ 6; \ \alpha(L)=0.0036 \ 10; \ \alpha(M)=0.00081 \ 23; \\ \alpha(N+)=0.00022 \ 6$

From ENSDF

 $^{170}_{70} \rm Yb_{100} \text{--} 11$

 $^{170}_{70}$ Yb $_{100}$ -11

					170 Lu ε dec	ay <mark>1990</mark>	AbZT,1972Ca	21,1970Dz11 (continued)
						<u> </u>	(contin	ued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	α^{f}	Comments
								α (N)=0.00019 6; α (O)=2.7×10 ⁻⁵ 8; α (P)=1.4×10 ⁻⁶ 4 α (K)exp=0.021 5 (1988DzZW) Mult.: α (K)exp implies E2(+M1) or E1+M2 with δ =0.35 7; level scheme requires $\Delta \pi$ =ves.
^x 461.20 <i>15</i>	27 4					M1	0.0505	α (K)exp=0.050 (1972Ca21); α (K)exp=0.064 <i>19</i> (1988DzZW) α (K)=0.0424 <i>6</i> ; α (L)=0.00628 <i>9</i> ; α (M)=0.001401 <i>20</i> ; α (N+)=0.000379 <i>6</i> α (N)=0.000329 <i>5</i> ; α (O)=4.72×10 ⁻⁵ <i>7</i> ; α (P)=2.54×10 ⁻⁶ <i>4</i>
465.50 ^{<i>a</i>} 15 467.35 15	24.0 20 49.0 25	3213.27 2965.66	1^{-} 1 ⁺	2748.08 2498.19	1 ⁻ 0 ⁻ ,1 ⁻ ,2 ⁻	M1+E0 [E1]	0.00704 10	$\alpha(\text{K}) \exp[=0.087 \ 16 \ (1988\text{DzZW})$ $\alpha=0.00704 \ 10; \ \alpha(\text{K})=0.00595 \ 9; \ \alpha(\text{L})=0.000852 \ 12; \ \alpha(\text{M})=0.000189 \ 3; \ \alpha(\text{N}+)=5.06\times10^{-5} \ 7 \ \alpha(\text{N})=4.41\times10^{-5} \ 7; \ \alpha(\text{O})=6.10\times10^{-6} \ 0; \ \alpha(\text{D})=2.12\times10^{-7} \ 5.00\times10^{-7} \ 5.00$
472.50 15	25.0 10	2748.08	1-	2275.49	1-	M1	0.0474	$\alpha(N)=4.41\times10^{-7}$; $\alpha(O)=0.19\times10^{-9}$; $\alpha(P)=5.12\times10^{-5}$ $\alpha(K)\exp=0.0475$ (1972Ca21); $\alpha(K)\exp=0.046$ <i>10</i> (1988DzZW) Mult.: M1 from $\alpha(K)\exp$ is inconsistent with placement. $\alpha(K)=0.0398$ 6; $\alpha(L)=0.00589$ 9; $\alpha(M)=0.001315$ <i>19</i> ; $\alpha(N+)=0.000355$ 5 $\alpha(N)=0.000309$ 5; $\alpha(O)=4.43\times10^{-5}$ 7; $\alpha(P)=2.39\times10^{-6}$ 4 $\alpha(K)\exp=0.054$ <i>11</i> (1988DzZW)
478.80 10	125 14	3146.03	1+	2667.19	1(+)	M1	0.0458	E _γ : placed by evaluator, based on E _γ , and multipolarity; 1990Gr19 placed γ from 1985 level, but E _γ is too low for that placement. $\alpha(K)=0.0385$ 6; $\alpha(L)=0.00569$ 8; $\alpha(M)=0.001270$ 18; $\alpha(N+)=0.000343$ 5 $\alpha(N)=0.000298$ 5; $\alpha(O)=4.28\times10^{-5}$ 6; $\alpha(P)=2.31\times10^{-6}$ 4 $\alpha(K)exp=0.051$ 9 (1988DzZW)
479.50 15	67 <i>3</i>	3140.60	(1)	2661.02	1+	M1+E2	0.033 13	α (K)exp \leq 0.050 for 478.8 γ +479.5 γ doublet (1972Ca21). α (K)=0.027 <i>12</i> ; α (L)=0.0045 <i>12</i> ; α (M)=0.00102 <i>25</i> ; α (N+)=0.00027 7 α (N)=0.00024 <i>6</i> ; α (O)=3.3 \times 10 ⁻⁵ <i>10</i> ; α (P)=1.6 \times 10 ⁻⁶ 8 α (K)exp=0.024 <i>6</i> (1988DzZW) (K)=0.026 <i>6</i> (1988DzZW)
^x 480.50 15 ^x 486.80 15	44.0 <i>20</i> 42.0 <i>20</i>					M1	0.0439	α (K)exp \leq 0.050 for 4/8.8 γ +4/9.5 γ doublet (19/2Ca21). α (K)exp $=$ 0.049 <i>13</i> (1988DzZW) α (K)exp $=$ 0.034 <i>13</i> (1988DzZW)
								$\alpha(K)=0.0369\ 6;\ \alpha(L)=0.00545\ 8;\ \alpha(M)=0.001216\ 17;\ \alpha(N+)=0.000329\ 5$ $\alpha(N)=0.000286\ 4;\ \alpha(O)=4.09\times10^{-5}\ 6;\ \alpha(P)=2.21\times10^{-6}\ 3$
490.95 ^{<i>a</i>} 15	50.0 15	3274.17	1-	2783.12	1+	[E1]	0.00631 9	$\alpha = 0.00631 \ 9; \ \alpha(K) = 0.00533 \ 8; \ \alpha(L) = 0.000761 \ 11; \ \alpha(M) = 0.0001690 \ 24; \alpha(N+) = 4.53 \times 10^{-5} \ 7 \alpha(N) = 3.95 \times 10^{-5} \ 6; \ \alpha(O) = 5.54 \times 10^{-6} \ 8; \ \alpha(P) = 2.80 \times 10^{-7} \ 4 $
492.58 5	1270 40	1717.95	(2)-	1225.35	(3)+	E1	0.00626 9	α (K)exp=0.036 <i>13</i> (1988DZZW) Mult.: M1(+E2) from α (K)exp; M1+E2 from ce data of 1990AbZT. However, level scheme requires E1. α =0.00626 9; α (K)=0.00530 8; α (L)=0.000756 <i>11</i> ; α (M)=0.0001678 24;
497.0		1566.38	0+	1069.36	0+	E0		$\alpha(N+)=4.49\times10^{-5} / \alpha(N)=3.92\times10^{-5} 6; \ \alpha(O)=5.50\times10^{-6} 8; \ \alpha(P)=2.78\times10^{-7} 4 \\ \alpha(K)\exp=0.0056 \ (1972Ca21); \ \alpha(K)\exp=0.0068 7 \ (1988DzZW) \\ ce(K)/ce=0.87. \\ \alpha(K)\exp\geq0.14 \ (1972Ca21). \\ I(ce(K))/I(1482\gamma)=0.00321 \ from \ \alpha(K)\exp>0.14 \ if \ I\gamma<31 \ (1972Ca21). \end{cases}$

				¹⁷⁰ Lu	ε decay	1990AbZ	T,1972Ca21,1	970Dz11 (co	ontinued)
						γ (¹⁷⁰ Y	b) (continued)		
E_{γ}^{\dagger}	Ι _γ ‡ <i>е</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	δ	α^{f}	Comments
497.50 ^{<i>a</i>} 15	31.0 10	2536.97	1-	2039.85	1+				α(K)exp=0.053 20 (1988DzZW)
500.50 15	22.0 10	2929.60	1-	2429.05	1+,2+				Mult.: M1 from $\alpha(K)$ exp; placement requires E1. $\alpha(K)$ exp=0.07 3 (1988DzZW) $\alpha(K)$ =0.0352 11; $\alpha(L)$ =0.00519 16 Mult.: $\alpha(K)$ exp favors mult=M1, but large uncertainty may
518.90 ^{<i>a</i>} 15	22.0 10	3301.95	1+	2783.12	1+	M1		0.0372	render result unreliable. Placement requires E1. $\alpha(K)=0.03135; \alpha(L)=0.004617; \alpha(M)=0.00102915;$ $\alpha(N+)=0.0002784$ $\alpha(N)=0.0002424; \alpha(O)=3.47\times10^{-5}5; \alpha(P)=1.87\times10^{-6}3$
$x_{524} = 3^{d}$									$\alpha(K) \exp[-0.037/17] (1988DzZW)$
x525.05 15	25 3					M1		0.0361	α (K)exp=0.036 <i>13</i> (1988DzZW) α (K)=0.0304 <i>5</i> ; α (L)=0.00447 <i>7</i> ; α (M)=0.000998 <i>14</i> ; α (N+)=0.000270 <i>4</i>
530.50 10	210 10	2819.77	0-,1-	2289.37	1+	(E1+M2)	0.28 +6-7	0.013 4	$ \begin{aligned} &\alpha(N) = 0.000234 \ 4; \ \alpha(O) = 3.36 \times 10^{-5} \ 5; \ \alpha(P) = 1.82 \times 10^{-6} \ 3 \\ &\alpha(K) = 0.011 \ 3; \ \alpha(L) = 0.0017 \ 5; \ \alpha(M) = 0.00038 \ 11; \\ &\alpha(N+) = 0.00010 \ 3 \end{aligned} $
									$ α(N)=9.0×10^{-5} 25; α(O)=1.3×10^{-5} 4; α(P)=6.5×10^{-7} 18 α(K)exp=0.0145 (1972Ca21); α(K)exp=0.012 3 (1972Ca21, Iγ; 1968Ba54, I(ce)). Mult.: E2 favored by α(K)exp but inconsistent with level scheme; E1+M2 would imply δ=0.28 +6-7. However, mixed multipolarity inconsistent with level scheme if J(2820)=0. $
534.65 ^a 15	22.0 10	3195.58	1-	2661.02	1+				α (K)exp=0.06 3 (1988DzZW)
535.95 ^a 15	21.0 10	3202.94	1+	2667.19	1 ⁽⁺⁾				α (K)exp=0.021 for doublet (1972Ca21). α (K)exp=0.030 (1988DzZW) α (K)exp=0.021 for doublet (1972Ca21).
539.05 ^{ha} 15	54 ^h 5	2975.32	1-	2436.01	(2,3)-				α (K)exp=0.037 20 (1988DzZW) for doubly-placed γ .
539.05 ^{ha} 15	54 ^h 5	3314.42	1	2775.66	1-				α (K)exp=0.037 20 (1988DzZW) for doubly-placed γ .
540.15 10	460 20	2052.59	0-,1-,2-	1512.37	1-	M1		0.0336	$\alpha(K)=0.0282 4; \alpha(L)=0.00416 6; \alpha(M)=0.000927 13; \alpha(N+)=0.000251 4$
4									α (N)=0.000218 3; α (O)=3.12×10 ⁻⁵ 5; α (P)=1.687×10 ⁻⁶ 24 α (K)exp=0.027 (1972Ca21); α (K)exp=0.032 4 (1972Ca21, I γ ; 1968Ba54, I(ce)).
^x 542.84 ^a 17 544.24 5	1850 <i>50</i>	2819.77	0 ⁻ ,1 ⁻	2275.49	1-	M1(+E2)		0.024 10	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.020 \; 9; \; \alpha(\mathrm{L}) = 0.0032 \; 9; \; \alpha(\mathrm{M}) = 0.00072 \; 19; \\ &\alpha(\mathrm{N}+) = 0.00019 \; 6 \\ &\alpha(\mathrm{N}) = 0.00017 \; 5; \; \alpha(\mathrm{O}) = 2.4 \times 10^{-5} \; 7; \; \alpha(\mathrm{P}) = 1.1 \times 10^{-6} \; 6 \end{aligned} $
									 α(K)exp≤0.023 (1972Ca21); 0.0297 23 (1972Ca21, Iγ; 1968Ba54, I(ce)). K/L=5.0 (1960Ha18). Mult.: E2 component inconsistent with decay scheme if J(2820)=0.

				¹⁷⁰ Lu	ε deca	y 1990Ab	ZT,1972Ca2 1	1,1970Dz11 (continued)
						$\gamma(^{170}$	Yb) (continue	ed)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
547.25 15	86 4	2748.08	1-	2200.91	1-,2-	M1(+E2)	0.023 10	$\alpha(K)=0.019 \ 8; \ \alpha(L)=0.0031 \ 9; \ \alpha(M)=0.00071 \ 19; \ \alpha(N+)=0.00019 \ 6$ $\alpha(N)=0.00017 \ 5; \ \alpha(O)=2.3\times10^{-5} \ 7; \ \alpha(P)=1.1\times10^{-6} \ 5$ $\alpha(K)\exp=0.032 \ 11 \ (1988DzZW)$ $E_{\gamma}: \ placed from 3203 \ level also in 1990Gr19 \ but \ E_{\gamma} \ does not fit that placement$
^x 558.90 15	35 4					E1	0.00476 7	$\alpha(K)\exp=0.0080 \ (1972Ca21); \ \alpha(K)\exp=0.0028 \ 13 \ (1988DzZW) \\ \alpha=0.00476 \ 7; \ \alpha(K)=0.00403 \ 6; \ \alpha(L)=0.000571 \ 8; \ \alpha(M)=0.0001266 \ 18; \\ \alpha(N+)=3.39\times10^{-5} \ 5 \\ \alpha(N)=2.96\times10^{-5} \ 5; \ \alpha(O)=4.17\times10^{-6} \ 6; \ \alpha(P)=2.13\times10^{-7} \ 3 $
560.55 ^b 15	37 5	1985.64	1-,2-	1425.24	(2)-	M1	0.0305	$\alpha(K)=0.0257 \ 4; \ \alpha(L)=0.00377 \ 6; \ \alpha(M)=0.000842 \ 12; \ \alpha(N+)=0.000228 \ 4 \ \alpha(N)=0.000198 \ 3; \ \alpha(O)=2.84\times10^{-5} \ 4; \ \alpha(P)=1.534\times10^{-6} \ 22$
^x 563.00 15	96 <i>3</i>					E2(+M1)	0.022 9	$\alpha(K)\exp=0.0325 (1972Ca21)$ $\alpha(K)\exp\leq0.021 (1972Ca21); \ \alpha(K)\exp=0.016 \ 7 (1988DzZW)$ $\alpha(K)=0.018 \ 8; \ \alpha(L)=0.0029 \ 9; \ \alpha(M)=0.00066 \ 18; \ \alpha(N+)=0.00018 \ 5$ $\alpha(N)=0.00015 \ 5; \ \alpha(O)=2.1\times10^{-5} \ 7; \ \alpha(P)=1.1\times10^{-6} \ 5$
$565.80^{ha} 15$ $565.80^{h} 15$ $x571.48^{d} 16$	28.0^{h} 15 28.0^{h} 15	2965.66 3314.42	1+ 1	2400.10 2748.08	1- 1-			α (K)exp=0.042 26 (1988DzZW) for doubly-placed γ . α (K)exp=0.042 26 (1988DzZW) for doubly-placed γ .
572.20 5	2800 75	1717.95	(2)-	1145.72	2+	E1	0.00453 7	$ \begin{array}{l} \alpha = 0.00453 \ 7; \ \alpha(\mathrm{K}) = 0.00383 \ 6; \ \alpha(\mathrm{L}) = 0.000542 \ 8; \ \alpha(\mathrm{M}) = 0.0001202 \ 17; \\ \alpha(\mathrm{N}+) = 3.22 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 2.81 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 3.96 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 2.03 \times 10^{-7} \ 3 \\ \alpha(\mathrm{K}) \exp = 0.0033 \ (1972 \mathrm{Ca21}); \ \alpha(\mathrm{K}) \exp = 0.0045 \ 6 \ (1972 \mathrm{Ca21}, \ \mathrm{I}\gamma; \\ 1968 \mathrm{Ba54}, \ \mathrm{I(ce)}). \ \mathrm{K/L} = 2.25 \ (1960 \mathrm{Ha18}). \end{array} $
574.2 ^{<i>db</i>} 3 575.95 ^{<i>a</i>} 25	43.5 20	3070.52 2939.73	0,1 1 ⁻	2496.20 2364.06	1- 1-	M1	0.0285	$\alpha(K)=0.0240$ 4; $\alpha(L)=0.00352$ 5; $\alpha(M)=0.000785$ 11; $\alpha(N+)=0.000212$
579.40 5	1000 <i>30</i>	1717.95	(2)-	1138.55	2+	E1	0.00441 7	$\begin{aligned} &\alpha(N) = 0.000184 \ 3; \ \alpha(O) = 2.64 \times 10^{-5} \ 4; \ \alpha(P) = 1.430 \times 10^{-6} \ 20 \\ &\alpha(K) \exp \le 0.080 \ (1972 \text{Ca21}); \ \alpha(K) \exp = 0.044 \ 14 \ (1972 \text{Ca21}, \ I\gamma; \\ 1968 \text{Ba54}, \ I(\text{ce})). \\ &\alpha = 0.00441 \ 7; \ \alpha(K) = 0.00373 \ 6; \ \alpha(L) = 0.000528 \ 8; \ \alpha(M) = 0.0001170 \ 17; \\ &\alpha(N+) = 3.14 \times 10^{-5} \ 5 \\ &\alpha(N) = 2.73 \times 10^{-5} \ 4; \ \alpha(O) = 3.86 \times 10^{-6} \ 6; \ \alpha(P) = 1.98 \times 10^{-7} \ 3 \end{aligned}$
x582.3 ^d 4 x584.35 15 x585.80 15	26.5 <i>15</i> 34.0 <i>20</i>					(M1)	0.0273	$\alpha(K)\exp=0.0044 \ (1972Ca21); \ \alpha(K)\exp=0.0067 \ 20 \ (1988DzZW)$ $\alpha(K)\exp=0.041 \ 21 \ (1988DzZW)$ $\alpha(K)=0.0230 \ 4; \ \alpha(L)=0.00337 \ 5; \ \alpha(M)=0.000751 \ 11; \ \alpha(N+)=0.000203$
587.15 ^a 15	66 12	3123.94	1-	2536.97	1-	M1(+E2)	0.020 8	$\alpha(N)=0.0001764\ 25;\ \alpha(O)=2.53\times10^{-5}\ 4;\ \alpha(P)=1.369\times10^{-6}\ 20$ $\alpha(K)=0.016\ 7;\ \alpha(L)=0.0026\ 8;\ \alpha(M)=0.00059\ 17;\ \alpha(N+)=0.00016\ 5$

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -14

I

	¹⁷⁰ Lu ε decay 1990AbZT,1972Ca21,1970Dz11 (continued)											
						$\gamma(^{170}$	Yb) (continu	ued)				
E_{γ}^{\dagger}	I_{γ} [‡] <i>e</i>	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. [#]	α^{f}	Comments				
								$\alpha(N)=0.00014 \ 4; \ \alpha(O)=1.9 \times 10^{-5} \ 6; \ \alpha(P)=9.E-7 \ 5$				
500 85ha 15	e1 0h 25	2250 10	1+	2667 10	1(+)			$\alpha(K)\exp=0.013 (19/2Ca21); \alpha(K)\exp=0.038 13 (1988DZZW)$				
590.85 ^{na} 15	81.0^{-25}	3238.18	1	2007.19	1-			$\alpha(K) \exp[=0.017.6]$ (1988DzZW), mult=M1 for doubly-placed γ .				
595.70 ^{<i>a</i>} 15	70.0 20	3091.93	1	2496.20	1 1 ⁻	M1	0.0261	$\alpha(K) = 0.0220 \ 3; \ \alpha(L) = 0.00323 \ 5; \ \alpha(M) = 0.000719 \ 10; \ \alpha(N+) = 0.000194 \ 3$ $\alpha(N) = 0.0001689 \ 24; \ \alpha(O) = 2.42 \times 10^{-5} \ 4; \ \alpha(P) = 1.312 \times 10^{-6} \ 19$				
								$\alpha(K) \exp[-0.030 I2 (1988DzZW)]$				
								Mult.: from ce data of 1990AbZT.				
598.15 ^{<i>a</i>} 15	72 3	3366.40	1	2768.34	$0^{-}, 1^{-}$	E2	0.01147	$\alpha(K)=0.00921 \ 13; \ \alpha(L)=0.001755 \ 25; \ \alpha(M)=0.000402 \ 6; \ \alpha(M)=0.000402 \ 6;$				
								$\alpha(N)=9.36\times10^{-5}$ 14: $\alpha(O)=1.263\times10^{-5}$ 18: $\alpha(P)=5.11\times10^{-7}$ 8				
								$\alpha(K) \exp[-0.011 5 (1988DzZW)]$				
612.15 <i>15</i>	93 <i>3</i>	3149.09	1-	2536.97	1-	E2	0.0108 6	α (K)=0.00873 <i>13</i> ; α (L)=0.001646 <i>23</i> ; α (M)=0.000377 <i>6</i> ; α (N+)=0.0001001 <i>14</i>				
								α (N)=8.77×10 ⁻⁵ <i>13</i> ; α (O)=1.187×10 ⁻⁵ <i>17</i> ; α (P)=4.86×10 ⁻⁷ <i>7</i> α (K)exp=0.0078 (1972Ca21); α (K)exp=0.0053 <i>26</i> (1988DzZW)				
614.00 ^{ha} 20	20.0 ^h 10	2126.14	1-	1512.37	1-			α (K)exp=0.024 <i>12</i> (1988DzZW), mult=M1,E2 for doubly-placed γ .				
614.00 ^h 20	20.0 ^h 10	2965.66	1^{+}	2351.71	0-,1-,2-			α (K)exp=0.024 <i>12</i> (1988DzZW), mult=M1,E2 for doubly-placed γ .				
618.95 ^h 10	165 ^h 5	2819.77	$0^{-}, 1^{-}$	2200.91	$1^{-}, 2^{-}$	[M1,E2]	0.017 7	$\alpha(K)=0.014$ 6; $\alpha(L)=0.0023$ 7; $\alpha(M)=0.00051$ 15; $\alpha(N+)=0.00014$ 4				
								α (N)=0.00012 4; α (O)=1.7×10 ⁻⁵ 6; α (P)=8.E-7 4 (K) mr = 0.011 (1072Cr21) = 0.0176 18 (1088D-7W) mr = M1 + F2 for				
								α (K)exp=0.011 (1972Ca21), 0.0176 78 (1988D22 w), mult=M1+E2 for doubly-placed γ .				
618.95 <mark>ha</mark> 10	165 ^h 5	3115.58	1-	2496.20	1-	[M1,E2]	0.017 7	$\alpha(K)=0.014$ 6; $\alpha(L)=0.0023$ 7; $\alpha(M)=0.00051$ 15; $\alpha(N+)=0.00014$ 4				
								α (N)=0.00012 4; α (O)=1.7×10 ⁻⁵ 6; α (P)=8.E-7 4				
								α (K)exp=0.011 (1972Ca21), 0.0176 <i>18</i> (1988DzZW), mult=M1+E2 for doubly-placed γ .				
621.40 ^{<i>hb</i>} 15	97 ^h 10	1985.64	1-,2-	1364.53	1-	[M1]	0.0235	α (K)=0.0198 <i>3</i> ; α (L)=0.00289 <i>4</i> ; α (M)=0.000645 <i>9</i> ; α (N+)=0.0001744 25				
								α (N)=0.0001515 22; α (O)=2.17×10 ⁻⁵ 3; α (P)=1.178×10 ⁻⁶ 17				
								α (K)exp=0.023 (1972Ca21), 0.026 5 (1988DzZW), mult=M1 for doubly-placed γ .				
621.40 ^{ha} 15	97 ^h 10	2661.02	1+	2039.85	1+	[M1]	0.0235	$\alpha(K)=0.0198 \ 3; \ \alpha(L)=0.00289 \ 4; \ \alpha(M)=0.000645 \ 9; \ \alpha(N+)=0.0001744 \ 25$				
								α (N)=0.0001515 22; α (O)=2.17×10 ⁻⁵ 3; α (P)=1.178×10 ⁻⁶ 17 α (K)exp=0.023 (1972Ca21), 0.026 5 (1988DzZW), mult=M1 for				
677 750 20	55 1	3146.02	1+	2523 07	1+	M1	0.0233	doubly-placed γ .				
022.15 20	JJ 4	5140.05	1	2525.07	1	1411	0.0233	$a(\mathbf{K}) = 0.0157.5, a(\mathbf{L}) = 0.00266.4, a(\mathbf{M}) = 0.000042.9, a(\mathbf{M}+) = 0.0001735$ 25 20 0 0 0 0 1 6 7 2 2 (0) 2 1 6 1 0 5 2 (0) 1 1 7 1 1 0 5 1 7				
								$\alpha(N)=0.000150722; \alpha(O)=2.16\times10^{-5}3; \alpha(P)=1.171\times10^{-5}17$ $\alpha(K)\exp=0.0207(1988DzZW)$				

L

¹⁷⁰Lu ε decay **1990AbZT,1972Ca21,1970Dz11** (continued)

$\gamma(^{170}$ Yb) (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
633.75 25	20.0 10	2351.71	0-,1-,2-	1717.95	(2)-			α(K)exp=0.025 13 (1988DzZW)
636.80 ^{<i>a</i>} 20	50 8	3384.87	1-	2748.08	1-	M1,E2	0.016 6	Mult.: M1,E2 from α (K)exp. α (K)=0.013 6; α (L)=0.0021 7; α (M)=0.00047 14; α (N+)=0.00013 4 α (N)=0.00011 4; α (O)=1.6×10 ⁻⁵ 5; α (P)=8.E-7 4 α (K)exp=0.016 8 (1988DzZW)
645.80 ^{<i>a</i>} 20	30.0 15	2126.14	1-	1479.91	0^{+}			$\alpha(K)\exp=0.023\ 7\ (1988DzZW)$
649.60 ^{ha} 15	100 ^h 6	2367.65	(1) ⁻	1717.95	(2) ⁻	[M1]	0.0210	$\alpha(K)=0.01766\ 25;\ \alpha(L)=0.00258\ 4;\ \alpha(M)=0.000576\ 8;\ \alpha(N+)=0.0001556\ 22$
								α (N)=0.0001352 <i>19</i> ; α (O)=1.94×10 ⁻⁵ <i>3</i> ; α (P)=1.052×10 ⁻⁶ <i>15</i> α (K)exp=0.023 <i>6</i> (1972Ca21, I γ ; 1968Ba54, I(ce)), mult=M1 for doubly-placed γ .
649.60 ^{ha} 15	100 ^h 6	2775.66	1-	2126.14	1-	[M1]	0.0210	α (K)=0.01766 25; α (L)=0.00258 4; α (M)=0.000576 8; α (N+)=0.0001556 22
								α (N)=0.0001352 <i>19</i> ; α (O)=1.94×10 ⁻⁵ <i>3</i> ; α (P)=1.052×10 ⁻⁶ <i>15</i> α (K)exp=0.023 <i>6</i> (1972Ca21, I γ ; 1968Ba54, I(ce)), mult=M1 for doubly-placed γ .
652.65 ^{<i>a</i>} 20	37 3	3149.09	1-	2496.20	1-	M1	0.0207	$\alpha(K)=0.01746\ 25;\ \alpha(L)=0.00255\ 4;\ \alpha(M)=0.000569\ 8;\ \alpha(N+)=0.0001538\ 22$
								α (N)=0.0001336 <i>19</i> ; α (O)=1.92×10 ⁻⁵ <i>3</i> ; α (P)=1.039×10 ⁻⁶ <i>15</i> α (K)exp=0.024 <i>8</i> (1988DzZW)
x655.10 20	22.5 10							α (K)exp=0.016 <i>12</i> (1988DzZW)
656.65 ^{nu} 20	28.0 ⁿ 15	2783.12	1+	2126.14	1-			α (K)exp<0.014 (1988DzZW) for multiply-placed γ .
656.65 ^{<i>n</i>} 20	28.0 ⁿ 15	3179.76	1-	2523.07	1+			α (K)exp<0.014 (1988DzZW) for multiply-placed γ .
658.20 ^a 20 659.70 20	22.0 20 24.0 15	3195.58 2775.66	1^{-} 1^{-}	2536.97 2115.90	1^{-} 1^{-}	(M1)	0.0202	α (K)exp<0.018 (1988DzZW) α (K)=0.01699 24; α (L)=0.00248 4; α (M)=0.000553 8;
								α(N+)=0.0001496 21
								α (N)=0.0001299 <i>19</i> ; α (O)=1.87×10 ⁻⁵ <i>3</i> ; α (P)=1.011×10 ⁻⁶ <i>15</i> α (K)exp=0.023 8 (1988DzZW)
670.35 ^{hb} 20	84 ^h 4	3070.52	0,1	2400.10	1-			$\alpha(K)=0.0167 5; \alpha(L)=0.00244 8$ $\alpha(K)=0.017 5 (1988DzZW), mult=M1 for doubly-placed \gamma.$
670.35 ^h 20	84 ^h 4	3099.64	1 ⁽⁻⁾	2429.05	1+,2+	[E1]	0.00326 5	α =0.00326 5; α (K)=0.00276 4; α (L)=0.000387 6; α (M)=8.57×10 ⁻⁵ 12; α (N+)=2.30×10 ⁻⁵ 4
								α (N)=2.00×10 ⁻⁵ 3; α (O)=2.83×10 ⁻⁶ 4; α (P)=1.472×10 ⁻⁷ 21 α (K)exp=0.017 5 (1988DzZW), mult=M1 for doubly-placed γ .
674.1 ^{da} 3		3169.59	1-	2496.20	1-			
675.45 ^{<i>a</i>} 20	24.0 15	2039.85	1+	1364.53	1-			α (K)exp=0.030 <i>11</i> (1988DzZW) May also deexcite 2661 level, based on E γ .
678.8 ^{gad} 3		3115.58	1-	2436.01	(2,3)-			
678.8 <mark>gad</mark> 3		3202.94	1+	2523.07	1+			
681.50 25	17.5 10	3179.76	1-	2498.19	0-,1-,2-	(M1)	0.0186	α (K)=0.01565 22; α (L)=0.00229 4; α (M)=0.000509 8; α (N+)=0.0001377 20

From ENSDF

				¹⁷⁰ I	uε decay	1990A ł	oZT,1972Ca2	21,1970Dz11 (continued)
						$\gamma(^{17})$	⁰ Yb) (continu	ned)
E_{γ}^{\dagger}	I_{γ} [‡] <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^f	Comments
688.00 8	440 15	2052.59	0-,1-,2-	1364.53	1-	M1	0.0181	$\begin{aligned} &\alpha(\text{N})=0.0001196 \ 17; \ \alpha(\text{O})=1.717\times10^{-5} \ 24; \ \alpha(\text{P})=9.31\times10^{-7} \ 13\\ &\alpha(\text{K})\exp=0.026 \ 15 \ (1988\text{DzZW})\\ &\alpha(\text{K})=0.01528 \ 22; \ \alpha(\text{L})=0.00223 \ 4; \ \alpha(\text{M})=0.000497 \ 7;\\ &\alpha(\text{N}+)=0.0001344 \ 19 \end{aligned}$
691.75 ^a 20	37.0 15	3091.93	1	2400.10	1-	M1	0.0179	$\begin{aligned} &\alpha(N) = 0.0001167 \ 17; \ \alpha(O) = 1.676 \times 10^{-5} \ 24; \ \alpha(P) = 9.09 \times 10^{-7} \ 13 \\ &\alpha(K) \exp = 0.015 \ (1972 \text{Ca21}); \ \alpha(K) \exp = 0.0122 \ 21 \ (1988 \text{DzZW}) \\ &\alpha(K) = 0.01508 \ 22; \ \alpha(L) = 0.00220 \ 3; \ \alpha(M) = 0.000490 \ 7; \\ &\alpha(N+) = 0.0001325 \ 19 \end{aligned}$
693.55 20	53 5	2819.77	0-,1-	2126.14	1-	M1	0.01778	$ \begin{aligned} &\alpha(N) = 0.0001151 \ 17; \ \alpha(O) = 1.653 \times 10^{-5} \ 24; \ \alpha(P) = 8.97 \times 10^{-7} \ 13 \\ &\alpha(K) \exp = 0.027 \ 12 \ (1988 \text{DzZW}) \\ &\alpha(K) = 0.01498 \ 21; \ \alpha(L) = 0.00219 \ 3; \ \alpha(M) = 0.000487 \ 7; \\ &\alpha(N+) = 0.0001316 \ 19 \end{aligned} $
695.2 ^{da} 3		3131.10	1+	2436.01	(2,3)-		0.01526	$\alpha(N)=0.0001143 \ 16; \ \alpha(O)=1.642\times10^{-5} \ 23; \ \alpha(P)=8.91\times10^{-7} \ 13$ $\alpha(K)\exp=0.024 \ 7 \ (1988DzZW)$
700.15" 20	46.5 15	3067.62	1-	2367.65	(1)-	(M1)	0.01736	$\alpha(K)=0.01463\ 21;\ \alpha(L)=0.00213\ 3;\ \alpha(M)=0.000475\ 7;\ \alpha(N+)=0.0001285\ 18\ \alpha(N)=0.0001116\ 16;\ \alpha(O)=1.603\times10^{-5}\ 23;\ \alpha(P)=8.70\times10^{-7}\ 13\ \alpha(K)\exp=0.027\ 7\ (1988DzZW)\ \alpha(K)\exp=0.020\ mult=M1\ for\ doublet\ (1972Ca21)$
700.80 20	70.0 20	2126.14	1-	1425.24	(2) ⁻	M1	0.01732	$\alpha(K) \exp[-0.020; \text{ multiplitic for doublet (1772-021)}]$ $\alpha(K) = 0.01459 \ 21; \ \alpha(L) = 0.00213 \ 3; \ \alpha(M) = 0.000474 \ 7; \ \alpha(N+) = 0.0001282 \ 18 \ \alpha(N) = 0.0001113 \ 16; \ \alpha(O) = 1.599 \times 10^{-5} \ 23; \ \alpha(P) = 8.67 \times 10^{-7} \ 13 \ \alpha(K) \exp[-0.021 \ 8 \ (1988D7ZW)$
703.85 15	170 5	2819.77	0-,1-	2115.90	1-	M1	0.01713	other $\alpha(K)$ exp: 0.020, mult=M1 for doublet (1972Ca21) in which this transition is major component. $\alpha(K)$ =0.01443 21; $\alpha(L)$ =0.00210 3; $\alpha(M)$ =0.000469 7;
								α (N+)=0.0001268 <i>18</i> α (N)=0.0001101 <i>16</i> ; α (O)=1.581×10 ⁻⁵ <i>23</i> ; α (P)=8.58×10 ⁻⁷ <i>12</i> α (K)exp=0.016 (1972Ca21); α (K)exp=0.0155 <i>22</i> (1988DzZW)
706.5 ^{<i>u</i>} 5	165 15	3202.94	1+	2496.20	1-	E1	0.00293 5	$\alpha = 0.00293 \ 5; \ \alpha(\text{K}) = 0.00248 \ 4; \ \alpha(\text{L}) = 0.000347 \ 5; \ \alpha(\text{M}) = 7.68 \times 10^{-5} \ 11; \\ \alpha(\text{N}+) = 2.06 \times 10^{-5} \ 3 \\ \alpha(\text{N}) = 1.80 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.54 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.326 \times 10^{-7} \ 19 \\ \alpha(\text{K}) \exp\{-0.0037 \ (1988\text{DzZW}) \ 10^{-7} \ 19 \ 10^{-7} \$
x707.10 15	300 10							α (K)exp=0.0027, mult=E1 for doublet (1972Ca21). α (K)exp=0.0045 <i>18</i> (1988DzZW) α (K)exp=0.0027, mult=E1 for doublet (1972Ca21).
709.9 ^{da} 4 711.65 <i>15</i>	160 5	3146.03 3140.60	1 ⁺ (1)	2436.01 2429.05	$(2,3)^{-}$ 1 ⁺ ,2 ⁺	M1	0.01667	$\alpha(K)=0.01404\ 20;\ \alpha(L)=0.00205\ 3;\ \alpha(M)=0.000456\ 7;\ \alpha(N+)=0.0001233\ 18$
723.05 20	44.0 20	2775.66	1-	2052.59	0-,1-,2-			α (N)=0.0001071 <i>15</i> ; α (O)=1.537×10 ⁻³ <i>22</i> ; α (P)=8.34×10 ⁻⁷ <i>12</i> α (K)exp=0.019 (1972Ca21); α (K)exp=0.023 7 (1988DzZW) α (K)exp<0.013 (1988DzZW)

L

¹⁷⁰Lu ε decay **1990AbZT,1972Ca21,1970Dz11** (continued)

$\gamma(^{170}$ Yb) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	α^{f}	Comments
728.85 20	95 20	2929.60	1-	2200.91	$1^{-}, 2^{-}$			α(K)exp<0.006 (1988DzZW)
741 50 20	07.3	2400-10	1-	1658.06	$(2)^{+}$			Mult.: E1 or E2, from $\alpha(K)$ exp. $\alpha(K)$ exp. (1988DzZW)
746.90 20	68.0 <i>20</i>	2947.84	1^{-}	2200.91	$1^{-},2^{-}$	M1	0.01476	$\alpha(K) \approx 0.013 (1980D22W)$ $\alpha(K) = 0.01244 \ 18; \ \alpha(L) = 0.00181 \ 3; \ \alpha(M) = 0.000403 \ 6; \ \alpha(N+) = 0.0001090$ 16
								α (N)=9.47×10 ⁻⁵ 14; α (O)=1.360×10 ⁻⁵ 19; α (P)=7.39×10 ⁻⁷ 11 α (K)exp=0.015 6 (1972Ca21, I γ ; 1968Ba54, I(ce)).
750.95 ^{ha} 20	83 ^h 3	3186.66	(1 ⁻)	2436.01	(2,3)-	[M1,E2]	0.011 4	α (K)=0.009 4; α (L)=0.0014 5; α (M)=0.00031 9; α (N+)=8.3×10 ⁻⁵ 25 α (N)=7.2×10 ⁻⁵ 22; α (O)=1.0×10 ⁻⁵ 4; α (P)=5.2×10 ⁻⁷ 21 α (K)exp=0.014 7 (1972Ca21, I γ ; 1968Ba54, I(ce)), mult=M1 for multiply-placed γ .
750.95 ^{ha} 20	83 ^h 3	3274.17	1-	2523.07	1+			α (K)exp=0.014 7 (1972Ca21, I γ ; 1968Ba54, I(ce)), mult=M1 for multiply-placed γ .
752.3 ^{da} 3		3115.58	1^{-}	2364.06	1-			
756.15 ^a 20	45.0 20	3123.94	1-	2367.65	(1) ⁻	M1	0.01431	α (K)=0.01206 <i>17</i> ; α (L)=0.001755 <i>25</i> ; α (M)=0.000391 <i>6</i> ; α (N+)=0.0001057 <i>15</i>
								$\alpha(N)=9.18\times10^{-5}$ 13; $\alpha(O)=1.318\times10^{-5}$ 19; $\alpha(P)=7.16\times10^{-7}$ 10 $\alpha(K)\exp=0.027$ 11 (1972Ca21, Jy: 1968Ba54, J(ce)).
757.60 15	255 10	3186.66	(1 ⁻)	2429.05	$1^+, 2^+$			$\alpha(K) \exp = 0.0129 \ I6 \ (1972Ca21, I\gamma; 1968Ba54, I(ce)).$
762.55 15	62.0 20	2748.08	1-	1985.64	1-,2-	M1	0.0140 2	$\alpha(K)=0.01181 \ 17; \ \alpha(L)=0.001718 \ 24; \ \alpha(M)=0.000383 \ 6; \ \alpha(N+)=0.0001035 \ 15$
								$\alpha(N)=8.98\times10^{-5}$ 13; $\alpha(O)=1.290\times10^{-5}$ 18; $\alpha(P)=7.01\times10^{-7}$ 10
×785 75 20	62.7					M1	0.01300	$\alpha(K)\exp=0.020\ 6\ (1988DzZW)$ $\alpha(K)\exp=0.015\ 5\ (1988DzZW)$
165.15 20	02 7					1011	0.01500	$\alpha(K) \approx 0.01365 (1000) = 0.001592 23; \alpha(M) = 0.000355 5;$
								$\alpha(N+)=9.59\times10^{-5}$ 14
^x 787 60 15	120.8					(M1)	0.01293	$\alpha(N) = 8.33 \times 10^{-5} \ 12; \ \alpha(O) = 1.196 \times 10^{-5} \ 17; \ \alpha(P) = 6.50 \times 10^{-7} \ 10$ $\alpha(K) \exp - 0.019 \ 4 \ (1988 D z Z W)$
101.00 15	120 0					(111)	0.01295	$\alpha(K) = 0.01090 \ I6; \ \alpha(L) = 0.001583 \ 23; \ \alpha(M) = 0.000353 \ 5;$
								$\alpha(N+)=9.53\times10^{-5}$ 14
702 00 15	235 12	3067 62	1-	2275 40	1-	F2	0.00606.0	$\alpha(N) = 8.28 \times 10^{-5} \ 12; \ \alpha(O) = 1.189 \times 10^{-5} \ 17; \ \alpha(P) = 6.46 \times 10^{-7} \ 9$
792.00 15	233 12	5007.02	1	2273.49	1	E2	0.00000 9	$\alpha(N+)=5.09\times10^{-5} 8$
								$\alpha(N)=4.45\times10^{-5}$ 7; $\alpha(O)=6.14\times10^{-6}$ 9; $\alpha(P)=2.79\times10^{-7}$ 4
801 25 <mark>4</mark> 20	80.4	2426.01	$(2 \ 2)^{-}$	1624.94	(1+)			$\alpha(K)\exp=0.005\ 2\ (1988DzZW)$
801.25* 20	80 4	2450.01	(2,3)	1034.84	(1)			Mult.: M1,E2 from $\alpha(K)$ exp does not fit placement; however, a large uncertainty exists In $\alpha(K)$ exp.
802.40 ^{<i>hb</i>} 20	73 ^h 4	3070.52	0,1	2268.08	1-			α (K)exp=0.012 5 (1988DzZW), mult=M1 for multiply-placed γ .
802.40 ^{ha} 20	73 ^h 4	3091.93	1	2289.37	1^{+}			α (K)exp=0.012 5 (1988DzZW), mult=M1 for multiply-placed γ .

18

L

				170 Lu $arepsilon$	decay 1	l990AbZT	,1972Ca21,19	970Dz11 (continued)
						$\gamma(^{170}$ Yb) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.#	α^f	Comments
802.40 ^{ha} 20	73 ^h 4	3169.59	1-	2367.65	$(1)^{-}$			α (K)exp=0.012 5 (1988DzZW), mult=M1 for multiply-placed γ .
802.40 ^{ha} 20	73 ^h 4	3202.94	1+	2400.10	1-			α (K)exp=0.012 5 (1988DzZW), mult=M1 for multiply-placed γ .
805.85 ^a 25	40 10	3301.95	1^{+}	2496.20	1-			α (K)exp=0.027 <i>10</i> (1988DzZW)
800 254 20	(0 , 2)	2161.02	(1-)	2251 71	0- 1- 2-			Mult.: α (K)exp favors M1; decay scheme requires E1.
$809.25^{a} 20$	62.3	3161.02	(1)	2351./1	0,1,2			$\alpha(K) \exp\{-0.015 (1988 DzZW)$
813.55*** 20	901 9	2929.60	1	2115.90	1			α (K)exp=0.018 4 (1988DzZW) exceeds M1(theory) for doubly-placed γ .
813.55 ^{hat} 20	90 ^h 9	2939.73	1-	2126.14	1-			α (K)exp=0.018 4 (1988DzZW) exceeds M1(theory) for doubly-placed γ .
								E_{γ} : placement is tentative in 1990Gr19.
x815.70 20	52.0 25							$\alpha(K) \exp = 0.006 \ 5 \ (1988 DzZW)$
819.50.20	70.0.20	2126.14	1-	1306.39	2+			α (K)exp=0.017 10 (1988DzZW)
822.30 ^{<i>a</i>} 15	245 10	3258.18	1+	2436.01	$(2,3)^{-}$			$\alpha(K)\exp=0.0155 \ 16 \ (1972Ca21, I\gamma; 1970Dz11, I(ce)).$
								Mult.: M1 from $\alpha(K)$ exp; E1 required by placement.
829.30 10	1085 30	2364.06	1-	1534.57	2+	E1	0.00213 3	$ \substack{\alpha = 0.00213 \ 3; \ \alpha(K) = 0.00181 \ 3; \ \alpha(L) = 0.000251 \ 4; \ \alpha(M) = 5.55 \times 10^{-5} \\ 8; \ \alpha(N+) = 1.492 \times 10^{-5} \ 21 $
								$\alpha(N)=1.298\times10^{-5}$ 19; $\alpha(O)=1.84\times10^{-6}$ 3; $\alpha(P)=9.73\times10^{-8}$ 14
an a	h							α (K)exp=0.0018 5 (1972Ca21, I γ ; 1970Dz11, I(ce)).
834.45 ¹⁰ 10	223" 8	2819.77	0-,1-	1985.64	1-,2-			α (K)exp=0.0030 (1972Ca21), 0.0102 24 (1988DzZW) for doubly-placed γ .
834.45 ^{ha} 10	223 ^h 8	3123.94	1-	2289.37	1+			α (K)exp=0.0030 (1972Ca21), 0.0102 24 (1988DzZW) for doubly-placed γ .
839.30 10	1570 45	2351.71	0-,1-,2-	1512.37	1-	M1	0.0110 4	$\alpha(K)=0.00931 \ I3; \ \alpha(L)=0.001349 \ I9; \ \alpha(M)=0.000300 \ 5; \ \alpha(N+)=8.12\times10^{-5} \ I2$
								$\alpha(N) = 7.05 \times 10^{-5} \ 10; \ \alpha(O) = 1.013 \times 10^{-5} \ 15; \ \alpha(P) = 5.51 \times 10^{-7} \ 8$
								α (K)exp=0.0092 <i>18</i> (1972Ca21, I γ ; 1970Dz11, I(ce)). Other:
950.05.15	105 5	2275 40	1-	1425.24	$(2)^{-}$			$\alpha(K) \exp \le 0.0106 (1972Ca21).$
850.05 15	105 5	2275.49	1 1 ⁻	1425.24	(2) 1 ⁻	M1	0.01065	$\alpha(\mathbf{K}) \exp\{-0.007 (1988D2Zw)\}$ $\alpha(\mathbf{K}) = 0.00898 13; \alpha(\mathbf{L}) = 0.001301 19; \alpha(\mathbf{M}) = 0.000290 4;$
001.10 20	100 10	2501.00	1	1012.07	1		0.01002	$\alpha(N+)=7.83\times10^{-5}$ 11
								$\alpha(N)=6.80\times10^{-5} \ 10; \ \alpha(O)=9.77\times10^{-6} \ 14; \ \alpha(P)=5.32\times10^{-7} \ 8$
								α (K)exp=0.0091 25 (1988DzZW)
855.15 15	2140 60	2367.65	(1) ⁻	1512.37	1-	M1	0.01054	$\alpha(K)=0.00888 \ 13; \ \alpha(L)=0.001287 \ 18; \ \alpha(M)=0.000287 \ 4; \ \alpha(M)=0.000287 \ 4;$
								$\alpha(N) = 6.73 \times 10^{-5} I0$; $\alpha(\Omega) = 9.67 \times 10^{-6} I4$; $\alpha(P) = 5.26 \times 10^{-7} 8$
								$\alpha(K) \exp[=0.0075 (1972Ca21); \alpha(K) \exp[=0.0087 6 (1972Ca21, I\gamma; 1970Dz11, I(ce)).$
858.1 ^{ad} 3		3258.18	1+	2400.10	1-			E_{γ} : placed from 3146 level also in 1990Gr19 but E_{γ} does not fit that placement.
								1990Gr19 estimate $\alpha(K)$ exp>0.008 assuming I γ does not exceed I γ for weak lines In same region of γ spectrum.

				170 Lu ε dec	ay 1990Ab	ZT,1972Ca21 ,1	1970Dz11 (continued)
					$\gamma(^{170}$	⁰ Yb) (continued)	<u>)</u>
E_{γ}^{\dagger}	Ι _γ ‡ <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{f}	Comments
859.45 20	130 10	2975.32	1-	2115.90 1-	M1(+E0)		α (K)exp=0.015 3 (1972Ca21, I γ ; 1970Dz11, I(ce)).
861.8 ^{gad} 4		3213.27	1-	2351.71 0-,1-,2-			
861.8 ^{gad} 4		3291.82	1^{+}	2429.05 1+,2+			
861.8 <mark>gad</mark> 4		3384.87	1-	2523.07 1+			
863.7 da 3		3065.36	1^{+}	2200.91 1-,2-			
864.85 25	80 4	2523.07	1+	1658.06 (2) ⁺	M1	0.01024	α (K)=0.00864 <i>13</i> ; α (L)=0.001251 <i>18</i> ; α (M)=0.000279 <i>4</i> ; α (N+)=7.53×10 ⁻⁵ <i>11</i>
							α (N)=6.54×10 ⁻⁵ 10; α (O)=9.40×10 ⁻⁶ 14; α (P)=5.12×10 ⁻⁷ 8
969 10 20	170.20	1145 72	2^+	277 44 4+	(E2)	0.00407.7	$\alpha(\text{K})\exp=0.0116\ 26\ (1972\text{Ca}21, 1\gamma;\ 1970\text{Dz}11,\ I(\text{ce})).$
808.10 20	170 20	1143.72	2	277.44 4	(E2)	0.00497 7	$22^{\circ} \alpha(N_{+}) = 4.07 \times 10^{-5} 6$
							$\alpha(N)=3.56\times10^{-5}$ 5; $\alpha(O)=4.93\times10^{-6}$ 7; $\alpha(P)=2.31\times10^{-7}$ 4
							α (K)exp=0.0065 <i>18</i> (1972Ca21, I γ ; 1970Dz11, I(ce)) implies
							mult=E2+M1: M1 component inconsistent with placement.
873.85 ^h 25	30 ^h 3	3149.09	1-	2275.49 1-			α (K)exp=0.010 5 (1988DzZW)
873.85 ^{ha} 25	30 ^h 3	3274.17	1-	2400.10 1-			
876.80 25	60 <i>3</i>	2929.60	1-	2052.59 0-,1-,2-	M1	0.00990 14	α =0.00990 <i>14</i> ; α (K)=0.00835 <i>12</i> ; α (L)=0.001209 <i>17</i> ; α (M)=0.000269 <i>4</i> ; α (N+)=7.28×10 ⁻⁵ <i>11</i>
							$\alpha(N)=6.32\times10^{-5}$ 9; $\alpha(O)=9.08\times10^{-6}$ 13; $\alpha(P)=4.94\times10^{-7}$ 7
870 65 <mark>4</mark> 25	50.0.25	3160 50	1-	2280 37 1+			$\alpha(K) \exp = 0.012.5 (19/2Ca21, 1\gamma; 19/0Dz11, 1(ce)).$
879.03 25	770 45	2364.06	1	1479 91 0 ⁺	E1	0.00189.3	α (K)=0.005 4 (1980) 22 w) α =0.00189 3: α (K)=0.001604 23: α (L)=0.000221 3: α (M)=4.89×10 ⁻⁵
001.10 15	110 15	2501.00	1	1177.71 0	LI	0.00107.5	$7; \alpha(N+)=1.316\times10^{-5}$ 19 $\alpha(N)=1.145\times10^{-5}$ (Q)=1.628×10^{-6} 22; $\alpha(D)=8.62\times10^{-8}$ 12
							$\alpha(K) = 1.145 \times 10^{-10}$ 10, $\alpha(O) = 1.020 \times 10^{-25}$, $\alpha(T) = 0.020 \times 10^{-12}$ $\alpha(K) = 0.0025$ 4 (1972Ca21, Iv: 1970Dz11, I(ce)).
895.00 25	54 <i>3</i>	2947.84	1-	2052.59 0-,1-,2-	(M1,E2)	0.0070 24	α =0.0070 24; α (K)=0.0059 21; α (L)=0.0009 3; α (M)=0.00020 6; α (N+)=5.3×10 ⁻⁵ 16
							α (N)=4.7×10 ⁻⁵ <i>14</i> ; α (O)=6.6×10 ⁻⁶ <i>21</i> ; α (P)=3.4×10 ⁻⁷ <i>13</i> α (K)exp=0.008 <i>5</i> (1988DzZW)
901.40 <mark>ha</mark> 20	150 <mark>/</mark> 7	2039.85	1^{+}	1138.55 2+			α (K)exp<0.018 (1988DzZW) for multiply-placed γ .
901.40 <mark>ha</mark> 20	150 <mark>/</mark> 7	2436.01	(2,3)-	1534.57 2+			α (K)exp<0.018 (1988DzZW) for multiply-placed γ .
901.40 ^{ha} 20	150 ^h 7	3169.59	1-	2268.08 1-			α (K)exp<0.018 for multiply-placed γ .
901.40 ^{ha} 20	150 ^h 7	3301.95	1^{+}	2400.10 1-			
910.8 3	92 5	2275.49	1^{-}	1364.53 1-	0211	0.001762.25	$\alpha(K) \exp < 0.010 (1988 DzZW)$
916.65	220/20	2429.05	1,2	1512.37 1	[EI]	0.001/62/25	$\alpha = 0.001/62/23; \alpha(K) = 0.001498/21; \alpha(L) = 0.000206/3; \alpha(M) = 4.56 \times 10^{-5}/2; \alpha(N+1) = 1.227 \times 10^{-5}/2$
							$\alpha(N) = 1.067 \times 10^{-5}$ 15: $\alpha(\Omega) = 1.519 \times 10^{-6}$ 22: $\alpha(D) = 8.06 \times 10^{-8}$ 12
							$\alpha(K) = 1.007 \times 10^{-1.007 \times 10^{-1.017 \times 10^{-1.017 \times 10^{-1.007 \times 1$
							α (K)exp=0.0042 (1972Ca21) for 916.65 γ +916.90 γ doublet;
							mult(916.65 γ)=E1 is required by level scheme.

 $^{170}_{70}$ Yb $_{100}$ -20

			17	⁷⁰ Lu ε decay	1990AbZT,1972Ca2	21,1970Dz11 (c	continued)
					$\gamma(^{170}$ Yb) (continu	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^f	Comments
916.90	150 <i>15</i>	2969.45	1-	2052.59 0-,1-	,2 ⁻ M1	0.00887 13	$ \begin{array}{l} \alpha = 0.00887 \ 13; \ \alpha(\mathrm{K}) = 0.00748 \ 11; \ \alpha(\mathrm{L}) = 0.001081 \ 16; \\ \alpha(\mathrm{M}) = 0.000241 \ 4; \ \alpha(\mathrm{N}+) = 6.51 \times 10^{-5} \ 10 \\ \alpha(\mathrm{N}) = 5.65 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 8.12 \times 10^{-6} \ 12; \ \alpha(\mathrm{P}) = 4.42 \times 10^{-7} \ 7 \\ \alpha(\mathrm{K}) \exp = 0.0085 \ 20 \ (1988 \mathrm{DzZW}) \\ \alpha(\mathrm{K}) \exp = 0.0042 \ (1972 \mathrm{Ca21}) \ \mathrm{for} \ 916.65 \gamma + 916.90 \gamma \ \mathrm{doublet} \\ \mathrm{implies} \ \mathrm{mult}(916.9 \gamma) = \mathrm{M1} \ \mathrm{if} \ \mathrm{mult}(916.65 \gamma) = \mathrm{E1} \ \mathrm{as} \ \mathrm{required} \\ \mathrm{by} \ \mathrm{level} \ \mathrm{scheme.} \end{array} $
926.40 <i>15</i>	580 18	2351.71	0 ⁻ ,1 ⁻ ,2 ⁻	1425.24 (2)-	E2	0.00434 6	$\begin{array}{l} \alpha = 0.00434 \ 6; \ \alpha(\mathrm{K}) = 0.00360 \ 5; \ \alpha(\mathrm{L}) = 0.000579 \ 9; \\ \alpha(\mathrm{M}) = 0.0001305 \ 19; \ \alpha(\mathrm{N}+) = 3.49 \times 10^{-5} \ 5 \\ \alpha(\mathrm{N}) = 3.05 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 4.25 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 2.02 \times 10^{-7} \ 3 \\ \alpha(\mathrm{K}) \exp = 0.0028 \ (1972 \mathrm{Ca21}); \ \alpha(\mathrm{K}) \exp = 0.0038 \ 9 \ (1972 \mathrm{Ca21}, \ \mathrm{I}\gamma; \ 1970 \mathrm{Dz11}, \ \mathrm{I(ce)}). \end{array}$
938.75 8	3.52×10 ³ 10	2364.06	1-	1425.24 (2)-	M1	0.00837 12	$ \begin{array}{l} \alpha = 0.00837 \ 12; \ \alpha(\mathrm{K}) = 0.00706 \ 10; \ \alpha(\mathrm{L}) = 0.001019 \ 15; \\ \alpha(\mathrm{M}) = 0.000227 \ 4; \ \alpha(\mathrm{N}+) = 6.13 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 5.33 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 7.66 \times 10^{-6} \ 11; \ \alpha(\mathrm{P}) = 4.17 \times 10^{-7} \ 6 \\ \alpha(\mathrm{K}) \exp = 0.0068 \ (1972 \mathrm{Ca21}); \ \alpha(\mathrm{K}) \exp = 0.0075 \ 7 \ (1972 \mathrm{Ca21}, \ \mathrm{I}\gamma; \ 1970 \mathrm{Dz11}, \ \mathrm{I(ce)}). \end{array} $
942.45 15	470 15	2367.65	(1)-	1425.24 (2)-	E2	0.00419 6	α =0.00419 6; α (K)=0.00347 5; α (L)=0.000556 8; α (M)=0.0001253 18; α (N+)=3.36×10 ⁻⁵ 5 α (N)=2.93×10 ⁻⁵ 5; α (O)=4.08×10 ⁻⁶ 6; α (P)=1.95×10 ⁻⁷ 3 α (K)exp=0.0040 11 (1972Ca21, Iy; 1970Dz11, I(ce)).
947.80 <i>15</i>	350 10	1225.35	(3)+	277.44 4+	E2,M1	0.0062 21	$\alpha = 0.0062 \ 21; \ \alpha(K) = 0.0052 \ 18; \ \alpha(L) = 0.00077 \ 23; \alpha(M) = 0.00017 \ 5; \ \alpha(N+) = 4.7 \times 10^{-5} \ 14 \alpha(N) = 4.0 \times 10^{-5} \ 12; \ \alpha(O) = 5.8 \times 10^{-6} \ 18; \ \alpha(P) = 3.0 \times 10^{-7} \ 11 \alpha(K) = x_0, 0.054 \ 20 \ (1972Ca21, Iv; 1970Dz11, I(ce)).$
x952.55 25	93 5				M1+E0+E2		α =0.0061 20, α (K)=0.0051 17 if mult=M1. α (K)exp=0.033 16 (1972Ca21, I γ ; 1970Dz11, I(ce)).
954.30 ^h 15	500 ^h 15	2939.73	1-	1985.64 1 ⁻ ,2 ⁻		0.00830	α =0.00830; α (K)=0.00696; α (L)=0.00101 α (K)exp=0.0075 (1972Ca21) and α (K)exp=0.0080 24 (1972Ca21, I γ ; 1970Dz11, I(ce)) imply mult=M1 for doubly-placed γ .
954.30 ^{hb} 15	500 ^h 15	3070.52	0,1	2115.90 1-			α (K)exp=0.0075 (1972Ca21) and α (K)exp=0.0080 24 (1972Ca21, I γ ; 1970Dz11, I(ce)) imply mult=M1 for doubly-placed γ .
955.22 ^{gad} 24		3007.6	1-	2052.59 0-,1-	,2-		
955.22 ^{gad} 24 962.85 ^a 25	17.0 20	3384.87 3314.42	1- 1	2429.05 1 ⁺ ,2 ⁺ 2351.71 0 ⁻ ,1 ⁻	,2 ⁻ M1+E2+E0		α(K)exp=0.032 16 (1988DzZW)
965.52 ^{gad} 26		3091.93	1	2126.14 1-			
965.52 ^{gaa} 26 966.85 20	320 10	3366.40 2364.06	1 1-	2400.10 1 ⁻ 1397.05 (3) ⁻	(E2)	0.00397 6	α =0.00397 6; α (K)=0.00330 5; α (L)=0.000525 8; α (M)=0.0001181 17; α (N+)=3.16×10 ⁻⁵ 5

				170 Lu ε deca	y	1990AbZ	<mark>Г,1972Са21,1</mark> 9	70Dz11 (continued)
						$\gamma(^{170}\text{Y}$	b) (continued)	
E_{γ}^{\dagger}	I_{γ} ‡ e	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
								$ α(N)=2.76\times10^{-5} 4; α(O)=3.85\times10^{-6} 6; α(P)=1.86\times10^{-7} 3 α(K)exp=0.0047 9 (1972Ca21, Ιγ; 1970Dz11, I(ce)). Mult.: M1,E2 from α(K)exp; ΔJ=2 from level scheme. $
969.05 ^h 20	130 ^{<i>h</i>} 6	2275.49	1-	1306.39	2+			α (K)exp=0.0077 23 (1972Ca21, I γ ; 1970Dz11, I(ce)), mult=M1 for doubly-placed γ ; however, this placement requires E1.
969.05 ^{hb} 20	130 ^{<i>h</i>} 6	3258.18	1+	2289.37	1+			α (K)exp=0.0077 23 (1972Ca21, I γ ; 1970Dz11, I(ce)), mult=M1 for doubly-placed γ .
970.20 ^{ha} 20	250 ^h 8	2039.85	1+	1069.36	0+	(M1)	0.00771 <i>11</i>	α =0.0071 <i>11</i> ; α (K)=0.00651 <i>10</i> ; α (L)=0.000939 <i>14</i> ; α (M)=0.000209 <i>3</i> ; α (N+)=5.65×10 ⁻⁵ <i>8</i> α (N)=4.91×10 ⁻⁵ <i>7</i> ; α (O)=7.05×10 ⁻⁶ <i>10</i> ; α (P)=3.85×10 ⁻⁷ <i>6</i> α (K)exp=0.0076 <i>12</i> (1972Ca21, I γ ; 1970Dz11, I(ce)); implies mult=M1 for doubly-placed γ , but alternative placement requires E1.
970.20 ^h 20	250 ^h 8	2115.90	1-	1145.72	2+			Mult.: α (K)exp=0.0076 <i>12</i> (1972Ca21, I γ ; 1970Dz11, I(ce)); implies mult=M1 for doubly-placed γ , but this placement requires E1.
^x 973.4 ^{<i>a</i>} 3 980.30 20	290 30	2126.14	1-	1145.72	2+			α (K)exp≤0.0064 (1972Ca21); 0.0035 <i>10</i> (1988DzZW). Mult=E2 from α (K)exp is inconsistent with placement
983.67 20	700 <i>50</i>	2496.20	1-	1512.37	1-	M1	0.00746 11	$\alpha = 0.00746 \ 11; \ \alpha(K) = 0.00629 \ 9; \ \alpha(L) = 0.000907 \ 13; \ \alpha(M) = 0.000202$ $3; \ \alpha(N+) = 5.46 \times 10^{-5} \ 8$ $\alpha(N) = 4.74 \times 10^{-5} \ 7; \ \alpha(O) = 6.81 \times 10^{-6} \ 10; \ \alpha(P) = 3.72 \times 10^{-7} \ 6$ $\alpha(K) = 0.0057 \ 15 \ (1988Dz7W)$
985.10 <i>10</i>	120×10 ² 4	1069.36	0+	84.262	2+	E2	0.00382 6	$\alpha(R)(xp=0.003773 (1930122w))$ $\alpha=0.00382 6; \alpha(K)=0.00318 5; \alpha(L)=0.000503 7; \alpha(M)=0.0001131$ $16; \alpha(N+)=3.03\times10^{-5} 5$ $\alpha(N)=2.64\times10^{-5} 4; \alpha(O)=3.70\times10^{-6} 6; \alpha(P)=1.79\times10^{-7} 3$ $\alpha(K)\exp=0.0029 (1972Ca21); \alpha(K)\exp=0.0034 2 (1972Ca21, I\gamma; 1970Dz11, I(ce)).$ $A_{2}=+0.29 8 A_{2}=+0.01 10 \text{ for } 985\gamma_{2}84\gamma(\theta) (1969Pa7R)$
987.25 10	370×10 ¹ 12	2351.71	0-,1-,2-	1364.53	1-	M1	0.00739 11	$\alpha = 0.00739 \ 11; \ \alpha(K) = 0.00624 \ 9; \ \alpha(L) = 0.000899 \ 13; \ \alpha(M) = 0.000200 3; \ \alpha(N+) = 5.41 \times 10^{-5} \ 8 \alpha(N) = 4.70 \times 10^{-5} \ 7; \ \alpha(O) = 6.75 \times 10^{-6} \ 10; \ \alpha(P) = 3.68 \times 10^{-7} \ 6 \alpha(K) \exp = 0.0075 \ (1972 Ca21); \ \alpha(K) \exp = 0.0059 \ 4 \ (1988 DzZW)$
988.5 [@]	$300^{@} 30$	2126.14	1- 1-	1138.55	$2^+_{1^-}$	M1	0.00717.70	$\alpha(K) \exp = 0.0024 \ 12 \ (1988 Dz ZW)$ $\alpha = 0.00217 \ 10 \ \alpha(K) = 0.000572 \ 12 \ \alpha(M) = 0.000104$
999.60 <i>10</i>	3.40×10° 10	2364.06	I	1364.53	I	MI	0.00/17/10	$\alpha = 0.0071770; \alpha(K) = 0.006059; \alpha(L) = 0.00087273; \alpha(M) = 0.000194$ 3; $\alpha(N+) = 5.25 \times 10^{-5} 8$ $\alpha(N) = 4.56 \times 10^{-5} 7; \alpha(O) = 6.55 \times 10^{-6} 10; \alpha(P) = 3.57 \times 10^{-7} 5$ $\alpha(K) \exp = 0.0056 (1972 Ca21); \alpha(K) \exp = 0.0064 4 (1972 Ca21, Iy; 1970 Dz11, I(ce)).$
1002.3 [@] 1003.20 <i>10</i>	300 [@] 30 770×10 ¹ 24	2536.97 2367.65	1^{-} (1) ⁻	1534.57 1364.53	2^+ 1^-	M1,E2	0.0054 18	α (K)exp<0.014 (1988DzZW) α =0.0054 18; α (K)=0.0045 15; α (L)=0.00067 19; α (M)=0.00015 5;

 $^{170}_{70} \mathrm{Yb}_{100}$ -22

				¹⁷⁰ Lu ε d	lecay 19	90AbZT,1	.972Ca21,1970I	Dz11 (continued)
						$\gamma(^{170}\text{Yb})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^{f}	Comments
1009.5 3	88 5	2667.19	1(+)	1658.06	(2)+	M1	0.00700 <i>10</i>	$\alpha(N+)=4.1\times10^{-5} 12$ $\alpha(N)=3.5\times10^{-5} 10; \ \alpha(O)=5.0\times10^{-6} 15; \ \alpha(P)=2.6\times10^{-7} 9$ $\alpha(K)\exp=0.0055 \ (1972Ca21); \ \alpha(K)\exp=0.0049 \ 3 \ (1988DzZW)$ $\alpha=0.00700 \ 10; \ \alpha(K)=0.00591 \ 9; \ \alpha(L)=0.000851 \ 12;$ $\alpha(M)=0.000189 \ 3; \ \alpha(N+)=5.12\times10^{-5} \ 8$ $\alpha(N)=4.44\times10^{-5} \ 7; \ \alpha(O)=6.39\times10^{-6} \ 9; \ \alpha(P)=3.49\times10^{-7} \ 5$ $\alpha(K)\exp=0.0097 \ 18 \ (1988DzZW)$ note that $\alpha(K)\exp$ is somewhat larger than $\alpha(K)(M1)$.
1012.3 ^h 3	29 ^h 3	3065.36	1^{+}	2052.59	$0^{-}.1^{-}.2^{-}$			α (K)exp=0.012 4 (1988DzZW) for doubly-placed γ .
1012.3 ^{ha} 3	29 ^h 3	3213.27	1-	2200.91	12-			α (K)exp=0.012 4 (1988DzZW) for doubly-placed γ .
1021.5 ^{gad} 3		3007.6	1-	1985.64	1-,2-			
1021.5 ^{gad} 3		3384.87	1-	2364.06	1-			
1028.80 10	1800 60	1306.39	2+	277.44	4+	E2	0.00350 5	α =0.00350 5; α (K)=0.00291 4; α (L)=0.000456 7; α (M)=0.0001025 15; α (N+)=2.75×10 ⁻⁵ 4 α (N)=2.40×10 ⁻⁵ 4; α (O)=3.36×10 ⁻⁶ 5; α (P)=1.640×10 ⁻⁷ 23 α (K)exp=0.0031 (1972Ca21); α (K)exp=0.0026 5 (1972Ca21, Iy;
								1970Dz11, I(ce)).
^x 1031.3 ^d 7								
1034.2 ^{<i>a</i>} 3	60 20	3301.95	1+	2268.08	1-			α (K)exp=0.008 4 (1988DzZW)
1046.60 ⁿ 25	195 ⁿ 10	2275.49	1-	1228.84	0+			α (K)exp=0.0020 <i>10</i> (1988DzZW) for doubly-placed γ .
1046.60 ⁷⁰² 25 1050.40 10	195" 10 2200 70	3314.42 2768.34	1 0 ⁻ ,1 ⁻	2268.08 1717.95	1 ⁻ (2) ⁻	E2	0.00336 5	α (K)exp=0.0020 <i>10</i> (1988DzZW) for doubly-placed γ . α =0.00336 <i>5</i> ; α (K)=0.00280 <i>4</i> ; α (L)=0.000436 <i>6</i> ; α (M)=9.78×10 ⁻⁵ <i>14</i> ; α (N+)=2.62×10 ⁻⁵ <i>4</i> α (N)=2.29×10 ⁻⁵ <i>4</i> ; α (O)=3.21×10 ⁻⁶ <i>5</i> ; α (P)=1.574×10 ⁻⁷ <i>22</i> α (K)exp≤0.0034 (1972Ca21); α (K)exp=0.0029 <i>4</i> (1972Ca21, I γ ; 1970Dz11, I(ce)).
1053.7	250 50	3179.76	1-	2126.14	1-			$\alpha(K)\exp \leq 0.006 \ (1988DzZW)$
1054.28 5	103×10 ² 3	1138.55	2+	84.262	2+	E2	0.00333 5	$\begin{aligned} &\alpha = 0.00333 \ 5; \ \alpha(\text{K}) = 0.00278 \ 4; \ \alpha(\text{L}) = 0.000432 \ 6; \\ &\alpha(\text{M}) = 9.70 \times 10^{-5} \ 14; \ \alpha(\text{N}+) = 2.60 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 2.27 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.18 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.563 \times 10^{-7} \ 22 \\ &\alpha(\text{K}) \exp = 0.00260 \ 16 \ (1988\text{DzZW}) \\ &\alpha(\text{K}) \exp \leq 0.0024 \ (1972\text{Ca}21) \ \text{for triplet dominated by this transition.} \end{aligned}$
1055.23	50×10 ¹ 10	2200.91	1-,2-	1145.72	2+	E1	0.001356 <i>19</i>	$\alpha(K)\exp \le 0.0015 (1988DzZW)$ $\alpha=0.001356 \ 19; \ \alpha(K)=0.001154 \ 17; \ \alpha(L)=0.0001579 \ 23;$ $\alpha(M)=3.49\times 10^{-5} \ 5; \ \alpha(N+)=9.39\times 10^{-6}$ $\alpha(N)=8.16\times 10^{-6} \ 12; \ \alpha(N)=1.164\times 10^{-6} \ 17; \ \alpha(R)=6.23\times 10^{-8} \ 0.00153$
1057.70 <i>15</i>	475 <i>15</i>	2364.06	1-	1306.39	2+	E1	0.001351 <i>19</i>	$\alpha(X)=6.10\times10^{-12}, \alpha(G)=1.104\times10^{-17}, \alpha(P)=6.25\times10^{-19}$ $\alpha=0.001351 \ I9; \ \alpha(K)=0.001149 \ I6; \ \alpha(L)=0.0001572 \ 22; \ \alpha(M)=3.47\times10^{-5} \ 5; \ \alpha(N+)=9.35\times10^{-6}$ $\alpha(N)=8.13\times10^{-6} \ I2; \ \alpha(O)=1.159\times10^{-6} \ I7; \ \alpha(P)=6.20\times10^{-8} \ 9 \ \alpha(K)\exp=0.0011 \ 6 \ (1988DzZW)$

 $^{170}_{70}$ Yb $_{100}$ -23

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -23

				¹⁷⁰ Lu	ε decay	1990AbZT,1972	Ca21,1970Dz11	(continued)
						$\gamma(^{170}$ Yb) (con	tinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^f	Comments
1060.58 20	550 50	3186.66	(1 ⁻)	2126.14	1-	M1	0.00620 9	α =0.00620 9; α (K)=0.00523 8; α (L)=0.000753 11; α (M)=0.0001675 24; α (N+)=4.53×10 ⁻⁵ 7 α (K)exp=0.0062 16 (1972Ca21, I γ ; 1968Ba54, I(ce)).
1061.35 [@] 1061.39 <i>10</i>	5.0×10 ² @ 10 470×10 ¹ 15	2367.65 1145.72	$(1)^{-}$ 2 ⁺	1306.39 84.262	2 ⁺ 2 ⁺	E2	0.00329 5	α (K)exp<0.034 (1988DzZW) α =0.00329 5; α (K)=0.00274 4; α (L)=0.000426 6; α (M)=9.55×10 ⁻⁵ 14; α (N+)=2.56×10 ⁻⁵ 4 α (N)=2.23×10 ⁻⁵ 4; α (O)=3.13×10 ⁻⁶ 5; α (P)=1.542×10 ⁻⁷ 22
1068.8 ^{<i>a</i>} 4 1069.4	12.0 10	3195.58 1069.36	$1^{-}_{0^{+}}$	2126.14 0.0	1 ⁻ 0 ⁺	E0		α(K)exp=0.00268 I9 (1988DzZW) other $α(K)exp$: 0.0029 (1972Ca21) for doublet. $α(K)exp≤0.015 (1988DzZW)$ $α(K)exp>0.11 (1988DzZW)$ ce(K)/ce=0.87. other $α(K)exp$: 0.28 for 1068.8γ+1069.4γ doublet
1070.9 <i>3</i>	117 4	2496.20	1-	1425.24	(2) ⁻	M1	0.00606 9	(1972Ca21). α =0.00606 9; α (K)=0.00511 8; α (L)=0.000735 11; α (M)=0.0001635 23; α (N+)=4.42×10 ⁻⁵ 7 α (N)=3.84×10 ⁻⁵ 6; α (O)=5.52×10 ⁻⁶ 8; α (P)=3.02×10 ⁻⁷ 5 (K) = 0.0060 26 (10220 21 L = 1000 54 L(z))
1078.3 <i>4</i> 1082.1 ^{<i>a</i>} <i>3</i>	75 20 57 6	3131.10 3067.62	1+ 1-	2052.59 1985.64	0 ⁻ ,1 ⁻ ,2 ⁻ 1 ⁻ ,2 ⁻	M1	0.00590 9	$\alpha(K)\exp=0.0060\ 26\ (1972Ca21, 17;\ 1968Ba34, 1(ce)).$ $\alpha(K)\exp=0.0033\ 24\ (1988DzZW)$ $\alpha=0.00590\ 9;\ \alpha(K)=0.00498\ 7;\ \alpha(L)=0.000716\ 10;$ $\alpha(M)=0.0001593\ 23;\ \alpha(N+)=4.31\times10^{-5}\ 6$ $\alpha(N)=3.74\times10^{-5}\ 6;\ \alpha(O)=5.38\times10^{-6}\ 8;\ \alpha(P)=2.94\times10^{-7}\ 5$ $\alpha(K)\exp=0.0052\ 23\ (1988DzZW)$
1086.9 ^{ha} 3	75 ^h 3	3202.94	1^{+}	2115.90	1-			α (K)exp=0.008 3 (1988DzZW) for doubly-placed γ .
1086.9 ^{ha} 3 1101.70 <i>10</i>	75 ^h 3 2130 60	3213.27 2819.77	1 ⁻ 0 ⁻ ,1 ⁻	2126.14 1717.95	1 ⁻ (2) ⁻	E2	0.00305 5	$\begin{aligned} &\alpha(\text{K}) \exp[=0.008 \ 3 \ (1988\text{DzZW}) \text{ for doubly-placed } \gamma. \\ &\alpha=0.00305 \ 5; \ \alpha(\text{K})=0.00255 \ 4; \ \alpha(\text{L})=0.000392 \ 6; \\ &\alpha(\text{M})=8.79\times10^{-5} \ 13; \ \alpha(\text{N}+)=2.38\times10^{-5} \ 4 \\ &\alpha(\text{N})=2.06\times10^{-5} \ 3; \ \alpha(\text{O})=2.89\times10^{-6} \ 4; \ \alpha(\text{P})=1.434\times10^{-7} \\ &20; \ \alpha(\text{IPF})=2.51\times10^{-7} \ 4 \\ &\alpha(\text{K}) \exp[=0.0034 \ (1972\text{Ca}21); \ \alpha(\text{K}) \exp[=0.00273 \ 23 \\ &(1972\text{Ca}21, \ 1\gamma; \ 1968\text{Ba}54, \ \text{I(ce)}). \end{aligned}$
1107.1 ^{da} 5		3146.03	1^{+}	2039.85	1 ⁺	(M1+E2+E0)		1990Gr19 estimate $\alpha(K)$ exp>0.012 assuming I γ does not
1110.7 <i>3</i> 1113.10 <i>20</i> 1119.40 <i>20</i>	27.0 <i>15</i> 225 <i>10</i> 400 <i>12</i>	2768.34 2748.08 1397.05	$0^{-}, 1^{-}$ 1^{-} $(3)^{-}$	1658.06 1634.84 277.44	$(2)^+$ (1^+) 4^+	E1	0.001221 18	$\alpha(K)\exp \le 0.008 \ (1988DzZW)$ $\alpha(K)\exp \le 0.015 \ (1972Ca21); \ \alpha(K)\exp < 0.004 \ (1988DzZW)$ $\alpha(K)\exp = 0.0014 \ 5 \ (1988DzZW)$ $\alpha = 0.001221 \ 18; \ \alpha(K) = 0.001037 \ 15; \ \alpha(L) = 0.0001415 \ 20;$
1122.5 3	35.0 10	2268.08	1-	1145.72	2+			$\alpha(M)=5.12\times10^{-5} 5; \alpha(N+)=1.119\times10^{-5} \alpha(N)=7.31\times10^{-6} 11; \alpha(O)=1.044\times10^{-6} 15; \alpha(P)=5.60\times10^{-8} 8; \alpha(IPF)=2.77\times10^{-6} 5 \alpha(K)\exp<0.0032 (1988DzZW)$

From ENSDF

				170 Lu ε de	cay	1990AbZT	, <mark>1972Ca2</mark> 1	,1970Dz11 (c	ontinued)
						$\gamma(^{170}$ Yb) (continue	d)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{f}	Comments
^x 1124.7 3	85.0 25								α(K)exp=0.0076 26 (1988DzZW)
1132.86 ⁶⁰ 1133.60 <i>10</i>	150 ^{^w} 15 2300 75	2667.19 2498.19	$1^{(+)}$ 0 ⁻ ,1 ⁻ ,2 ⁻	1534.57 1364.53	2+ 1-	M1		0.00527 8	α =0.00527 8; α (K)=0.00445 7; α (L)=0.000639 9; α (M)=0.0001421 20; α (N+)=3.95×10 ⁻⁵ 6 α (N)=3.34×10 ⁻⁵ 5; α (O)=4.80×10 ⁻⁶ 7; α (P)=2.62×10 ⁻⁷ 4;
									α (IPF)=1.070×10 ⁻⁶ 76 α (K)exp=0.0040 (1972Ca21); α (K)exp=0.0046 3 (1972Ca21, I γ ; 1970Dz11, I(ce)). Mult.: α (K)exp is for doublet dominated by 1133.6 γ . 1132 86 γ (mult)=IM1 E2]
1135.2	250 10	2364.06	1-	1228.84	0^+	$(\mathbf{E1} + \mathbf{M2})$	0 57 16	0.0040.12	E_{γ} : unresolved multiplet; E_{γ} from level energy difference.
1157.1 5	550 10	2273.49	1	1158.55	2	(E1+M2)	0.57 10	0.0040 12	$\begin{aligned} &\alpha(M) = 0.0040 \ 12; \ \alpha(K) = 0.0054 \ 10; \ \alpha(L) = 0.00051 \ 10; \\ &\alpha(M) = 0.00011 \ 4; \ \alpha(N+) = 3.4 \times 10^{-5} \ 9 \\ &\alpha(N) = 2.7 \times 10^{-5} \ 9; \ \alpha(O) = 3.8 \times 10^{-6} \ 12; \ \alpha(P) = 2.0 \times 10^{-7} \ 7; \\ &\alpha(IPF) = 3.7 \times 10^{-6} \ 5 \end{aligned}$
									α (K)exp=0.0034 <i>10</i> (1988DzZW) Mult.: α (K)exp implies E2(+M1) or E1+M2 (δ =0.57 <i>16</i>); level scheme requires $\Delta \pi$ =yes.
1138.65 10	780×10 ¹ 24	1138.55	2+	0.0	0+	E2		0.00286 4	$\begin{aligned} &\alpha = 0.00286 \ 4; \ \alpha(\text{K}) = 0.00239 \ 4; \ \alpha(\text{L}) = 0.000365 \ 6; \\ &\alpha(\text{M}) = 8.18 \times 10^{-5} \ 12; \ \alpha(\text{N}+) = 2.29 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 1.91 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.69 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 1.344 \times 10^{-7} \\ &19; \ \alpha(\text{IPF}) = 9.92 \times 10^{-7} \ 15 \end{aligned}$
1141.30 20	1140 <i>35</i>	1225.35	$(3)^{+}$	84.262	2+	E2		0.00284 4	α (K)exp=0.0024 (1972Ca21); α (K)exp=0.00238 <i>12</i> (1972Ca21, I γ ; 1970Dz11, I(ce)). α =0.00284 <i>4</i> ; α (K)=0.00238 <i>4</i> ; α (L)=0.000363 <i>5</i> ;
									$\alpha(M) = 8.14 \times 10^{-5} \ I2; \ \alpha(N+) = 2.29 \times 10^{-5} \ 4$ $\alpha(N) = 1.90 \times 10^{-5} \ 3; \ \alpha(O) = 2.68 \times 10^{-6} \ 4; \ \alpha(P) = 1.338 \times 10^{-7} \ I9; \ \alpha(IPF) = 1.081 \times 10^{-6} \ I7$
	1								α (K)exp=0.0022 (1972Ca21). Other: 0.0035 4 (1972Ca21, Iy; 1970Dz11, I(ce)).
1144.65 20	372×10 ¹ 12	1228.84	0+	84.262	2+	E2		0.00283 4	$ \begin{array}{l} \alpha = 0.00283 \ 4; \ \alpha(\mathbf{K}) = 0.00236 \ 4; \ \alpha(\mathbf{L}) = 0.000361 \ 5; \\ \alpha(\mathbf{M}) = 8.09 \times 10^{-5} \ 12; \ \alpha(\mathbf{N}+) = 2.29 \times 10^{-5} \ 4 \\ \alpha(\mathbf{N}) = 1.89 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 2.66 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.331 \times 10^{-7} \end{array} $
									<i>19</i> ; α (IPF)=1.202×10 ⁻⁶ <i>19</i> α (K)exp=0.0022 (1972Ca21); α (K)exp=0.0023 <i>2</i> (1972Ca21, I γ ; 1970Dz11, I(ce)).
1145.80 20	391×10 ¹ 15	1145.72	2+	0.0	0+	E2		0.00282 4	$\begin{split} &\alpha{=}0.00282 \ 4; \ \alpha(\text{K}){=}0.00236 \ 4; \ \alpha(\text{L}){=}0.000360 \ 5; \\ &\alpha(\text{M}){=}8.07{\times}10^{-5} \ 12; \ \alpha(\text{N}{+}){=}2.29{\times}10^{-5} \ 4 \\ &\alpha(\text{N}){=}1.89{\times}10^{-5} \ 3; \ \alpha(\text{O}){=}2.66{\times}10^{-6} \ 4; \ \alpha(\text{P}){=}1.328{\times}10^{-7} \\ &19; \ \alpha(\text{IPF}){=}1.247{\times}10^{-6} \ 20 \\ &\alpha(\text{K})\text{exp}{=}0.0023 \ (1972\text{Ca21}); \ \alpha(\text{K})\text{exp}{=}0.0027 \ 2 \\ &(1972\text{Ca21}, \ I\gamma; \ 1970\text{Dz}11, \ \text{I(ce)}). \end{split}$

				170 Lu ε deca	y 199)AbZT,19'	72Ca21,1970Dz	:11 (continued)
					<u>γ</u>	(¹⁷⁰ Yb) (c	ontinued)	
E_{γ}^{\dagger}	I_{γ} ‡ e	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^f	Comments
1155.3 ^{ha} 3	75 ^h 5	3195.58	1-	2039.85 1	1+			α (K)exp=0.0012 4 (1972Ca21, I γ ; 1970Dz11, I(ce)) for multiply-placed γ .
1155.3 ^{hbi} 3	75 ^h 5	3423.2?	(0 ⁻)	2268.08 1	1-			α (K)exp=0.0012 4 (1972Ca21, I γ ; 1970Dz11, I(ce)), mult=(M1) for multiply-placed γ .
1158.5 ^{ha} 3	46.0 ^h 25	2523.07	1^{+}	1364.53 1	1-			α (K)exp<0.004 (1988DzZW) for doubly-placed γ .
1158.5 <mark>ha</mark> 3	46.0 ^h 25	3274.17	1-	2115.90 1	1-			α (K)exp<0.004 (1988DzZW) for doubly-placed γ .
1162.4 ^{<i>a</i>} 3	90 5	3202.94	1+	2039.85 1	[+	M1,E2	0.0039 12	$\alpha = 0.0039 \ I2; \ \alpha(K) = 0.0032 \ I0; \ \alpha(L) = 0.00047 \ I3; \alpha(M) = 0.00011 \ 3; \ \alpha(N+) = 3.1 \times 10^{-5} \ 8 \alpha(N) = 2.5 \times 10^{-5} \ 7; \ \alpha(O) = 3.5 \times 10^{-6} \ I0; \ \alpha(P) = 1.9 \times 10^{-7} \ 6; \alpha(IPF) = 2.3 \times 10^{-6} \ 3 \alpha(K) \exp = 0.0033 \ I7 \ (1988DzZW)$
1173.2 ^h 4	70 ^h 30	2536.97	1-	1364.53 1	1-			$\alpha(K) \exp = 0.006 \ 4 \ (1988 Dz ZW)$ for doubly-placed γ .
1173.2 ^{ha} 4 ^x 1180.8 3	70 ^h 30 25.0 25	3213.27	1-	2039.85 1	1+			α (K)exp=0.006 4 (1988DzZW) for doubly-placed γ . α (K)exp=0.019 10 (1988DzZW)
1181.5 ^{hbi} 3	$100^{h} 20$	2328.0?	(0^{+})	1145.72 2	2+			α (K)exp=0.005 3 (1988DzZW) for multiply-placed γ .
1181.5 ^{ha} 3	$100^{h} 20$	2661.02	1+	1479.91 (-)+			α (K)exp=0.005 3 (1988DzZW) for multiply-placed γ .
$1181.5^{h}.3$	$100^{h} 20$	2748.08	1-	1566 38 ()+			$\alpha(\mathbf{K}) \exp = 0.005 + 3.000 \text{ (1980 DzZW)}$ for multiply-placed γ .
1187 5 3	100 20	2667 19	1(+)	1479.91 ()+			$\alpha(K)\exp[=0.0024, 24, (1988DzZW)]$ for multiply-placed y.
x1203.0 3	45.0 25	2007.17	1	1179.91	,			$\alpha(K)\exp(-0.002 + 27)(1700 D22 W)$
1204.8 ^{<i>a</i>} 3	40.0 20	3258.18	1^{+}	2052.59 0)-,1-,2-			α (K)exp<0.007 (1988DzZW)
1206.30 20	300 15	2275.49	1-	1069.36 ()+	E1	0.001089 <i>16</i>	$\alpha = 0.001089 \ 16; \ \alpha(K) = 0.000908 \ 13; \ \alpha(L) = 0.0001234 \ 18; \alpha(M) = 2.72 \times 10^{-5} \ 4; \ \alpha(N+) = 3.10 \times 10^{-5} \alpha(N) = 6.38 \times 10^{-6} \ 9; \ \alpha(O) = 9.11 \times 10^{-7} \ 13; \ \alpha(P) = 4.91 \times 10^{-8} \ 7; \alpha(IPF) = 2.37 \times 10^{-5} \ 4 \alpha(K) \exp < 0.0010 \ (1988DzZW)$
1211.2 ^{<i>a</i>} 3	80 4	2436.01	(2,3) ⁻	1225.35 ((3)+	E1	0.001084 <i>16</i>	$\alpha = 0.001084 \ 16; \ \alpha(K) = 0.000901 \ 13; \ \alpha(L) = 0.0001225 \ 18; \alpha(M) = 2.70 \times 10^{-5} \ 4; \ \alpha(N+) = 3.29 \times 10^{-5} \alpha(N) = 6.33 \times 10^{-6} \ 9; \ \alpha(O) = 9.05 \times 10^{-7} \ 13; \ \alpha(P) = 4.87 \times 10^{-8} \ 7; \alpha(IPF) = 2.56 \times 10^{-5} \ 4 \alpha(K) = 0.0010 \ 4 \ (1988DzZW)$
1213.65 20	115 6	2748.08	1-	1534.57 2	2+			α (K)exp=0.0047 24 (1988DzZW)
1217.30 ^{ha} 20	450 ^h 15	2523.07	1+	1306.39 2	2+			α (K)exp=0.0030 (1972Ca21), 0.0026 6 (1988DzZW), mult=E2(+M1) for doubly-placed γ .
1217.30 ^{ha} 20	450 ^h 15	3202.94	1+	1985.64 1	1-,2-			α (K)exp=0.0030 (1972Ca21), 0.0026 6 (1988DzZW), mult=E2(+M1) for doubly-placed γ .
1218.50 20	3.04×10 ³ 10	2364.06	1-	1145.72 2	2+	E1	0.001075 <i>15</i>	$ \begin{array}{l} \alpha = 0.001075 \ I5; \ \alpha(\mathrm{K}) = 0.000892 \ I3; \ \alpha(\mathrm{L}) = 0.0001212 \ I7; \\ \alpha(\mathrm{M}) = 2.68 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 3.57 \times 10^{-5} \\ \alpha(\mathrm{N}) = 6.26 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 8.95 \times 10^{-7} \ I3; \ \alpha(\mathrm{P}) = 4.82 \times 10^{-8} \ 7; \\ \alpha(\mathrm{IPF}) = 2.85 \times 10^{-5} \ 4 \\ \alpha(\mathrm{K}) \exp = 0.00065 \ (1972 \mathrm{Ca21}); \ \alpha(\mathrm{K}) \exp = 0.00069 \ 9 \ (1988 \mathrm{DzZW}) \end{array} $

 $^{170}_{70} \mathrm{Yb}_{100}$ -26

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100}$ -26

				¹⁷⁰ Lu ε	decay	1990AbZT,	,1972Ca21,1970	Dz11 (continued)
						$\gamma(^{170}\mathrm{Yb})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	α^f	Comments
1222.3 3	1430 50	1306.39	2+	84.262	2+	E0+E2+M1	0.013	α (K)exp=0.0103 (1972Ca21); α (K)exp=0.0094 6 (1972Ca21, I γ ; 1968Ba54, I(ce)). α : estimated from α (K)exp.
1225.65 10	1080×10 ¹ 32	2364.06	1-	1138.55	2+	E1	0.001068 15	$\alpha = 0.001068 \ 15; \ \alpha(K) = 0.000883 \ 13; \ \alpha(L) = 0.0001199 \ 17; \alpha(M) = 2.65 \times 10^{-5} \ 4; \ \alpha(N+) = 3.86 \times 10^{-5} \alpha(N) = 6.20 \times 10^{-6} \ 9; \ \alpha(O) = 8.86 \times 10^{-7} \ 13; \ \alpha(P) = 4.77 \times 10^{-8} \ 7; \alpha(IPF) = 3.15 \times 10^{-5} \ 5 \alpha(K) \exp = 0.00092 \ (1972 Ca21); \ \alpha(K) \exp = 0.00081 \ 7 \ (1988 DzZW)$
1228.9	<200	1228.84	0+	0.0	0+	E0		Other α (K)exp: 0.00080 5 (1972Ca21, I γ ; 1968Ba54, I(ce)). α (K)exp>0.05 (1972Ca21) ce(K)/ce=0.87. I $_{\gamma}$: observation limit resulting from proximity of strong 1226 γ . I(ce(K))/I(1145 γ)=0.00269 from α (K)exp and I γ limits
1230.2 <i>3</i>	250 10	2536.97	1-	1306.39	2+			(1972Ca21). α (K)exp \leq 0.0115 (1972Ca21); α (K)exp $=$ 0.0022 22 (1988DzZW)
1234.5 3	50.0 25	3274.17	1-	2039.85	1+	E1	0.001058 15	$ \begin{array}{l} \alpha = 0.001058 \ 15; \ \alpha(\mathrm{K}) = 0.000871 \ 13; \ \alpha(\mathrm{L}) = 0.0001184 \ 17; \\ \alpha(\mathrm{M}) = 2.61 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 4.22 \times 10^{-5} \\ \alpha(\mathrm{N}) = 6.12 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 8.74 \times 10^{-7} \ 13; \ \alpha(\mathrm{P}) = 4.71 \times 10^{-8} \ 7; \\ \alpha(\mathrm{IPF}) = 3.52 \times 10^{-5} \ 5 \end{array} $
1235.90 10	510 <i>15</i>	2748.08	1-	1512.37	1-	M1	0.00429 6	$\alpha(K) \exp=0.0010 \ 6 \ (1988DzZW)$ $\alpha=0.00429 \ 6; \ \alpha(K)=0.00361 \ 5; \ \alpha(L)=0.000517 \ 8;$ $\alpha(M)=0.0001149 \ 16; \ \alpha(N+)=4.25\times10^{-5} \ 6$ $\alpha(N)=2.70\times10^{-5} \ 4; \ \alpha(O)=3.88\times10^{-6} \ 6; \ \alpha(P)=2.12\times10^{-7} \ 3;$ $\alpha(IPF)=1.142\times10^{-5} \ 16$ $\alpha(K) \exp=0.0050 \ (1972Ca21); \ 0.0043 \ 6 \ (1972Ca21, \ I\gamma;$
1240.7 ^{<i>a</i>} 3 1241.95 20	37.0 <i>20</i> 110 <i>5</i>	3366.40 2667.19	$1 \\ 1^{(+)}$	2126.14 1425.24	1 ⁻ (2) ⁻	(E1)	0.001051 15	1968Ba54, I(ce)). α (K)exp=0.004 3 (1988DzZW) α =0.001051 15; α (K)=0.000862 12; α (L)=0.0001171 17; α (M)=2.58×10 ⁻⁵ 4; α (N)= -4.54×10 ⁻⁵
								$\alpha(M) = 2.38 \times 10^{-4}, \alpha(N+) = 4.54 \times 10^{-6}$ $\alpha(N) = 6.05 \times 10^{-6} \ 9; \ \alpha(O) = 8.65 \times 10^{-7} \ 13; \ \alpha(P) = 4.67 \times 10^{-8} \ 7; \ \alpha(IPF) = 3.84 \times 10^{-5} \ 6 \ \alpha(K) \exp[=0.0017 \ 10 \ (1988DzZW)$
1252.1^{da} 4		3291.82	1+	2039.85	1^{+}			Mult.: E1 or E2 from $\alpha(K)exp$; $\Delta \pi = (yes)$ from level scheme.
1256.69 ^{cr} 20 1257.20 10	3.05×10 ³ 10	1534.57	2^{+}	277.44	4+			α (K)exp=0.0021 (1972Ca21); α (K)exp=0.00063 12 (1988DzZW) Mult : α (K)exp data mutually inconsistent
1263.45 20	690 <i>20</i>	2775.66	1-	1512.37	1-	M1	0.00407 6	$\alpha(K) \exp (\alpha ta mutuary meonsistent), \alpha = 0.00407 6; \alpha(K) = 0.00342 5; \alpha(L) = 0.000490 7; \alpha(M) = 0.0001088 16; \alpha(N+) = 4.56 \times 10^{-5} 7 \alpha(N) = 2.56 \times 10^{-5} 4; \alpha(O) = 3.68 \times 10^{-6} 6; \alpha(P) = 2.01 \times 10^{-7} 3; \alpha(IPF) = 1.614 \times 10^{-5} 23 \alpha(K) \exp = 0.0045 (1972Ca21); \alpha(K) \exp = 0.0039 7 (1988DzZW)$

From ENSDF

I

				170 Lu $arepsilon$	decay	1990Ab	ZT,1972Ca21,1	1970Dz11 (continued)
						$\gamma(^{170}$	Yb) (continued)	<u>)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
1268.30 <i>20</i> 1280.25 <i>10</i>	260 <i>10</i> 1770×10 ¹ <i>50</i>	2748.08 1364.53	1- 1-	1479.91 84.262	0 ⁺ 2 ⁺	E1	0.001015 15	$\alpha(K)\exp=0.0017 \ 8 \ (1988DzZW)$ $\alpha=0.001015 \ 15; \ \alpha(K)=0.000818 \ 12; \ \alpha(L)=0.0001109 \ 16;$ $\alpha(M)=2.45\times10^{-5} \ 4; \ \alpha(N+)=6.22\times10^{-5}$ $\alpha(N)=5.73\times10^{-6} \ 8; \ \alpha(O)=8.19\times10^{-7} \ 12; \ \alpha(P)=4.43\times10^{-8} \ 7;$ $\alpha(PE)=5 \ 56\times10^{-5} \ 8$
1290.9 <i>4</i>	190 <i>35</i>	2429.05	1+,2+	1138.55	2+	(E2)	0.00225 4	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00087 \text{ (1972Ca21); } \alpha(\text{K}) \exp = 0.00088 \text{ 8 (1972Ca21, I}\gamma; \\ &1968\text{Ba54, I(ce)).} \\ &A_2 = -0.24 \text{ 5, } A_4 = -0.03 \text{ 7 for } 1280\gamma \text{-} 84\gamma(\theta) \text{ (1969PaZR).} \\ &\alpha = 0.00225 \text{ 4; } \alpha(\text{K}) = 0.00187 \text{ 3; } \alpha(\text{L}) = 0.000280 \text{ 4; } \alpha(\text{M}) = 6.25 \times 10^{-5} \\ &9; \alpha(\text{N}+) = 3.38 \times 10^{-5} \text{ 5} \\ &\alpha(\text{N}) = 1.462 \times 10^{-5} \text{ 21; } \alpha(\text{O}) = 2.07 \times 10^{-6} \text{ 3; } \alpha(\text{P}) = 1.055 \times 10^{-7} \text{ 15;} \end{aligned}$
1294.70 <i>10</i>	635×10 ¹ 20	2364.06	1-	1069.36	0+	E1	0.001003 14	α (IPF)=1.69/×10 ⁻⁵ 25 α (K)exp<0.0018 (1988DzZW) Mult.: E1 or E2 from α (K)exp; level scheme requires $\Delta \pi$ =No. α =0.001003 14; α (K)=0.000802 12; α (L)=0.0001087 16; α (M)=2.40×10 ⁻⁵ 4 α (N)=5.62×10 ⁻⁶ 8 α (K)exp<0.00090 (1988DzZW)
1294.74 [@] 1304.85 20	100 [@] 10 220 8	2929.60 2939.73	1^{-} 1^{-}	1634.84 1634.84	(1^+) (1^+)		0.0030 9	other α (K)exp: 0.00095 for doublet dominated by 1294.7 γ . α (K)exp<0.060 (1988DzZW) α (K)exp=0.0029 <i>11</i> (1988DzZW) α =0.0030 <i>9</i> ; α (K)=0.0025 <i>8</i> ; α (L)=0.00037 <i>10</i>
1306.30 20	1100 50	1306.39	2+	0.0	0+	(E2)	0.00220 3	Mult.: α (K)exp implies mult=M1,E2, inconsistent with placement. α =0.00220 3; α (K)=0.00183 3; α (L)=0.000273 4; α (M)=6.09×10 ⁻⁵ 9; α (N+)=3.60×10 ⁻⁵ 5 α (N)=1.426×10 ⁻⁵ 20; α (O)=2.02×10 ⁻⁶ 3; α (P)=1.032×10 ⁻⁷ 15;
1307.55 <i>10</i>	2.40×10 ³ 10	2819.77	0-,1-	1512.37	1-	M1+E2	0.0030 8	$\begin{aligned} &\alpha(\text{IPF})=1.96\times10^{-5} \ 3\\ &\alpha(\text{K})\exp{\leq}0.0042 \ (1972\text{Ca}21); \ \alpha(\text{K})\exp{=}0.0025 \ 3 \ (1988\text{DzZW})\\ &\text{Mult.: } \text{M1+E2 from } \alpha(\text{K})\exp; \ \Delta\text{J=2 from level scheme.}\\ &\alpha=0.0030 \ 8; \ \alpha(\text{K})=0.0025 \ 7; \ \alpha(\text{L})=0.00036 \ 9; \ \alpha(\text{M})=8.0\times10^{-5} \ 20;\\ &\alpha(\text{N}+)=4.4\times10^{-5} \ 8\\ &\alpha(\text{N})=1.9\times10^{-5} \ 5; \ \alpha(\text{O})=2.7\times10^{-6} \ 7; \ \alpha(\text{P})=1.4\times10^{-7} \ 5;\\ &\alpha(\text{IPF})=2.2\times10^{-5} \ 3\\ &\alpha(\text{K})\exp{=}0.00239 \ 15 \ (1988\text{DzZW})\\ &\text{Mult.: } \text{M1+E2 from } \alpha(\text{K})\exp \text{ but mixed multipolarity inconsistent} \end{aligned}$
1307.97 [@] 1312.9 <i>3</i> 1313.03 [@]	$260^{@} 30$ 700 40 $100^{@} 10$	2536.97 1397.05 2947.84	1- (3)- 1-	1228.84 84.262 1634.84	0^+ 2^+ (1^+)			with level scheme if J(2820)=0. other α (K)exp: ≤ 0.0022 for doublet dominated by 1307.55 γ . α (K)exp< 0.016 (1988DzZW) α (K)exp< 0.013 (1988DzZW)
1323.00 20	390 <i>30</i>	2748.08	1-	1425.24	$(2)^{-}$	M1	0.00365 6	α =0.00365 6; α (K)=0.00306 5; α (L)=0.000438 7; α (M)=9.72×10 ⁻⁵

From ENSDF

				¹⁷⁰ Lu	ε decay	y 1990	AbZT,1972Ca2	1,1970Dz11 (continued)
						<u>γ(</u>	¹⁷⁰ Yb) (continue	ed)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
					<u> </u>			<i>14</i> ; α (N+)=5.51×10 ⁻⁵ 8 α (N)=2.28×10 ⁻⁵ 4; α (O)=3.29×10 ⁻⁶ 5; α (P)=1.80×10 ⁻⁷ 3; α (IPF)=2.88×10 ⁻⁵ 4 α (K)exp=0.0036 <i>10</i> (1972Ca21, I γ ; 1968Ba54, I(ce)).
1330.7 ^{ha} 3	80 ^h 4	2400.10	1-	1069.36	0^+			α (K)exp<0.004 (1988DzZW) for doubly-placed γ .
1330.7 ^{ha} 3	80 ^h 4	2965.66	1^{+}	1634.84	(1^{+})			α (K)exp<0.004 (1988DzZW) for doubly-placed γ .
1341.20 10	$705 \times 10^1 \ 20$	1425.24	$(2)^{-}$	84.262	2^{+}	(E1)	0.000972 14	α =0.000972 14; α (K)=0.000754 11; α (L)=0.0001021 15;
								$\alpha(M)=2.25\times10^{-5}$ 4; $\alpha(N+)=9.37\times10^{-5}$
								$\alpha(N) = 5.27 \times 10^{-6} 8; \ \alpha(O) = 7.54 \times 10^{-7} 11; \ \alpha(P) = 4.08 \times 10^{-6} 6;$
								α (IPF)=8.7/×10 ° 73 α (K)exp=0.00095 (1972Ca21); α (K)exp=0.00115 9 (1972Ca21, I γ ; 1968Ba54, I(ce)).
1350.5 <i>3</i>	128 6	2775.66	1-	1425.24	$(2)^{-}$			α (K)exp=0.0005 3 (1988DzZW)
1361.1 <i>3</i>	250 25	2667.19	$1^{(+)}$	1306.39	2+	(E2)	0.00205 3	α =0.00205 3; α (K)=0.001695 24; α (L)=0.000251 4; α (M)=5.59×10 ⁻⁵ 8; α (N+)=4.61×10 ⁻⁵ 7
								$\alpha(N)=1.309\times10^{-5} \ I9; \ \alpha(O)=1.85\times10^{-6} \ 3; \ \alpha(P)=9.54\times10^{-8} \ I4; \ \alpha(IPF)=3.11\times10^{-5} \ 5 \ \alpha(K)\exp<0.0018 \ (1988DzZW)$
								Mult.: E1 or E2 from $\alpha(K)exp; \Delta\pi=(No)$ from level scheme.
1364.60 10	10000	1364.53	1-	0.0	0^{+}	E1	0.000960 14	α =0.000960 14; α (K)=0.000732 11; α (L)=9.90×10 ⁻⁵ 14;
								$\alpha(M)=2.18\times10^{-5}$ 3; $\alpha(N+)=0.0001079$
								$\alpha(N)=5.11\times10^{-6} 8; \alpha(O)=7.32\times10^{-7} 11; \alpha(P)=3.96\times10^{-8} 6;$
								α (IPF)=0.0001020 15 α (K)evp=0.00079 (1072Co21): α (K)evp=0.00067.6 (1072Co21) Jac
								1968Ba54. I(ce)).
1370.4 3	52.0 25							$\alpha(K)\exp(-0.004 (1988DzZW))$
1373.50 20	370 35	2939.73	1-	1566.38	0^+	E1	0.000957 14	α =0.000957 14; α (K)=0.000724 11; α (L)=9.79×10 ⁻⁵ 14;
								$\alpha(M)=2.16\times10^{-5}$ 3; $\alpha(N+)=0.0001135$
								$\alpha(N) = 5.06 \times 10^{-6} 7; \ \alpha(O) = 7.24 \times 10^{-7} 11; \ \alpha(P) = 3.92 \times 10^{-8} 6;$
								α (IPF)=0.0001076 <i>16</i> α (K)avp <0.0012 (1082DzZW)
1380 80 20	270 35	1658.06	$(2)^{+}$	277 44	4^{+}			$\alpha(K) \exp(0.0012 (1906) 22 W)$ $\alpha(K) \exp(0.0020 14 (1988) 72 W)$
1383.60 20	420 15	2748.08	1-	1364.53	1-			$\alpha(X) \exp = 0.0043 \ 11 \ (1988 Dz ZW)$
1385.5 3	100 5							$\alpha(K) \exp = 0.005 \ 3 \ (1988 DzZW)$
1393.2 ^d 7								
1395.03 [@]	9.0×10 ² [@] 10	2929.60	1-	1534.57	2+			α (K)exp<0.010 (1988DzZW)
1395.65 10	490×10 ¹ 15	1479.91	0^{+}	84.262	2+	E2	0.00196 3	α =0.00196 3; α (K)=0.001617 23; α (L)=0.000238 4; α (M)=5.31×10 ⁻⁵ 8; α (N+)=5.41×10 ⁻⁵ 8
								α (N)=1.243×10 ⁻⁵ <i>18</i> ; α (O)=1.762×10 ⁻⁶ <i>25</i> ; α (P)=9.10×10 ⁻⁸ <i>13</i> ; α (IPF)=3.98×10 ⁻⁵ <i>6</i>

L

				170 Lu ε	decay	1990A t	ZT,1972Ca21 ,	1970Dz11 (continued)
						$\gamma(^{170}$	⁰ Yb) (continued	<u>)</u>
${E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
								α (K)exp<0.0017 (1988DzZW) α (K)exp=0.0016 (1972Ca21) for doublet dominated by this γ . A ₂ =+0.22 <i>15</i> , A ₄ =+0.92 <i>19</i> for 1396 γ -84 $\gamma(\theta)$ (1969PaZR).
1398.30 <i>20</i> 1403.79	150 <i>30</i> 450 <i>50</i>	2536.97 2768.34	1 ⁻ 0 ⁻ ,1 ⁻	1138.55 1364.53	2^+ 1^-	M1	0.00320 5	α (K)exp<0.004 (1988DzZW) α =0.00320 5; α (K)=0.00266 4; α (L)=0.000379 6; α (M)=8.42×10 ⁻⁵ $I2$: α (N+.)=7.60×10 ⁻⁵ II
								$\alpha(N)=1.98\times10^{-5} \ 3; \ \alpha(O)=2.84\times10^{-6} \ 4; \ \alpha(P)=1.561\times10^{-7} \ 22; \ \alpha(IPF)=5.32\times10^{-5} \ 8$
								α (K)exp=0.0053 <i>11</i> (1972Ca21, I γ ; 1968Ba54, I(ce)); exceeds α (K)(M1).
1405.15 10	565×10 ¹ 18	2939.73	1-	1534.57	2+	E1	0.000945 14	α =0.000945 <i>14</i> ; α (K)=0.000696 <i>10</i> ; α (L)=9.40×10 ⁻⁵ <i>14</i> ; α (M)=2.07×10 ⁻⁵ <i>3</i> ; α (N+)=0.0001340
								$\alpha(N)=4.86 \times 10^{-6}$ 7; $\alpha(O)=6.95 \times 10^{-7}$ 10; $\alpha(P)=3.77 \times 10^{-8}$ 6; $\alpha(IPF)=0.0001284$ 18 $\alpha(K)=n=0.00116$ (1972Ca21); $\alpha(K)=n=0.00053$ 9 (1972Ca21) IV:
1410.4 ^a 4	285 30	3067.62	1-	1658.06	$(2)^{+}$			$\alpha(K)\exp=0.00116 (1972ea21), \alpha(K)\exp=0.00055 9 (1972ea21, 17, 1968Ba54, I(ce)).$ $\alpha(K)\exp=0.0013 6 (1988DzZW)$
1413.20 20	490 35	2947.84	1-	1534.57	2^{+}			$\alpha(K)\exp=0.0013 \ 4 \ (1988DzZW)$
1418.7 <i>3</i>	70 4	2783.12	1+	1364.53	1-			α (K)exp=0.0043 <i>14</i> (1972Ca21, I γ ; 1968Ba54, I(ce)) indicates mult=M1; however, placement requires E1.
1426.72 [@]	10.0×10^{2} @ 10	2496.20	1-	1069.36	0^+	E1	0.000938 14	α =0.000938 <i>14</i> ; α (K)=0.000678 <i>10</i> ; α (L)=9.16×10 ⁻⁵ <i>13</i> ; α (M)=2.02×10 ⁻⁵ <i>3</i> ; α (N+)=0.0001483
								α (N)=4.73×10 ⁻⁶ 7; α (O)=6.77×10 ⁻⁷ 10; α (P)=3.67×10 ⁻⁸ 6; α (IPF)=0.0001429 20
0	0							α (K)exp=0.00097 22 (1988DzZW)
1427.27 [@]	730 80	2939.73	1-	1512.37	1-	-		α (K)exp=0.0037 7 (1988DzZW)
1428.08 10	755×10 ¹ 25	1512.37	1-	84.262	2*	El	0.000938 14	$\alpha = 0.000938 \ I4; \ \alpha(K) = 0.000677 \ I0; \ \alpha(L) = 9.14 \times 10^{-3} \ I3;$
								$\alpha(M)=2.02\times10^{-6}$ 5; $\alpha(N+)=0.0001492$ $\alpha(N)=4.72\times10^{-6}$ 7; $\alpha(O)=6.76\times10^{-7}$ 10; $\alpha(P)=3.67\times10^{-8}$ 6; $\alpha(IPE)=0.0001438$ 21
								$\alpha(\text{K}) = 0.0001438 27$ $\alpha(\text{K}) = 0.00063 7 (1988DzZW)$ other $\alpha(\text{K}) = 0.00091 (1972Ca21)$ for doublet
1435.40 20	550 20	2947.84	1-	1512.37	1-	M1	0.00305 5	α =0.00305 5; α (K)=0.00252 4; α (L)=0.000359 5; α (M)=7.98×10 ⁻⁵ 12; α (N+)=8.60×10 ⁻⁵ 12
								$\alpha(N)=1.87\times10^{-5} 3; \alpha(O)=2.70\times10^{-6} 4; \alpha(P)=1.479\times10^{-7} 21; \alpha(IPF)=6.44\times10^{-5} 9$
1438.1 <i>3</i>	110 5	2667.19	1 ⁽⁺⁾	1228.84	0^{+}	M1	0.00303 5	α (K)exp=0.0026 5 (1988DzZW) α =0.00303 5; α (K)=0.00251 4; α (L)=0.000357 5; α (M)=7.94×10 ⁻⁵
								<i>12</i> ; α (N+)=8.69×10 ⁻⁵ <i>13</i> α (N)=1.86×10 ⁻⁵ <i>3</i> ; α (O)=2.68×10 ⁻⁶ <i>4</i> ; α (P)=1.473×10 ⁻⁷ <i>21</i> ; α (IPF)=6.54×10 ⁻⁵ <i>10</i>
								α (K)exp=0.0038 <i>19</i> (1988DzZW)
1445.1 3	80 4							α (K)exp<0.0036 (1988DzZW)

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -30

l

					¹⁷⁰ Lu <i>e</i>	e deca	y 1990AbZ	T,1972Ca21,197	70Dz11 (continued)
							γ (¹⁷⁰ Y	b) (continued)	
	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^f	Comments
	1449.64 [@]	300 [@] 40	2929.60	1-	1479.91	0^+			
	1450.20 10	$3.50 \times 10^3 \ 10$	1534.57	2+	84.262	2^{+}	E0+M1+E2		α(K)exp=0.0259 10 (1988DzZW)
	1455.25 10	2550 75	2819.77	0-,1-	1364.53	1-	E2(+M1)	0.0024 6	other α (K)exp; 0.0275 for doublet dominated by 1450.2 γ . α =0.0024 6; α (K)=0.0020 5; α (L)=0.00028 7; α (M)=6.3×10 ⁻⁵ 15;
									$\alpha(N+)=8.1\times10^{-5}$ 12
									$\alpha(N)=1.5\times10^{-5} 4; \ \alpha(O)=2.1\times10^{-6} 5; \ \alpha(P)=1.1\times10^{-7} 3; \ \alpha(IPF)=6.4\times10^{-5} 8$
									α (K)exp \leq 0.0025 (1972Ca21); α (K)exp=0.00171 <i>16</i> (1988DzZW)
									Mult.: mixed multipolarity inconsistent with level scheme if $I(2820) = 0$
	1457.12 <i>15</i>	380 40	2969.45	1-	1512.37	1-	(E2)	0.00183 <i>3</i>	$\alpha = 0.00183 \ 3; \ \alpha(K) = 0.001491 \ 21; \ \alpha(L) = 0.000218 \ 3;$
									$\alpha(M)=4.86\times10^{-5}$ 7; $\alpha(N+)=7.05\times10^{-5}$ 10
									$\alpha(N)=1.138\times10^{-5}$ 16; $\alpha(O)=1.616\times10^{-6}$ 23; $\alpha(P)=8.39\times10^{-8}$ 12;
									α (IPF)=5.74×10 ⁻⁵ 8 (<i>W</i>)=0.0008 5 (1088D=7W)
									$\alpha(\mathbf{K})\exp[=0.0008 \text{ S} (1988DZZ \text{ W})]$ Mult : E1 or E2 from $\alpha(\mathbf{K})\exp[-\alpha\pi=\text{No} \text{ from level scheme}]$
	1459.85 <i>10</i>	2350 75	2939.73	1-	1479.91	0^{+}	E1	0.000930 13	$\alpha = 0.000930 \ I3; \ \alpha(K) = 0.000652 \ I0; \ \alpha(L) = 8.80 \times 10^{-5} \ I3;$
2									$\alpha(M)=1.94\times10^{-5}$ 3; $\alpha(N+)=0.0001705$
-									$\alpha(N)=4.54\times10^{-6}$ 7; $\alpha(O)=6.51\times10^{-7}$ 10; $\alpha(P)=3.54\times10^{-8}$ 5; $\alpha(PE)=0.0001653.24$
									$\alpha(\text{H}^{-1})=0.000103524$ $\alpha(\text{K})\exp=0.0006099$ (1972Ca21, IV; 1968Ba54, I(ce)).
	1463.3 <i>3</i>	160 20	2975.32	1-	1512.37	1-	M1	0.00292 4	α =0.00292 4; α (K)=0.00241 4; α (L)=0.000343 5; α (M)=7.61×10 ⁻⁵ 11; α (N+)=9.56×10 ⁻⁵ 14
									$\alpha(N)=1.79\times10^{-5}$ 3; $\alpha(O)=2.57\times10^{-6}$ 4; $\alpha(P)=1.413\times10^{-7}$ 20; $\alpha(PE)=7.50\times10^{-5}$ 11
									$\alpha(\text{K}) = 0.0028 \ 9 \ (1988 \text{DzZW})$
	1467.50 [@]	150 [@] 15	2536.97	1-	1069.36	0^+			$\alpha(K) \exp = 0.0019 \ 6 \ (1988 DzZW)$
	1467.93 [@]	200 [@] 20	2947.84	1-	1479.91	0^+	E1	0.000928 13	$\alpha = 0.000928 \ I3; \ \alpha(K) = 0.000646 \ 9; \ \alpha(L) = 8.72 \times 10^{-5} \ I3; \ \alpha(M) = 1.92 \times 10^{-5} \ 3; \ \alpha(N+) = 0.0001760 \ 2$
									$\alpha(N) = 4.50 \times 10^{-6}$ 7; $\alpha(O) = 6.45 \times 10^{-7}$ 9; $\alpha(P) = 3.50 \times 10^{-8}$ 5;
									α(IPF)=0.0001708 24
									α (K)exp<0.0005 (1988DzZW)
	1469.10 20	200 10	2775.66	1-	1306.39	2+	E1	0.000928 13	$\alpha = 0.000928 \ I3; \ \alpha(\text{K}) = 0.000645 \ 9; \ \alpha(\text{L}) = 8.70 \times 10^{-3} \ I3;$
									$\alpha(M) = 1.92 \times 10^{-5} 3; \alpha(N+) = 0.0001768 2$ $\alpha(N) = 4.50 \times 10^{-6} 7; \alpha(O) = 6.44 \times 10^{-7} 9; \alpha(D) = 3.50 \times 10^{-8} 5;$
									$\alpha(\text{IPF})=0.0001716\ 24$
									$\alpha(K) \exp{(0.0005 (1988 Dz ZW))}$
	1479.9		1479.91	0^{+}	0.0	0^+	E0		$\alpha(K)\exp \ge 3.26 (1972Ca21)$
									$U(ce(K))/U(1396\gamma)=0.0133$ from $\rho(K)exp>3.26$ if $I_V < 20.(1972Ca21)$
	1482.15 10	1350 50	1566.38	0^{+}	84.262	2^{+}	(E2)	0.001780 25	$\alpha = 0.001780 \ 25; \ \alpha(K) = 0.001445 \ 21; \ \alpha(L) = 0.000211 \ 3;$
									$\alpha(M)=4.70\times10^{-5}$ 7; $\alpha(N+)=7.78\times10^{-5}$ 11

L

			,1970Dz11 (continued)					
						$\gamma(^1$	⁷⁰ Yb) (continue	<u>d)</u>
${\rm E_{\gamma}}^{\dagger}$	$\mathrm{I}_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
1486.0 <i>3</i> x^{1} 1490.5 <i>3</i> x^{1} 492 1 ^{<i>d</i>} 6	100 5 53 3	2965.66	1+	1479.91	0+			$\begin{aligned} &\alpha(\text{N})=1.100\times10^{-5} \ 16; \ \alpha(\text{O})=1.562\times10^{-6} \ 22; \ \alpha(\text{P})=8.13\times10^{-8} \ 12; \\ &\alpha(\text{IPF})=6.52\times10^{-5} \ 10 \\ &\alpha(\text{K})\text{exp}=0.0021 \ 5 \ (1972\text{Ca21}, \ \text{I}\gamma; \ 1968\text{Ba54}, \ \text{I(ce)}) \ \text{allows} \\ &\text{mult}=\text{E2,M1; M1 inconsistent with level scheme.} \\ &\alpha(\text{K})\text{exp}<0.0029 \ (1988\text{DzZW}) \\ &\alpha(\text{K})\text{exp}<0.005 \ (1988\text{DzZW}) \end{aligned}$
1498.8 3	76 4	3065.36	1^{+}	1566.38	0^{+}			α (K)exp<0.004 (1988DzZW)
1503.9 ^h 4	20.0 ^h 20	2929.60	1-	1425.24	(2)-			α (K)exp<0.020 (1988DzZW) for doubly-placed γ .
1503.9 ^{ha} 4	20.0 ^h 20	3161.02	(1^{-})	1658.06	$(2)^{+}$			α (K)exp<0.020 (1988DzZW) for doubly-placed γ .
1507.80 20	100 15	3042.46	1^{+}	1534.57	2^{+}			<i>α</i> (K)exp≤0.029 (1972Ca21); <i>α</i> (K)exp<0.003 (1988DzZW)
1512.50 10	553×10 ¹ 15	1512.37	1-	0.0	0+	E1	0.000922 13	$\alpha = 0.000922 \ 13; \ \alpha(K) = 0.000614 \ 9; \ \alpha(L) = 8.28 \times 10^{-5} \ 12; \\ \alpha(M) = 1.83 \times 10^{-5} \ 3; \ \alpha(N+) = 0.000207 \ 3 \\ \alpha(N) = 4.28 \times 10^{-6} \ 6; \ \alpha(O) = 6.12 \times 10^{-7} \ 9; \ \alpha(P) = 3.33 \times 10^{-8} \ 5; \\ \alpha(IPF) = 0.000202 \ 3 \\ \alpha(K) \exp = 0.00082 \ (1972Ca21); \ \alpha(K) \exp = 0.00061 \ 5 \ (1972Ca21, \ I\gamma; 1968Ba54, \ I(ce)).$
1514.60 20	1220 50	2939.73	1-	1425.24	(2)-	M1	0.00272 4	$\begin{aligned} &\alpha = 0.00272 \ 4; \ \alpha(\mathrm{K}) = 0.00222 \ 4; \ \alpha(\mathrm{L}) = 0.000315 \ 5; \ \alpha(\mathrm{M}) = 7.01 \times 10^{-5} \\ &I0 \ \alpha(\mathrm{N}+) = 0.0001148 \ I6 \\ &\alpha(\mathrm{N}) = 1.645 \times 10^{-5} \ 23; \ \alpha(\mathrm{O}) = 2.37 \times 10^{-6} \ 4; \ \alpha(\mathrm{P}) = 1.301 \times 10^{-7} \ I9; \\ &\alpha(\mathrm{IPF}) = 9.59 \times 10^{-5} \ I4 \\ &\alpha(\mathrm{K}) \exp = 0.0031 \ (1972 \mathrm{Ca21}); \ \alpha(\mathrm{K}) \exp = 0.00287 \ 25 \ (1972 \mathrm{Ca21}, \ \mathrm{I}\gamma; \\ &1968 \mathrm{Ba54}, \ \mathrm{I(ce)}). \end{aligned}$
1518.9 3	130 5	2748.08	1-	1228.84	0^{+}			α (K)exp=0.0009 5 (1988DzZW)
1521.7 3	80 20	2667.19	1(+)	1145.72	2+	M1,E2	0.0022 5	$\begin{aligned} &\alpha = 0.0022 \ 5; \ \alpha(\text{K}) = 0.0018 \ 4; \ \alpha(\text{L}) = 0.00026 \ 6; \ \alpha(\text{M}) = 5.7 \times 10^{-5} \ 13; \\ &\alpha(\text{N}+) = 0.000104 \ 14 \\ &\alpha(\text{N}) = 1.3 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 1.9 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.0 \times 10^{-7} \ 3; \\ &\alpha(\text{IPF}) = 8.9 \times 10^{-5} \ 11 \\ &\alpha(\text{K}) \exp = 0.0026 \ 10 \ (1988\text{DzZW}) \end{aligned}$
1529.0 3	160 15	2667.19	$1^{(+)}$	1138.55	2+			α (K)exp=0.0039 (1972Ca21); α (K)exp<0.0019 (1988DzZW)
1531.30 20 1534.55 10	400 <i>15</i> 2040 <i>60</i>	2956.55 1534.57	1' 2+	1425.24 0.0	(2) 0 ⁺	E2	0.001689 24	$\alpha(\text{K})\exp=0.0037 (1972\text{Ca21}) \text{ but}<0.0014 (1988\text{DzZW}).$ $\alpha=0.001689 24; \alpha(\text{K})=0.001354 19; \alpha(\text{L})=0.000197 3;$ $\alpha(\text{M})=4.38\times10^{-5} 7; \alpha(\text{N}+)=9.42\times10^{-5} 14$ $\alpha(\text{N})=1.025\times10^{-5} 15; \alpha(\text{O})=1.457\times10^{-6} 21; \alpha(\text{P})=7.62\times10^{-8} 11;$ $\alpha(\text{IPF})=8.25\times10^{-5} 12$ $\alpha(\text{K})\exp=0.00135 (1972\text{Ca21}); \alpha(\text{K})\exp=0.00112 10 (1988\text{DzZW})$
1540.4 3	190 10	2965.66	1+	1425.24	(2)-			α (K)exp<0.0016 (1988DzZW) Mult.: E1 or E2 from α (K)exp.
1549.92 [@]	250 [@] 25	2975.32	1-	1425.24	$(2)^{-}$			$\alpha(K) \exp < 0.0041 \ (1988 DzZW)$
1550.55 10	1000 30	1634.84	(1^{+})	84.262	2+	(M1)	0.00259 4	α =0.00259 4; α (K)=0.00210 3; α (L)=0.000298 5; α (M)=6.62×10 ⁻⁵ 10; α (N+)=0.0001297 19

 $^{170}_{70}$ Yb $_{100}$ -32

¹⁷⁰ Lu ε decay 1990AbZT,1972Ca21,1970Dz11 (continued)											
							$\gamma(^{170}$ Yb) (contin	nued)			
E_{γ}^{\dagger}	Ι _γ ‡ e	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^f	Comments			
								$\alpha(N)=1.555\times10^{-5} 22; \ \alpha(O)=2.24\times10^{-6} 4; \ \alpha(P)=1.230\times10^{-7} 18; \\ \alpha(IPF)=0.0001118 \ 16 \\ \alpha(K)\exp=0.0045 \ (1972Ca21); \ \alpha(K)\exp=0.0035 \ 6 \ (1988DzZW) \\ Possible doublet \ (1972Ca21). \ \alpha(K)\exp implies E0 \ component.$			
1558.4 ^{db} 3 ^x 1560 3 3	28 5 25	3070.52	0,1	1512.37	1-			$\alpha(K) \exp < 0.005 (1988 DzZW)$			
$1564.97^{@}$	20.3 20 $200^{@} 20$	2929.60	1-	1364 53	1-			$\alpha(K) \exp \langle 0.005 (1988 Dz ZW) \rangle$			
$1565.08^{@}$	$450^{@} 20$	3099.64	1(-)	1534 57	2+			$\alpha(K) \exp \langle 0.0021 (1988) p_Z W \rangle$			
1566.4	150 20	1566.38	0^{+}	0.0	0^{+}	E0		$\alpha(K)\exp(0.0021 (1900D22W))$ $\alpha(K)\exp(0.166 (1972Ca21); \alpha(K)\exp(0.163 (1988DzZW)))$ ce(K)/ce=0.87.			
1573.60 25	200 10	1658.06	$(2)^{+}$	84.262	2+			I(ce(K))/I(1482 γ)=0.0061 from α (K)exp>0.166 if I γ <50 (1972Ca21). α (K)exp=0.0019 10 (1988DzZW)			
1575.10 20	1120 30	2939.73	1-	1364.53	1-	M1	0.00251 4	α =0.00251 4; α (K)=0.00202 3; α (L)=0.000287 4; α (M)=6.38×10 ⁻⁵ 9; α (N+)=0.0001404 20			
								α (N)=1.497×10 ⁻⁵ 21; α (O)=2.16×10 ⁻⁶ 3; α (P)=1.184×10 ⁻⁷ 17; α (IPF)=0.0001232 18			
								α (K)exp=0.0017 (1972Ca21); α (K)exp=0.00192 13 (1988DzZW)			
1583.3 <i>3</i>	130 5	2947.84	1-	1364.53	1-	M1	0.00249 4	$\alpha = 0.00249 \ 4; \ \alpha(K) = 0.00200 \ 3; \ \alpha(L) = 0.000283 \ 4; \ \alpha(M) = 6.30 \times 10^{-5} \ 9; \\ \alpha(N+) = 0.0001441 \ 21$			
								$\alpha(N)=1.479\times10^{-5}\ 21;\ \alpha(O)=2.13\times10^{-6}\ 3;\ \alpha(P)=1.170\times10^{-7}\ 17;\ \alpha(IPF)=0.0001270\ 18\ \alpha(K)=n=0\ 0029\ 9\ (1988DzZW)$			
1585 8ha 4	20.0^{h} 20	3065 36	1+	1479 91	0^{+}			$\alpha(\mathbf{K})\exp(-0.0025) \times (1900D221)$			
1585.8 hbi $_{1}$	$20.0^{h} 20$	3423 22	(0^{-})	1838.22	$(2)^+$			$\alpha(\mathbf{K}) \exp[-0.007.5]$ (1980DzZW) for doubly-placed y.			
$x_{1588} 5^{d} 6$	20.0 20	J 1 23.2:	(0)	1050.21	(2)			$u(\mathbf{K})exp=0.007.5$ (1900DZZ W) for doubly-placed y.			
1592.05 20	310 10	2956.55	1^{+}	1364.53	1-	(E1)	0.000921 13	$\alpha = 0.000921 \ I3; \ \alpha(K) = 0.000564 \ 8; \ \alpha(L) = 7.58 \times 10^{-5} \ I1;$			
								$\alpha(M)=1.6/2\times10^{-6}$ 24; $\alpha(N+)=0.000265$ $\alpha(N)=3.92\times10^{-6}$ 6; $\alpha(O)=5.61\times10^{-7}$ 8; $\alpha(P)=3.06\times10^{-8}$ 5;			
								$\alpha(\text{IPF})=0.000260.4$ $\alpha(K)_{\text{avp}}=0.0012.3 (1072C_{0}21.4c_{1}.1070D_{7}11.4(c_{0}))$			
								Mult.: E1. E2 from $\alpha(K)$ exp: $\Lambda \pi$ =ves from level scheme.			
1597.6 <i>3</i>	160 10	2667.19	1 ⁽⁺⁾	1069.36	0^+	M1	0.00244 4	α =0.00244 4; α (K)=0.00195 3; α (L)=0.000277 4; α (M)=6.16×10 ⁻⁵ 9; α (N+)=0.0001505 22			
								α (N)=1.447×10 ⁻⁵ 21; α (O)=2.08×10 ⁻⁶ 3; α (P)=1.145×10 ⁻⁷ 16; α (IPF)=0.0001338 19			
								α (K)exp=0.0030 6 (1972Ca21, I γ ; 1970Dz11, I(ce)).			
1601.2 <i>3</i>	260 10	2965.66	1+	1364.53	1-			α (K)exp=0.0015 4 (1988DzZW)			
1602.2.3	230 10	2748 08	1-	1145 72	2+	F1	0 000021 12	WILL: WILE2 from $\alpha(\mathbf{K}) \exp$; placement requires E1. $\alpha = 0.000021.13; \alpha(\mathbf{K}) = 0.000558.8; \alpha(\mathbf{L}) = 7.50 \times 10^{-5}.11;$			
1002.2 5	230 10	2/40.00	1	1143.72	2	<u>ы</u> т	0.000921 13	$\alpha(M) = 1.654 \times 10^{-5} 24 \cdot \alpha(N+) = 0.000272$			
								$\alpha(N) = 3.87 \times 10^{-6} 6; \alpha(O) = 5.55 \times 10^{-7} 8; \alpha(P) = 3.03 \times 10^{-8} 5;$			

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -33

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)					(170 Vb)	continued)
E_{γ}^{\dagger} .	$I_{\gamma}^{\ddagger e}$	E _i (level)					γ (10) (C	continued)
			J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
								α (IPF)=0.000268 4
$4 \cos \alpha \cos \alpha d d =$								$\alpha(K)\exp(-0.0005 (1988DzZW))$
1603.8 ^{gad} 5		3115.58	1-	1512.37	1-			
1603.8 ^{gua} 5		3169.59	1-	1566.38	0+	-		
1609.40 20	480 25	2/48.08	1-	1138.55	2*	EI	0.000922 13	$\alpha = 0.000922 \ 13; \ \alpha(\text{K}) = 0.000553 \ 8; \ \alpha(\text{L}) = 7.44 \times 10^{-5} \ 11; \ \alpha(\text{M}) = 1.641 \times 10^{-5} \ 23; \ \alpha(\text{N}+) = 0.000277 \ 7 \ 10^{-5} \ 10$
								$\alpha(N)=3.84\times10^{-6} 6; \alpha(O)=5.51\times10^{-7} 8; \alpha(P)=3.00\times10^{-8} 5;$
								α (IPF)=0.0002/3 4 α (K)exp=0.00055.17 (1088Dz ZW)
								$\alpha(K) \exp[-0.00055 T7 (1700D22W)]$ $\alpha(K) \exp[for doublet: 0.0012 (1972Ca21), 0.00140 I0 (1972Ca21, Iv:$
								1970Dz11, I(ce)); consistent with E1-M1 doublet.
1610.70 <i>15</i>	960 50	2975.32	1-	1364.53	1-	M1	0.00241 4	$\alpha = 0.00241 \ 4$; $\alpha(K) = 0.00192 \ 3$; $\alpha(L) = 0.000272 \ 4$; $\alpha(M) = 6.04 \times 10^{-5} \ 9$; $\alpha(N+) = 0.0001565 \ 22$
								$\alpha(N)=1.419\times10^{-5}\ 20;\ \alpha(O)=2.04\times10^{-6}\ 3;\ \alpha(P)=1.123\times10^{-7}\ 16;$
								α(IPF)=0.0001402 20
								α (K)exp=0.00175 <i>16</i> (1988DzZW)
								α (K)exp for doublet: 0.0012 (1972Ca21), 0.00140 <i>10</i> (1972Ca21, I γ ; 1970Dz11, I(ce)); consistent with E1-M1 doublet.
1614.7 3	82 4	3149.09	1-	1534.57	2+			α (K)exp=0.0012 8 (1988DzZW)
1619.7 <i>3</i>	200 10	3099.64	1(-)	1479.91	0+			α (K)exp=0.0017 8 (1972Ca21, I γ ; 1970Dz11, I(ce)) gives mult=M1,E2; 1988DzZW deduce α (K)exp=0.0012 3, too low for pure M1. adopted level
1(20.5.2	220 5	2165 50	1 -	1524.57	2+	(F 1)	0.000022.12	scheme requires E1. $0.000022 k_{2}$ (K) $0.000542 R$ (k) $7.20 \cdot 10^{-5} k_{1}$ (M) $1.005 \cdot 10^{-5}$
1630.5 3	220 5	3165.59	1	1534.57	21	(E1)	0.000923 13	$\alpha = 0.000923$ 13; α (K)=0.000542 8; α (L)=7.28×10 ° 11; α (M)=1.605×10 ° 23; α (N+)=0.000293
								$\alpha(N)=3.76\times10^{-6} 6; \ \alpha(O)=5.39\times10^{-7} 8; \ \alpha(P)=2.94\times10^{-6} 5; \ \alpha(IPF)=0.000289 4$
								α (K)exp=0.0010 3 (1972Ca21, I γ ; 1970Dz11, I(ce)).
h	h							Mult.: E1,E2 from $\alpha(K)$ exp; not E2 from level scheme.
1633.3 ^{<i>n</i>} 3	115" 20	2939.73	1-	1306.39	2+			α (K)exp<0.0010 (1988DzZW) for multiply-placed γ .
1633.3 ^{na} 3	115 ⁿ 20	3146.03	1+	1512.37	1-			α (K)exp<0.0010 (1988DzZW) for multiply-placed γ .
1633.3 ^{ha} 3	115 ⁿ 20	3268.91	$1^{(+)}$	1634.84	(1^{+})			α (K)exp<0.0010 (1988DzZW) for multiply-placed γ .
1633.3 ^{ha} 3	115 ^h 20	3291.82	1^{+}	1658.06	$(2)^{+}$			α (K)exp<0.0010 (1988DzZW) for multiply-placed γ .
1634.8 3	210 8	1634.84	(1 ⁺)	0.0	0^{+}	(M1)	0.00234 4	$ \substack{\alpha = 0.00234 \ 4; \ \alpha(K) = 0.00185 \ 3; \ \alpha(L) = 0.000263 \ 4; \ \alpha(M) = 5.83 \times 10^{-5} \ 9; \\ \alpha(N+) = 0.0001677 \ 24 } $
								α (N)=1.369×10 ⁻⁵ 20; α (O)=1.97×10 ⁻⁶ 3; α (P)=1.084×10 ⁻⁷ 16; α (IPF)=0.0001519 22
								α (K)exp=0.00062 (1972Ca21), mult=E1; however, 1988DzZW deduce α (K)exp=0.0017 3, mult=M1(+E2). The evaluator favors the latter.
1636.9 ^{ha} 3	120 ^{<i>h</i>} 4	2783.12	1^{+}	1145.72	2^{+}			α (K)exp=0.0024 5 (1972Ca21, I γ ; 1970Dz11, I(ce)), mult=M1 for multiply-placed γ
1636.9 ^h 3	120 ^{<i>h</i>} 4	3149.09	1-	1512.37	1-			α (K)exp=0.0024 5 (1972Ca21, I γ ; 1970Dz11, I(ce)), mult=M1 for

¹⁷⁰Lu ε decay **1990AbZT,1972Ca21,1970Dz11** (continued)

$\gamma(^{170}\text{Yb})$ (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α^f	Comments
1636.9 ^{ha} 3	120 ^{<i>h</i>} 4	3202.94	1+	1566.38 0+			α (K)exp=0.0024 5 (1972Ca21, I γ ; 1970Dz11, I(ce)), mult=M1 for multiply-placed γ .
1641.30 20	690 20	2947.84	1-	1306.39 2+	E1	0.000924 13	$\alpha = 0.000924 \ 13; \ \alpha(K) = 0.000536 \ 8; \ \alpha(L) = 7.20 \times 10^{-5} \ 10;$
							$\alpha(M)=1.587\times10^{-5} 23; \alpha(N+)=0.000301$
							$\alpha(N)=3.72\times10^{-6} 6; \alpha(O)=5.33\times10^{-7} 8; \alpha(P)=2.91\times10^{-8} 4;$
							α (IPF)=0.000297 5
1645 Abb A	12 0h 15	2070 52	0.1	1405.04 (0)=			$u(\mathbf{K})\exp=0.000/110(1972Ca21, 17, 1970D211, 1(ce)).$
1045.4 4	43.0* 15	3070.52	0,1	1425.24 (2)			α (K)exp=0.0030 11 (1988D22 W) for doubly-placed γ . Other α (K)exp: 0.0037 19 (1972Ca21, I γ ; 1970Dz11, I(ce)); however, 1970Dz11 do
							not report the 1648.8 γ , so their 1646.2 γ may be a doublet.
1645.4 ^h 4	43.0 ^h 15	3179.76	1-	1534.57 2+			α (K)exp=0.0030 <i>11</i> (1988DzZW) for doubly-placed γ . Other α (K)exp:
							0.0037 19 (1972Ca21, I γ ; 1970Dz11, I(ce)); however, 1970Dz11 do
ha							not report the 1648.8 γ , so their 1646.2 γ may be a doublet.
1648.7 ^{nu} 3	$33.0^{n} 25$	3161.02	(1^{-})	1512.37 1-			α (K)exp=0.0019 <i>11</i> (1988DzZW) for doubly-placed γ .
1648.7 ^{nu} 3	33.0 ⁿ 25	3366.40	1	1717.95 (2)-			α (K)exp=0.0019 <i>11</i> (1988DzZW) for doubly-placed γ .
1651.4 <i>4</i>	68.0 25	3131.10	1+	1479.91 0*	(M1)	0.00230 4	α =0.00230 4; α (K)=0.00181 3; α (L)=0.000256 4; α (M)=5.69×10 ⁻⁵ 8; α (N+)=0.0001755 25
							α (N)=1.336×10 ⁻⁵ <i>19</i> ; α (O)=1.92×10 ⁻⁶ <i>3</i> ; α (P)=1.058×10 ⁻⁷ <i>15</i> ; α (IPF)=0.0001601 <i>23</i>
							α (K)exp=0.0041 12 (1972Ca21, I γ ; 1970Dz11, I(ce)).
1652.0.4	17.0.05	2165 50	1-	1510.07 1-	F2 . M 1 . F 0		Mult.: M1+E0+E2 from α (K)exp, but level scheme requires $\Delta J=1$.
1653.2 4	47.0 25	3165.59	1	1512.37 1	E2+M1+E0		$\alpha(K)\exp=0.0045\ I3\ (19/2Ca21, 1\gamma; 19/0Dz11, 1(ce)).$
1659.944 5	142.0	2965.66	1 ' 1 -	1306.39 2	(E1)	0.000007.12	$-0.000027.12$, $(K) = 0.000524.9$, $(L) = 7.04 \times 10^{-5}.10$
1002.8 3	143 8	2909.45	1	1306.39 2	(EI)	0.000927 13	$\alpha = 0.000927 13; \alpha(K) = 0.000324 8; \alpha(L) = 7.04 \times 10^{-5} 10; \alpha(K) = 1.552 \times 10^{-5} 22; \alpha(K+1) = 0.000317$
							$\alpha(N) = 3.532 \times 10^{-6} 5. \alpha(\Omega) = 5.21 \times 10^{-7} 8. \alpha(P) = 2.85 \times 10^{-8} 4$
							α (IPF)=0.000313 5
							α (K)exp=0.0009 5 (1972Ca21, I γ ; 1970Dz11, I(ce)).
							Mult.: E1 or E2 from $\alpha(K)exp$; $\Delta \pi = yes$ from level scheme.
1667.1 ^{ha} 4	69 ^{<i>h</i>} 4	3146.03	1+	1479.91 0+			α (K)exp=0.0037 <i>12</i> (1988DzZW), mult=M1+E0+E2 for multiply-placed γ .
1667.1 ^{h} 4	69 ^h 4	3179.76	1-	1512.37 1-			α (K)exp=0.0068 <i>12</i> (1972Ca21, I γ ; 1970Dz11, I(ce)),
							mult=M1+E0+E2 for multiply-placed γ .
1667.1 ^{ha} 4	69 ^h 4	3301.95	1^{+}	1634.84 (1 ⁺)			α(K)exp=0.0068 12 (1972Ca21, Iγ; 1970Dz11, I(ce)),
L	L						mult=M1+E0+E2 for multiply-placed γ .
1667.1 ^{<i>ha</i>} 4	69 ⁿ 4	3384.87	1-	1717.95 (2)-			α (K)exp=0.0068 <i>12</i> (1972Ca21, I γ ; 1970Dz11, I(ce)),
1674 2 3	350 10	3186.66	(1^{-})	1512 37 1-	M1 F2	0.0019.4	$\alpha = 0.0019 4 \cdot \alpha(K) = 0.0015 3 \cdot \alpha(L) = 0.00021 5 \cdot \alpha(M) = 4.6 \times 10^{-5} 10^{\circ}$
10/7.2 5	550 10	5100.00	(1)	1012.07 1	1711,122	0.0017 7	$\alpha(N+)=0.000166\ 21$
							$\alpha(N)=1.08\times10^{-5}\ 22;\ \alpha(O)=1.5\times10^{-6}\ 4;\ \alpha(P)=8.4\times10^{-8}\ 19;$
							α (IPF)=0.000153 <i>19</i>

$\frac{170 \text{Lu} \varepsilon \text{ decay}}{\gamma(^{170} \text{Yb}) \text{ (continued)}}$							
1678.60 20	500 15	2748.08	1-	1069.36 0+	E1	0.000929 13	$\alpha = 0.000929 \ 13; \ \alpha(K) = 0.000516 \ 8; \ \alpha(L) = 6.93 \times 10^{-5} \ 10; \alpha(M) = 1.528 \times 10^{-5} \ 22; \ \alpha(N+) = 0.000328 \alpha(N) = 3.58 \times 10^{-6} \ 5; \ \alpha(O) = 5.13 \times 10^{-7} \ 8; \ \alpha(P) = 2.80 \times 10^{-8} \ 4; \alpha(IPF) = 0.000324 \ 5 (V) = 0.000324 \ 5 \\(V) = 0.000324 \ 5 \ (V) = 0.000324 \$
1682.7 <i>3</i> 1685.6 <i>3</i>	120 <i>40</i> 130 <i>15</i>	3195.58 3165.59	1^{-} 1^{-}	1512.37 1 ⁻ 1479.91 0 ⁺			α (K)exp=0.00076 8 (1988DzZW) α (K)exp=0.0010 5 (1988DzZW) α (K)exp=0.0013 4 (1988DzZW) Mult.: α (K)exp favors M1,E2; level scheme requires $\Delta \pi$ =yes.
^x 1687.9 4	50 5						α (K)exp=0.0029 <i>10</i> (1988DzZW)
1692.0 ^{<i>aa</i>} 4	angh in	3258.18	1+	1566.38 0+			
$1700.90^{h} 20$	$300^{n} 10$	2929.60	1- 1+	1228.84 0+			α (K)exp=0.00109 <i>I6</i> (1988DzZW), mult=E2 for doubly-placed γ .
$1700.90^{ha} 20$	300^{h} 10	3065.36	1' 1-	1364.53 I			α (K)exp=0.00109 16 (1988DZZW), mult=E2 for doubly-placed γ .
1700.90 ⁻⁰⁴ 20 1703.3 ^{<i>a</i>} 3	300* 10 190 6	3067.62	1 1 ⁻	1312.37 1 1364.53 1 ⁻	M1	0.00217 3	α =0.00217 3; α (K)=0.001679 24; α (L)=0.000238 4; α (M)=5.28×10 ⁻⁵ 8; α (N+)=0.000201 3
							$\alpha(N)=1.240\times10^{-5}$ 18; $\alpha(O)=1.79\times10^{-6}$ 3; $\alpha(P)=9.83\times10^{-8}$ 14; $\alpha(IPF)=0.000187$ 3 $\alpha(K)\exp=0.0019$ 3 (1988DzZW)
1706.0 ^{hb} 3	105 ^h 15	3070.52	0,1	1364.53 1-			α (K)exp=0.0016 6 (1988DzZW), mult=(M1,E2) for multiply-placed γ .
1706.0 ^h 3	105 ^h 15	3131.10	1^{+}	1425.24 (2)-			α (K)exp=0.0016 6 (1988DzZW), mult=(M1,E2) for multiply-placed γ .
1706.0 ^{hbi} 3 ^x 1709.9 ^d 7	105 ^h 15	3423.2?	(0 ⁻)	1717.95 (2)-			α (K)exp=0.0016 6 (1988DzZW), mult=(M1,E2) for multiply-placed γ .
1714.4 <mark>ha</mark> 4	40 ^{<i>h</i>} 8	2783.12	1^{+}	1069.36 0+			α (K)exp=0.0050 17 (1988DzZW) for doubly-placed γ .
1714.4 ^h 4	40 ^h 8	2939.73	1-	1225.35 (3)+			α (K)exp=0.0050 <i>17</i> (1988DzZW) for doubly-placed γ .
1719.10 20	325 10	2947.84	1-	1228.84 0+	E1	0.000935 <i>13</i>	$\alpha = 0.000935 \ I3; \ \alpha(K) = 0.000496 \ 7; \ \alpha(L) = 6.66 \times 10^{-5} \ I0; \alpha(M) = 1.467 \times 10^{-5} \ 2I; \ \alpha(N+) = 0.000358 \alpha(N) = 3.44 \times 10^{-6} \ 5; \ \alpha(O) = 4.93 \times 10^{-7} \ 7; \ \alpha(P) = 2.69 \times 10^{-8} \ 4; \alpha(IPF) = 0.000354 \ 5 \alpha(K) = n = 0.00075 \ I4 \ (1988DzZW)$
^x 1723.8 3	60 4						$\alpha(K)\exp=0.0036.77(1980D2ZW)$ $\alpha(K)\exp=0.0036.77(1988DzZW)$ E_{α} : may deexcite 2947 and/or 3149 level.
1731.3 ^h 4	21.0 ^{<i>h</i>} 20	2956.55	1^{+}	1225.35 (3)+			α (K)exp=0.0052 14 (1988DzZW) for doubly-placed γ .
1731.3 ^{ha} 4	21.0 ^{<i>h</i>} 20	3366.40	1	1634.84 (1 ⁺)			α (K)exp=0.0052 <i>14</i> (1988DzZW) for doubly-placed γ .
1734.4 ^{da} 5		3268.91	$1^{(+)}$	1534.57 2+			
1736.6 ^h 3	87 <mark>h</mark> 12	2965.66	1^{+}	1228.84 0+			α (K)exp=0.0030 6 (1988DzZW) for doubly-placed γ .
1736.6 ^{ha} 3	87 <mark>h</mark> 12	3042.46	1^{+}	1306.39 2+			α (K)exp=0.0030 6 (1988DzZW) for doubly-placed γ .
1736.6 ^{ha} 3	87 <mark>h</mark> 12	3161.02	(1^{-})	1425.24 (2)-			
1740.7 3	180 6	3165.59	1-	1425.24 (2)-	E2(+M1)	0.0018 4	α =0.0018 4; α (K)=0.0013 3; α (L)=0.00019 4; α (M)=4.2×10 ⁻⁵ 8;

From ENSDF
					¹⁷⁰ Lu	ε decay 1990	AbZT,1972Ca2	1,1970Dz11 (continued)
						<u>γ(</u>	¹⁷⁰ Yb) (continue	ed)
E_{γ}^{\dagger}	Ι _γ ‡ <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
								$\alpha(N+)=0.000196\ 25$ $\alpha(N)=9.9\times10^{-6}\ 19;\ \alpha(O)=1.4\times10^{-6}\ 3;\ \alpha(P)=7.7\times10^{-8}\ 17;$ $\alpha(IPF)=0.000185\ 22$ $\alpha(K)=0.00111\ 20\ (1088Dr7W)$
1746.3 <i>3</i>	68 <i>4</i>	2975.32	1-	1228.84	0+			$\alpha(K)\exp=0.0011120(1988DZZW)$ $\alpha(K)\exp=0.00196(1988DZZW)$ Mult.: M1(+E2) from $\alpha(K)\exp$, inconsistent with level scheme. $\alpha(K)\exp$ too low for pure M2.
1747.8 4	25.0 25	3314.42	1	1566.38	0^+	(M1)	0.00208 3	α =0.00208 3; α (K)=0.001580 23; α (L)=0.000224 4; α (M)=4.96×10 ⁻⁵ 7; α (N+)=0.000224 4
								$\alpha(N)=1.166\times10^{-5}$ 17; $\alpha(O)=1.679\times10^{-6}$ 24; $\alpha(P)=9.24\times10^{-8}$ 13; $\alpha(IPF)=0.000211$ 3 $\alpha(K)\exp=0.0029$ 12 (1988DzZW)
1753.9 ^{bi} 3 1758.95 20	100 <i>5</i> 180 <i>6</i>	1838.2? 3065.36	(2) ⁺ 1 ⁺	84.262 1306.39	2+ 2+	M1(+E2+E0) E2	0.001416 20	$\alpha(K)\exp=0.0030 \ 10 \ (1972Ca21, I\gamma; 1968Ba54, I(ce)).$ $\alpha=0.001416 \ 20; \ \alpha(K)=0.001053 \ 15; \ \alpha(L)=0.0001502 \ 21;$ $\alpha(M)=3.34\times10^{-5} \ 5; \ \alpha(N+)=0.000180$ $\alpha(N)=7.82\times10^{-6} \ 11; \ \alpha(O)=1.115\times10^{-6} \ 16; \ \alpha(P)=5.92\times10^{-8} \ 9;$ $\alpha(IPF)=0.0001711 \ 24$ $\alpha(K)\exp=0.00111 \ 16 \ (1988DzZW)$
1761.4 ^{ha} 3	93 ^h 12	3067.62	1-	1306.39	2+			α (K)exp=0.0016 4 (1988DzZW), mult=M1 for multiply-placed γ .
1761.4 ^{ha} 3	93 ^h 12	3186.66	(1-)	1425.24	(2)-			α (K)exp=0.0016 4 (1988DzZW), mult=M1 for multiply-placed γ .
1761.4 ^{ha} 3	93 ^h 12	3274.17	1-	1512.37	1-			α (K)exp=0.0016 4 (1988DzZW), mult=M1 for multiply-placed γ .
1767.2 ^{<i>a</i>} 3	180 <i>10</i>	3301.95	1+	1534.57	2+	M1,E2	0.0017 4	$ \begin{array}{l} \alpha = 0.0017 \ 4; \ \alpha(\mathrm{K}) = 0.00129 \ 25; \ \alpha(\mathrm{L}) = 0.00018 \ 4; \ \alpha(\mathrm{M}) = 4.1 \times 10^{-5} \ 8; \\ \alpha(\mathrm{N}+) = 0.00021 \ 3 \\ \alpha(\mathrm{N}) = 9.6 \times 10^{-6} \ 18; \ \alpha(\mathrm{O}) = 1.4 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 7.4 \times 10^{-8} \ 16; \\ \alpha(\mathrm{IPF}) = 0.000198 \ 24 \end{array} $
1770.4 4	25.0 25	3195.58	1-	1425.24	(2)-	M1	0.00203 3	α (K)exp=0.0013 4 (1988DzZW) α =0.00203 3; α (K)=0.001532 22; α (L)=0.000217 3; α (M)=4.81×10 ⁻⁵ 7; α (N+)=0.000236 4
								$\alpha(N)=1.131\times10^{-5}$ 16; $\alpha(O)=1.628\times10^{-6}$ 23; $\alpha(P)=8.96\times10^{-8}$ 13; $\alpha(IPF)=0.000223$ 4 $\alpha(K)\exp=0.0040$ 15 (1988DzZW) Mult.: note that $\alpha(K)\exp$ exceeds $\alpha(K)(M1)$ suggesting presence of E0 component inconsistent with level scheme
1776.1 3	575 20	3140.60	(1)	1364.53	1-	M1	0.00202 3	α =0.00202 3; α (K)=0.001521 22; α (L)=0.000215 3; α (M)=4.78×10 ⁻⁵ 7; α (N+)=0.000240 4 α (N)=1.122×10 ⁻⁵ 16; α (O)=1.616×10 ⁻⁶ 23; α (P)=8.89×10 ⁻⁸ 13; α (IPF)=0.000227 4
								α (K)exp=0.00169 <i>12</i> (1988DzZW)
1778.8 ^h 4	54 ^h 5	3007.6	1-	1228.84	0^+			α (K)exp=0.0013 5 (1988DzZW) for doubly-placed γ .
1778.8 ^{ha} 4	54 ^h 5	3291.82	1^{+}	1512.37	1-			α (K)exp=0.0013 5 (1988DzZW) for doubly-placed γ .
1783.3 ^{<i>a</i>} 4	54 5	2929.60	1-	1145.72	2+		0.0015	α (K)exp=0.0013 7 (1988DzZW)
1784.7 <i>4</i>	88 15	3149.09	1-	1364.53	1-	M1(+E2)	0.0017 3	α =0.0017 3; α (K)=0.00126 24; α (L)=0.00018 4; α (M)=4.0×10 ⁻⁵ 8; α (N+)=0.00022 3

				170	Lu ɛ d	ecay 19	90AbZT,1972(Ca21,1970Dz11 (continued)
							$\gamma(^{170}\text{Yb})$ (cont	inued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
1791 7 ^a 4	78.0.20	2929.60	1-	1138 55	2+			$\alpha(N)=9.3\times10^{-6}\ 18;\ \alpha(O)=1.3\times10^{-6}\ 3;\ \alpha(P)=7.3\times10^{-8}\ 16;\ \alpha(PF)=0.000207\ 25\ \alpha(K)\exp=0.0018\ 6\ (1988DzZW)\ \alpha(K)\exp=0.0013\ 5\ (1988DzZW)$
1793.8 <i>3</i>	200 10	3099.64	1(-)	1306.39	2+	E1	0.000951 14	$\alpha = 0.000951 \ 14; \ \alpha(\text{K}) = 0.000462 \ 7; \ \alpha(\text{L}) = 6.20 \times 10^{-5} \ 9; \ \alpha(\text{M}) = 1.366 \times 10^{-5} \ 20; \ \alpha(\text{N}+.) = 0.000413 \ 6 \ \alpha(\text{N}) = 3.20 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 4.59 \times 10^{-7} \ 7; \ \alpha(\text{P}) = 2.51 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.000409 \ 6 \ \alpha(\text{N}) = 3.00063 \ 12 \ (1988\text{DzZW})$
1796.3 ^{<i>a</i>} 5	40.0 20	3161.02	(1 ⁻)	1364.53	1-			$\alpha(K)\exp = 0.0011 \ 7 \ (1988DzZW)$
1799.3° 5 1802.25.75	28.5 20 350 10	3366.40 2947.84	1 1-	1566.38	0' 2+	F1	0 000953 14	$\alpha(K)\exp=0.0016 \ IO (1988DzZW)$ $\alpha=0.000953 \ Id \cdot \alpha(K)=0.000459 \ 7 \cdot \alpha(L)=6.15\times10^{-5} \ 9 \cdot \alpha(M)=1.355\times10^{-5}$
1002.23 13	550 10	2747.04	1	1143.72	2	EI	0.000755 14	$\begin{array}{l} a=0.000955\ 14,\ \alpha(\mathrm{K})=0.000459\ 7,\ \alpha(\mathrm{L})=0.15\times10^{-9},\ \alpha(\mathrm{M})=1.555\times10^{-1}\\ 19;\ \alpha(\mathrm{M}+)=0.000419\ 6\\ \alpha(\mathrm{N})=3.17\times10^{-6}\ 5;\ \alpha(\mathrm{O})=4.55\times10^{-7}\ 7;\ \alpha(\mathrm{P})=2.49\times10^{-8}\ 4;\\ \alpha(\mathrm{IPF})=0.000416\ 6\\ \alpha(\mathrm{K})\mathrm{exp}=0.00067\ 8\ (1988\mathrm{DzZW}) \end{array}$
1809.50 <i>15</i>	1720 50	2947.84	1-	1138.55	2+	E1	0.000955 14	$ \begin{array}{l} \alpha = 0.000955 \ 14; \ \alpha(\text{K}) = 0.000456 \ 7; \ \alpha(\text{L}) = 6.11 \times 10^{-5} \ 9; \ \alpha(\text{M}) = 1.346 \times 10^{-5} \\ 19; \ \alpha(\text{N}+) = 0.000425 \ 6 \\ \alpha(\text{N}) = 3.15 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 4.52 \times 10^{-7} \ 7; \ \alpha(\text{P}) = 2.48 \times 10^{-8} \ 4; \\ \alpha(\text{IPF}) = 0.000421 \ 6 \\ \alpha(\text{K}) \exp = 0.00059 \ 5 \ (1972\text{Ca}21, \ \text{I}\gamma; \ 1968\text{Ba}54, \ \text{I(ce)}). \ \text{Other:} \ 0.00025 \\ (1972\text{Ca}21). \end{array} $
1818.8 ^{<i>a</i>} 5	47 5	2956.55	1+	1138.55	2+	M1	0.00195 <i>3</i>	α =0.00195 3; α (K)=0.001438 21; α (L)=0.000203 3; α (M)=4.51×10 ⁻⁵ 7; α (N+)=0.000263 4 α (N)=1.060×10 ⁻⁵ 15; α (O)=1.527×10 ⁻⁶ 22; α (P)=8.41×10 ⁻⁸ 12; α (IPF)=0.000250 4 α (K)exp=0.0023 8 (1988DzZW)
1820.7 5	35 4	2965.66	1+	1145.72	2+	M1	0.00195 <i>3</i>	$\alpha = 0.00195 \ 3; \ \alpha(K) = 0.001434 \ 21; \ \alpha(L) = 0.000203 \ 3; \ \alpha(M) = 4.50 \times 10^{-5} \ 7; \\ \alpha(N+) = 0.000264 \ 4 \\ \alpha(N) = 1.057 \times 10^{-5} \ 15; \ \alpha(O) = 1.523 \times 10^{-6} \ 22; \ \alpha(P) = 8.38 \times 10^{-8} \ 12; \\ \alpha(IPF) = 0.000252 \ 4 \\ \alpha(K) \exp = 0.0031 \ 11 \ (1988DzZW)$
1824.6 5 ^x 1830.1 5	68 7 43 4	3131.10	1+	1306.39	2+			α (K)exp=0.0005 5 (1988DzZW) α (K)exp=0.0030 9 (1988DzZW)
1832.4 ^{ha} 4	53.0 ^h 20	3258.18	1^{+}	1425.24	$(2)^{-}$			α (K)exp=0.0015 9 (1988DzZW) for doubly-placed γ .
1832.4 ^{ha} 4	53.0 ^h 20	3366.40	1	1534.57	2^{+}			α (K)exp=0.0015 9 (1988DzZW) for doubly-placed γ .
1836.7 <mark>h</mark> 5	130 ^h 13	2975.32	1-	1138.55	2^{+}			α (K)exp=0.0009 4 (1988DzZW) for doubly-placed γ .
1836.7 <mark>ha</mark> 5	130 ^h 13	3065.36	1+	1228.84	0^{+}			α (K)exp=0.0009 4 (1988DzZW) for doubly-placed γ .
1838.2 ^{hbi} 5	94 ^h 3	1838.2?	$(2)^{+}$	0.0	0^+			α (K)exp=0.0018 4 (1988DzZW) for multiply-placed γ .
1838.2 ^h 5	94 ^h 3	3067.62	1-	1228.84	0^{+}			α (K)exp=0.0018 4 (1988DzZW) for multiply-placed γ .
1838.2 ^{ha} 5	94 ^h 3	3202.94	1^{+}	1364.53	1-			α (K)exp=0.0018 4 (1988DzZW) for multiply-placed γ .

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100} \mathrm{-38}$

L

				17	⁷⁰ Lu ε	decay	1990AbZT,197	2Ca21,1970Dz11 (continued)
							$\gamma(^{170}\text{Yb})$ (co	ontinued)
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡ <i>e</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
1842.8 5	115 7	3149.09	1-	1306.39	2+	(E1)	0.000964 14	α =0.000964 <i>14</i> ; α (K)=0.000442 <i>7</i> ; α (L)=5.93×10 ⁻⁵ <i>9</i> ; α (M)=1.306×10 ⁻⁵ <i>19</i> ; α (N+)=0.000449 <i>7</i>
^x 1843.3 <i>3</i>	260 <i>30</i>					E1	0.000964 14	$\begin{aligned} &\alpha(\text{N})=3.06\times10^{-6} \ 5; \ \alpha(\text{O})=4.39\times10^{-7} \ 7; \ \alpha(\text{P})=2.40\times10^{-8} \ 4; \\ &\alpha(\text{IPF})=0.000446 \ 7 \\ &\alpha(\text{K})\text{exp}=0.00075 \ 24 \ (1988\text{DzZW}) \\ &\text{Mult.: E1,E2 from } \alpha(\text{K})\text{exp; not E2 from level scheme.} \\ &\alpha(\text{K})\text{exp}=0.00038 \ 11 \ (1988\text{DzZW}) \\ &\alpha=0.000964 \ 14; \ \alpha(\text{K})=0.000442 \ 7; \ \alpha(\text{L})=5.92\times10^{-5} \ 9; \ \alpha(\text{M})=1.305\times10^{-5} \end{aligned}$
								<i>I9</i> ; α (N+)=0.000450 7 α (N)=3.06×10 ⁻⁶ 5; α (O)=4.39×10 ⁻⁷ 7; α (P)=2.40×10 ⁻⁸ 4; α (IPF)=0.000446 7
1847.7 ^{da} 7 1855.0 ^a 5 1859.20 20	35 <i>4</i> 450 <i>70</i>	3213.27 3161.02 3165.59	1 ⁻ (1 ⁻) 1 ⁻	1364.53 1306.39 1306.39	1^{-} 2 ⁺ 2 ⁺		0.00113	α (K)exp=0.0021 8 (1988DzZW) α =0.00113; α (K)=0.00096
								α (K)exp=0.00075 <i>14</i> (1988DzZW) other α (K)exp: 0.00087 (1972Ca21). Datum may be low; α (K)exp=0.0011 if intensities renormalized so α (K)exp(1972Ca21)= α (K)(E1) for 1860 γ . However, mult=E1 required by decay scheme.
1860.30 <i>15</i>	1210 50	2929.60	1-	1069.36	0+	E1	0.000969 14	$ \begin{array}{l} \alpha = 0.000969 \ 14; \ \alpha(\mathrm{K}) = 0.000436 \ 7; \ \alpha(\mathrm{L}) = 5.83 \times 10^{-5} \ 9; \ \alpha(\mathrm{M}) = 1.285 \times 10^{-5} \\ 18; \ \alpha(\mathrm{N}+) = 0.000462 \ 7 \\ \alpha(\mathrm{N}) = 3.01 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 4.32 \times 10^{-7} \ 6; \ \alpha(\mathrm{P}) = 2.37 \times 10^{-8} \ 4; \end{array} $
^x 1870.8 3 ^x 1874 8 5	130 <i>15</i>							α (IPF)=0.000459 7 α (K)exp=0.00036 (1972Ca21); α (K)exp=0.00036 5 (1988DzZW) α (K)exp=0.0010 4 (1988DzZW) α (K)exp=0.0011 4 (1988DzZW)
1876.2 ^{<i>a</i>} 3	325 20	3301.95	1+	1425.24	(2) ⁻	E1	0.000974 14	$\alpha(R) (xp = 0.0011 + (1780D22 W))$ $\alpha = 0.000974 \ 14; \ \alpha(K) = 0.000430 \ 6; \ \alpha(L) = 5.75 \times 10^{-5} \ 8; \ \alpha(M) = 1.267 \times 10^{-5} \ 18; \ \alpha(N+) = 0.000474 \ 7 \ \alpha(N) = 2.97 \times 10^{-6} \ 5; \ \alpha(O) = 4.26 \times 10^{-7} \ 6; \ \alpha(P) = 2.33 \times 10^{-8} \ 4;$
								$\alpha(\text{IP})=2.97\times10^{-5}$, $\alpha(\text{O})=4.20\times10^{-6}$, $\alpha(\text{P})=2.55\times10^{-4}$, $\alpha(\text{IPF})=0.000471$ 7 $\alpha(\text{K})\exp=0.00032$ 9 (1988DzZW)
1878.65 <i>15</i>	1230 40	2947.84	1-	1069.36	0+	E1	0.000975 14	α =0.000975 <i>14</i> ; α (K)=0.000429 <i>6</i> ; α (L)=5.74×10 ⁻⁵ <i>8</i> ; α (M)=1.264×10 ⁻⁵ <i>18</i> ; α (N+)=0.000476 <i>7</i>
								$\alpha(N)=2.96 \times 10^{-6} 5; \ \alpha(O)=4.25 \times 10^{-7} 6; \ \alpha(P)=2.33 \times 10^{-6} 4; \ \alpha(IPF)=0.000472 7 \ \alpha(K)exp=0.00052 4 (1988DzZW)$
1887.1 ^{ha} 5	75 ^h 10	2956.55	1^{+}	1069.36	0^{+}			α (K)exp=0.0021 6 (1988DzZW) for multiply-placed γ .
1887.1 ^{ha} 5	75 ^h 10	3115.58	1-	1228.84	0^{+}			α (K)exp=0.0021 6 (1988DzZW) for multiply-placed γ .
1887.1 ^{ha} 5	75 ^h 10	3366.40	1	1479.91	0^{+}			α (K)exp=0.0021 6 (1988DzZW) for multiply-placed γ .
1888.7 ^{ha} 5	80 ^h 4	3195.58	1-	1306.39	2+			α (K)exp=0.0007 3 (1988DzZW) for doubly-placed γ .
1888.7 ^{ha} 5	80 ^{<i>h</i>} 4	3314.42	1	1425.24	(2) ⁻			α (K)exp=0.0007 3 (1988DzZW) for doubly-placed γ .
1893.7 ^a 5	95 <i>5</i>	3258.18	1^{+}	1364.53	1-			α (K)exp=0.0007 6 (1988DzZW)

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -39

				170 Lu ε de	ecay	1990AbZ	T,1972Ca21,19	70Dz11 (continued)
						$\gamma(^{170}Y)$	(continued)	
E_{γ}^{\dagger}	I_{γ} ‡ e	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
1896.5 ^{ha} 3	123 ^h 6	2965.66	1+	1069.36	0^{+}			$\alpha(K) \exp = 0.0015 \ 4 \ (1988 Dz ZW), mult = M1 for multiply-placed \gamma.$
1896.5 ^{ha} 3	123 ^h 6	3042.46	1^{+}	1145.72	2^{+}			α (K)exp=0.0015 4 (1988DzZW), mult=M1 for multiply-placed γ .
1896.5 ^{ha} 3	123 ^h 6	3202.94	1^{+}	1306.39	2^{+}			α (K)exp=0.0015 4 (1988DzZW), mult=M1 for multiply-placed γ .
1901.35 <i>15</i>	1320 50	1985.64	1-,2-	84.262	2+	E1	0.000982 14	$\alpha = 0.000982 \ 14; \ \alpha(K) = 0.000421 \ 6; \ \alpha(L) = 5.63 \times 10^{-5} \ 8; \alpha(M) = 1.240 \times 10^{-5} \ 18; \ \alpha(N+) = 0.000492 \ 7 \alpha(N) = 2 \ 90 \times 10^{-6} \ 4; \ \alpha(Q) = 4 \ 17 \times 10^{-7} \ 6; \ \alpha(P) = 2 \ 28 \times 10^{-8} \ 4; $
								α (IPF)=0.000489 7
								α(K)exp=0.00048 17 (1972Ca21, Iγ; 1968Ba54, I(ce)).
1904.6 ^h 5	44.0 ^h 20	3042.46	1^{+}	1138.55	2^{+}			α (K)exp=0.0008 4 (1988DzZW) for multiply-placed γ .
1904.6 ^{ha} 5	44.0 ^h 20	3268.91	$1^{(+)}$	1364.53	1-			α (K)exp=0.0008 4 (1988DzZW) for multiply-placed γ .
1904.6 ^{ha} 5	44.0 ^h 20	3384.87	1-	1479.91	0^{+}			α (K)exp=0.0008 4 (1988DzZW) for multiply-placed γ .
1909.7 ^{<i>a</i>} 5	45.0 25	3274.17	1-	1364.53	1-	M1,E2	0.0016 3	α =0.0016 3; α (K)=0.00109 19; α (L)=0.00015 3; α (M)=3.4×10 ⁻⁵ 6; α (N+)=0.00028 4
								$\alpha(N) = 8.0 \times 10^{-6} 14; \ \alpha(O) = 1.16 \times 10^{-6} 21; \ \alpha(P) = 6.3 \times 10^{-8} 12;$
								α (IPF)=0.00027 4 α (K)exp=0.0014.6 (1088Dz7W)
1917.7 ^a 5	50.0.25	3146.03	1+	1228.84	0^{+}			$\alpha(K) \exp[=0.0014 \ 0 \ (1988DzZW)]$
1920.7 3	210 8	3146.03	1+	1225.35	(3)+	(E2)	0.001302 19	α =0.001302 <i>19</i> ; α (K)=0.000896 <i>13</i> ; α (L)=0.0001267 <i>18</i> ; α (M)=2.81×10 ⁻⁵ <i>4</i> ; α (N+)=0.000251
								α (N)=6.59×10 ⁻⁶ <i>10</i> ; α (O)=9.42×10 ⁻⁷ <i>14</i> ; α (P)=5.03×10 ⁻⁸ <i>7</i> ; α (IPF)=0.000243 <i>4</i>
								α (K)exp=0.00056 26 (1988DzZW)
db								Mult.: E1,E2 from α (K)exp; not E1 from level scheme.
1925.1 ^{ab} 7		3070.52	0,1	1145.72	2+			
1932.6 ^{gbd} 7		3070.52	0,1	1138.55	2+			
1932.6 ^{gua} 7		3161.02	(1-)	1228.84	0^+	-		
1936.9 <i>3</i>	475 15	3165.59	1-	1228.84	0-	EI	0.000993 14	$\alpha = 0.000993 \ 14; \ \alpha(\text{K}) = 0.000408 \ 6; \ \alpha(\text{L}) = 5.46 \times 10^{-5} \ 8;$
								$\alpha(M) = 1.202 \times 10^{-6} I ; \alpha(N+) = 0.000518 \delta$
								$\alpha(\text{IPF})=0.000515\ 8$
								$\alpha(K) \exp = 0.00053 \ 10 \ (1988 Dz ZW)$
								other $\alpha(K)$ exp: 0.00069 15, (1972Ca21, I γ ; 1968Ba54, I(ce)).
1954.0 <i>3</i>	360 20	3099.64	$1^{(-)}$	1145.72	2^{+}			α (K)exp=0.013 7 (1988DzZW)
								other α (K)exp: 0.0023 6 (1972Ca21, 1 γ ; 1973TeZT, I(ce)); α (K)exp<0.0042 (1072Ca21)
								Mult.: (M1) from $\alpha(K) \exp(-i \theta r)$ however, level scheme requires E1
1955.65 <i>15</i>	2.98×10 ³ 10	2039.85	1^{+}	84.262	2+	M1+E2	0.00152 24	$\alpha = 0.00152 \ 24; \ \alpha(K) = 0.00104 \ 18; \ \alpha(L) = 0.000147 \ 25;$
								$\alpha(M)=3.3\times10^{-5}$ 6; $\alpha(N+)=0.00030$ 4
								$\alpha(N)=7.6\times10^{-6}$ 13; $\alpha(O)=1.10\times10^{-6}$ 19; $\alpha(P)=6.0\times10^{-8}$ 11;
								α (IPF)=0.00029 4

L

				170 Lu ε	decay 1990A	AbZT,1972Ca21	,1970Dz11 (continued)
					$\gamma(1)$	¹⁷⁰ Yb) (continue	bd)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α^f	Comments
							α(K)exp=0.00112 10 (1972Ca21, Iγ; 1973TeZT, I(ce)). Other: 0.00065
1960.8.3	640-20	3000 64	1(-)	1138 55 2+	(F1)	0.001001.14	(1972Ca21). $\alpha = 0.001001$ 14: $\alpha(K) = 0.000400$ 6: $\alpha(L) = 5.35 \times 10^{-5}$ 8:
1700.0 5	040 20	5077.04	1	1150.55 2	(L1)	0.001001 14	$\alpha(M)=1.178\times10^{-5}$ 17; $\alpha(N+)=0.000535$ 8
							α (N)=2.76×10 ⁻⁶ 4; α (O)=3.96×10 ⁻⁷ 6; α (P)=2.17×10 ⁻⁸ 3; α (IPF)=0.000532 8
							α (K)exp=0.00069 <i>11</i> , mult=E1,E2 (1972Ca21, I γ ; 1973TeZT, I(ce)).
1962.5 ^{<i>a</i>} 3	215 7	3268.91	$1^{(+)}$	1306.39 2+	E2(+M1)	0.00152 24	$\alpha = 0.00152 \ 24; \ \alpha(K) = 0.00103 \ 18; \ \alpha(L) = 0.000146 \ 25; \ \alpha(M) = 3.2 \times 10^{-5}$ 6; $\alpha(N+) = 0.00031 \ 4$
							$\alpha(N)=7.6\times10^{-6}$ 13; $\alpha(O)=1.09\times10^{-6}$ 19; $\alpha(P)=5.9\times10^{-8}$ 11; $\alpha(IPF)=0.00030$ 4
10((9.5	(5 5	2105 59	1-	1228 84 0+			α (K)exp=0.00093 23 (1972Ca21, I γ ; 1973TeZT, I(ce)).
1966.8 5	65 5	3195.58	1	1228.84 01			$\alpha(K)\exp=0.0012$ 5 (19/2Ca21, 1 γ ; 19/31e21, 1(ce)). Mult : E2.M1 from $\alpha(K)\exp$; inconsistent with adopted level scheme.
							Mult.: E2,M1 from $\alpha(K)$ exp; E2 inconsistent with log <i>ft</i> from 0 ⁺ in ε
×1074.0.2	120 4				M1 + E0 + E2		decay to 3196 level. $\alpha(K)_{0} = 0.0025.6.(1072)_{0} $
1974.0 5 1977 Aha 5	$\frac{1204}{70^{h}}$ 15	3115 58	1-	1138 55 2+	WITTEOTE2		$\alpha(K) \exp[-0.00350 (1972Ca21, 17, 1973TeZ1, 1(ce))]$. $\alpha(K) \exp[-0.0010 A (1972Ca21, 16, 1973TeZT, 1(ce))]$ for doubly placed
1777.7 5	10 15	5115.50	1	1150.55 2			γ.
1977.4 ^{ha} 5	70 ^h 15	3202.94	1^{+}	1225.35 (3)+			α(K)exp=0.0010 4 (1972Ca21, Iγ; 1973TeZT, I(ce)) for doubly-placed
a							γ .
1983.9 ^{<i>a</i>} 5	57 3	3213.27	1-	1228.84 0+			α (K)exp=0.0018 8 (1988DzZW)
1985.5 nd 3	170 ⁿ 6	1985.64	1-,2-	0.0 0+			α (K)exp=0.0007 4 (1988DzZW) for multiply-placed γ .
1985.5 ^{nu} 3	170 ⁿ 6	3123.94	1-	1138.55 2+			α (K)exp=0.0007 4 (1988DzZW) for multiply-placed γ .
1985.5 ⁿ 3	170 ⁿ 6	3131.10	1+	1145.72 2+			α (K)exp=0.0007 4 (1988DzZW) for multiply-placed γ .
1985.5 ^{nu} 3	170 ¹¹ 6	3291.82	1+	1306.39 2+			α (K)exp=0.0007 4 (1988DzZW) for multiply-placed γ .
1992.7 5	40.0 20	3131.10	1+	1138.55 2+	E2,M1	0.00149 23	$\alpha = 0.00149 \ 23; \ \alpha(\text{K}) = 0.00100 \ 17; \ \alpha(\text{L}) = 0.000141 \ 23; \ \alpha(\text{M}) = 3.1 \times 10^{-3}$ 5: $\alpha(\text{N}_{\pm}) = 0.00032 \ 4$
							$\alpha(N)=7.3\times10^{-6}$ 12; $\alpha(O)=1.05\times10^{-6}$ 18; $\alpha(P)=5.7\times10^{-8}$ 11;
							α(IPF)=0.00031 4
	100 -						α (K)exp=0.0018 <i>10</i> (1972Ca21, I γ ; 1973TeZT, I(ce)).
1995.8 3	180 7	3065.36	1'	1069.36 01	(M1)	0.001718 24	$\alpha = 0.001/18 \ 24; \ \alpha(K) = 0.001156 \ 1/; \ \alpha(L) = 0.0001631 \ 23;$ $\alpha(M) = 3.62 \times 10^{-5} \ 5; \ \alpha(N+1) = 0.000362$
							$\alpha(N) = 8.50 \times 10^{-6} 12^{\circ} \alpha(\Omega) = 1.224 \times 10^{-6} 18^{\circ} \alpha(P) = 6.75 \times 10^{-8} 10^{\circ}$
							$\alpha(\text{IPF})=0.000352\ 5$
							α (K)exp=0.0009 3 (1972Ca21, I γ ; 1973TeZT, I(ce)).
L ~	1-						Mult.: E2,M1 from α (K)exp; adopted $\Delta J < 2$ to 0 ⁺ .
1998.4 ^{na} 5	40 ⁿ 10	3067.62	1-	1069.36 0+			α(K)exp=0.0016 7 (1972Ca21, Iγ; 1973TeZT, I(ce)), mult=E2,M1 for doubly-placed γ.
1998.4 ^{hbi} 5	40 ^h 10	3423.2?	(0 ⁻)	1425.24 (2)-			α(K)exp=0.0016 7 (1972Ca21, Iγ; 1973TeZT, I(ce)), mult=E2,M1 for doubly-placed γ.

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100}\text{-}41$

L

				170	L u ε o	decay 1	1990AbZT,1972	Ca21,1970Dz11 (continued)
							$\gamma(^{170}\text{Yb})$ (con	ntinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^f	Comments
2007.3 ^{<i>a</i>} 5	28 4	3146.03	1+	1138.55	2+	(E2)	0.001260 18	$ \begin{array}{l} \alpha = 0.001260 \ 18; \ \alpha(\text{K}) = 0.000827 \ 12; \ \alpha(\text{L}) = 0.0001165 \ 17; \\ \alpha(\text{M}) = 2.58 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 0.000290 \\ \alpha(\text{N}) = 6.05 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 8.66 \times 10^{-7} \ 13; \ \alpha(\text{P}) = 4.65 \times 10^{-8} \ 7; \\ \alpha(\text{IPF}) = 0.000283 \ 4 \\ \alpha(\text{K}) \exp < 0.00084 \ (1988 \text{DzZW}) \\ \text{Mult: EL E2} \ \text{form} \ \alpha(\text{K}) \text{and} \ \text{not} \ \text{E1} \ \text{form} \ \text{form} \ \alpha(\text{K}) \text{and} \ \text{form} \ \alpha(\text{K}) \text{and} \ \text{form} \ \alpha(\text{K}) \text{and} \\alpha(\text{K}) a$
2019.7 3	135 10	3165.59	1-	1145.72	2+	(E1)	0.001021 <i>15</i>	Mult. E1,E2 from <i>α</i> (K)exp, not E1 from fever scheme. α =0.001021 <i>15</i> ; <i>α</i> (K)=0.000381 <i>6</i> ; <i>α</i> (L)=5.10×10 ⁻⁵ <i>8</i> ; <i>α</i> (M)=1.122×10 ⁻⁵ <i>16</i> ; <i>α</i> (N+)=0.000577 <i>8</i> <i>α</i> (N)=2.63×10 ⁻⁶ <i>4</i> ; <i>α</i> (O)=3.78×10 ⁻⁷ <i>6</i> ; <i>α</i> (P)=2.07×10 ⁻⁸ <i>3</i> ; <i>α</i> (IPF)=0.000574 <i>8</i> <i>α</i> (K)exp=0.00054 <i>20</i> (1988DzZW) Mult.: <i>α</i> (K)exp=0.00104 <i>21</i> (1972Ca21, Iγ; 1973TeZT, I(ce)) for 2019.0 <i>8</i> transition; significantly different from that adopted here from 1988DzZW.
x2025.8 3	125 5					E1	0.001023 15	α =0.001023 <i>15</i> ; α (K)=0.000380 <i>6</i> ; α (L)=5.07×10 ⁻⁵ <i>7</i> ; α (M)=1.117×10 ⁻⁵ <i>16</i> ; α (N+)=0.000581 <i>9</i> α (N)=2.62×10 ⁻⁶ <i>4</i> ; α (O)=3.76×10 ⁻⁷ <i>6</i> ; α (P)=2.06×10 ⁻⁸ <i>3</i> ; α (IPF)=0.000578 <i>8</i> α (K)=xn<0.00034 (1988DzZW)
2027.2 3	365 15	3165.59	1-	1138.55	2+	(E1)	0.001023 15	$\alpha(\text{II}) \alpha = 0.001023 \ 15; \ \alpha(\text{K}) = 0.000379 \ 6; \ \alpha(\text{L}) = 5.06 \times 10^{-5} \ 7; \ \alpha(\text{M}) = 1.115 \times 10^{-5} \ 16; \ \alpha(\text{N}+) = 0.000582 \ 9 \ \alpha(\text{N}) = 2.61 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 3.75 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.06 \times 10^{-8} \ 3; \ \alpha(\text{IPF}) = 0.000579 \ 9 \ \alpha(\text{K}) \exp = 0.00041 \ 21 \ (1972\text{Ca21}, \text{ Jy}; \ 1973\text{TeZT}, \text{ I(ce)}).$
2030.15 20	640 <i>40</i>	3099.64	1(-)	1069.36	0+	E1	0.001024 <i>15</i>	
2031.70 20	815 25	2115.90	1-	84.262	2+	E1	0.001025 15	$ \begin{array}{l} \alpha = 0.001025 \ 15; \ \alpha(\text{K}) = 0.000378 \ 6; \ \alpha(\text{L}) = 5.05 \times 10^{-5} \ 7; \ \alpha(\text{M}) = 1.111 \times 10^{-5} \\ 16; \ \alpha(\text{N}+) = 0.000585 \ 9 \\ \alpha(\text{N}) = 2.60 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 3.74 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.05 \times 10^{-8} \ 3; \\ \alpha(\text{IPF}) = 0.000582 \ 9 \\ \alpha(\text{K}) = p = 0.00033 \ 12 \ (1972\text{Ca21}, \text{Iv}; \ 1973\text{TeZT}, \text{I(ce)}). \end{array} $
2040.00 15	568×10 ¹ 20	2039.85	1+	0.0	0+	M1	0.001676 24	$\alpha = 0.001676 \ 24; \ \alpha(K) = 0.001099 \ 16; \ \alpha(L) = 0.0001548 \ 22; \alpha(M) = 3.44 \times 10^{-5} \ 5; \ \alpha(N+) = 0.000388 \alpha(N) = 8.07 \times 10^{-6} \ 12; \ \alpha(O) = 1.162 \times 10^{-6} \ 17; \ \alpha(P) = 6.41 \times 10^{-8} \ 9; \alpha(IPF) = 0.000379 \ 6 \alpha(K) exp = 0.00109 \ 7 \ (1972Ca21, \ I\gamma; \ 1973TeZT, \ I(ce)). \ Other: \alpha(K) exp \ge 0.00071 \ (1972Ca21).$

				¹⁷⁰ Lu	ε dec	ay <mark>199</mark>	0AbZT,1972Ca	21,1970Dz11 (continued)
						<u>)</u>	v(¹⁷⁰ Yb) (contin	ued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
2041.88 10	1320×10 ¹ 40	2126.14	1-	84.262	2+	E1	0.001028 15	$ \begin{array}{l} \alpha = 0.001028 \ 15; \ \alpha(\mathrm{K}) = 0.000375 \ 6; \ \alpha(\mathrm{L}) = 5.00 \times 10^{-5} \ 7; \\ \alpha(\mathrm{M}) = 1.102 \times 10^{-5} \ 16; \ \alpha(\mathrm{N}+) = 0.000592 \ 9 \\ \alpha(\mathrm{N}) = 2.58 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 3.71 \times 10^{-7} \ 6; \ \alpha(\mathrm{P}) = 2.04 \times 10^{-8} \ 3; \\ \alpha(\mathrm{IPF}) = 0.000590 \ 9 \end{array} $
2046.5 ^{<i>a</i>} 5 2054.4 ^{<i>a</i>} 3	58 <i>3</i> 280 <i>10</i>	3115.58 3123.94	1- 1-	1069.36 1069.36	0+ 0+	E1	0.001033 15	$\begin{aligned} &\alpha(\text{K})\exp=0.00043 \ 4 \ (1972\text{Ca21}, \ I\gamma; \ 1973\text{TeZT}, \ I(\text{ce})) \ \text{for doublet}. \\ &\text{Other } \alpha(\text{K})\exp: \ 0.00030 \ (1972\text{Ca21}). \\ &\alpha(\text{K})\exp<0.0022 \ (1988\text{DzZW}) \\ &\alpha=0.001033 \ 15; \ \alpha(\text{K})=0.000371 \ 6; \ \alpha(\text{L})=4.96\times10^{-5} \ 7; \\ &\alpha(\text{M})=1.091\times10^{-5} \ 16; \ \alpha(\text{N}+)=0.000601 \ 9 \\ &\alpha(\text{N})=2.56\times10^{-6} \ 4; \ \alpha(\text{O})=3.67\times10^{-7} \ 6; \ \alpha(\text{P})=2.02\times10^{-8} \ 3; \\ &\alpha(\text{IPF})=0.000598 \ 9 \\ &\alpha(\text{K})\exp=0.00039 \ 13 \ (1988\text{DzZW}) \end{aligned}$
2057.1 ^h 4 2057.1 ^h 4 2061.3 5	86.0 ^h 25 86.0 ^h 25 31.0 15	3195.58 3202.94 3131.10	1 ⁻ 1 ⁺ 1 ⁺	1138.55 1145.72 1069.36	2 ⁺ 2 ⁺ 0 ⁺	(M1)	0.001657 24	other $\alpha(\mathbf{K})\exp(0.0009 4 (1972Ca21, 1\gamma; 19731e21, 1(ce)))$ for 2053.2 9 transition. $\alpha(\mathbf{K})\exp=0.0011 3 (1988DzZW)$ for doubly-placed γ . $\alpha(\mathbf{K})\exp=0.0011 3 (1988DzZW)$ for doubly-placed γ . $\alpha=0.001657 24; \alpha(\mathbf{K})=0.001072 15; \alpha(\mathbf{L})=0.0001511 22;$ $\alpha(\mathbf{M})=3.35\times10^{-5} 5; \alpha(\mathbf{N}+)=0.000400$ $\alpha(\mathbf{N})=7.87\times10^{-6} 11; \alpha(\mathbf{O})=1.134\times10^{-6} 16; \alpha(\mathbf{P})=6.25\times10^{-8} 9;$ $\alpha(\mathbf{IPF})=0.000391 6 $
2063.2 ^{<i>a</i>} 3	158 <i>5</i>	3291.82	1+	1228.84	0+	(M1)	0.001656 24	$\begin{aligned} &\alpha(\text{K}) \exp[=0.0022 \ 13 \ (1972\text{Ca21}, \ I\gamma; \ 1973\text{TeZT}, \ I(\text{ce})). \\ &\text{Mult.: } M1(+\text{E2+E0}) \ \text{from } \alpha(\text{K}) \exp; \ \Delta J=1 \ \text{from level scheme}. \\ &\alpha=0.001656 \ 24; \ \alpha(\text{K})=0.001070 \ 15; \ \alpha(\text{L})=0.0001507 \ 22; \\ &\alpha(\text{M})=3.34\times10^{-5} \ 5; \ \alpha(\text{N}+)=0.000402 \\ &\alpha(\text{N})=7.85\times10^{-6} \ 11; \ \alpha(\text{O})=1.131\times10^{-6} \ 16; \ \alpha(\text{P})=6.24\times10^{-8} \ 9; \\ &\alpha(\text{IPF})=0.000392 \ 6 \end{aligned}$
2086.4 ^{<i>a</i>} 5 ^{<i>x</i>} 2094.5 5 2096.3 2	45.0 20 62 3 310 10	3314.42 3165.59	1 1 ⁻	1228.84 1069.36	0+ 0+	E1	0.001048 15	α (K)exp=0.00089 25 (1972Ca21, I γ ; 1973TeZT, I(ce)). Mult.: M1,E2 from α (K)exp; pure Δ J=1 required by level scheme. α (K)exp=0.0008 6 (1988DzZW) α (K)exp=0.0018 9 (1988DzZW) α =0.001048 15; α (K)=0.000359 5; α (L)=4.80×10 ⁻⁵ 7; α (M)=1.056×10 ⁻⁵ 15; α (N+)=0.000630 9 α (M)=2.47×10 ⁻⁶ 4; α (Q)=2.55×10 ⁻⁷ 5; α (D)=1.05×10 ⁻⁸ 2;
2116.0 [@]	350 [@] 40	2115.90	1-	0.0	0+	E1	0.001055 <i>15</i>	$\alpha(IPF)=0.000627 \ 9$ $\alpha(IPF)=0.000647 \ 9$ $\alpha(K)exp=0.00044 \ 21 \ (1988DzZW)$ Mult.: other $\alpha(K)exp: \ 0.0014 \ 6 \ (1972Ca21, I\gamma; \ 1973TeZT, I(ce)) \ for doublet.$ $\alpha=0.001055 \ 15; \ \alpha(K)=0.000354 \ 5; \ \alpha(L)=4.72\times10^{-5} \ 7; \ \alpha(M)=1.040\times10^{-5} \ 15; \ \alpha(N+)=0.000644 \ 9$ $\alpha(N)=2.44\times10^{-6} \ 4; \ \alpha(O)=3.50\times10^{-7} \ 5; \ \alpha(P)=1.92\times10^{-8} \ 3; \ \alpha(IPF)=0.000641 \ 9$

				¹⁷⁰ Lu ε d	lecay	1990AbZT,	1972Ca21,1970	Dz11 (continued)
						$\gamma(^{170}\mathrm{Yb})$	(continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
2116.60.75	1100 40	2200.91	1- 2-	84 262	2+	F1	0.001056.75	α (K)exp=0.00041 <i>14</i> (1988DzZW) Other α (K)exp: 0.00025 (1972Ca21) for doublet. Mult.: if this component were E2, α (K)exp=0.00046 would be expected for doublet. α =0.001056 <i>15</i> : α (K)=0.000354 <i>5</i> : α (L)=4.72×10 ⁻⁵ <i>7</i> :
2110.00 13	1100 /0	2200.71	1,2	01.202	2		0.001050 15	$\begin{aligned} \alpha(M) &= 1.040 \times 10^{-5} \ I5; \ \alpha(N+) &= 0.000644 \ 9 \\ \alpha(N) &= 2.44 \times 10^{-6} \ 4; \ \alpha(O) &= 3.50 \times 10^{-7} \ 5; \ \alpha(P) &= 1.92 \times 10^{-8} \ 3; \\ \alpha(IPF) &= 0.000641 \ 9 \\ \alpha(K) &exp &= 0.00036 \ 4 \ (1972Ca21, \ I\gamma; \ 1973TeZT, \ I(ce)) \ for \ doublet \\ dominated \ by \ this \ component. \ Other \ \alpha(K) exp: \ 0.00025 \\ (1972Ca21) \ for \ doublet. \end{aligned}$
2126.11 10	1110×10 ¹ 35	2126.14	1-	0.0	0+	Ε1	0.001059 <i>15</i>	$ \begin{array}{l} \alpha = 0.001059 \ I5; \ \alpha(\mathrm{K}) = 0.000351 \ 5; \ \alpha(\mathrm{L}) = 4.69 \times 10^{-5} \ 7; \\ \alpha(\mathrm{M}) = 1.032 \times 10^{-5} \ I5; \ \alpha(\mathrm{N}+) = 0.00065 \ I \\ \alpha(\mathrm{N}) = 2.42 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 3.47 \times 10^{-7} \ 5; \ \alpha(\mathrm{P}) = 1.91 \times 10^{-8} \ 3; \\ \alpha(\mathrm{IPF}) = 0.000648 \ 9 \\ \alpha(\mathrm{K}) \exp = 0.000373 \ I7 \ (1972 \mathrm{Ca21}, \ \mathrm{I}\gamma; \ 1973 \mathrm{TeZT}, \ \mathrm{I(ce)}). \ \mathrm{Other:} \\ 0.00024 \ (1972 \mathrm{Ca21}). \end{array} $
2143.5 ^{<i>a</i>} 3	160 6	3213.27	1-	1069.36	0+	E1	0.001066 <i>15</i>	$\alpha = 0.001066 \ 15; \ \alpha(K) = 0.000347 \ 5; \ \alpha(L) = 4.63 \times 10^{-5} \ 7; \\ \alpha(M) = 1.019 \times 10^{-5} \ 15; \ \alpha(N+) = 0.00066 \ 1 \\ \alpha(N) = 2.39 \times 10^{-6} \ 4; \ \alpha(O) = 3.43 \times 10^{-7} \ 5; \ \alpha(P) = 1.89 \times 10^{-8} \ 3; \\ \alpha(IPF) = 0.000660 \ 10 \\ \alpha(K) = p = 0.00048 \ 12 \ (1988DzZW)$
^x 2148.5 5	75.0 25					M1+E2+E0		$\alpha(K) \exp[-0.0112 \ 7 \ (1988 DzZW)]$
2152.9 ^{<i>a</i>} 5	43.0 20	3291.82	1^{+}	1138.55	2^{+}			$\alpha(K) \exp = 0.0009 \ 4 \ (1988 Dz ZW)$
2157.7 ^a 5	22.0 10	2436.01	$(2,3)^{-}$	277.44	4^{+}			$\alpha(K) \exp = 0.0025 \ 12 \ (1988 Dz ZW)$
^x 2165.7 5	29.0 15							$\alpha(K) \exp = 0.0012 \ 4 \ (1988 Dz ZW)$
^x 2178.0 5	42.0 20							$\alpha(K)\exp=0.0022\ 7\ (1988DzZW)$
2183.9 5	88 5	2268.08	1-	84.262	2+			α (K)exp=0.0011 3 (1988DzZW)
2191.15 15	3.55×10 ³ 10	2275.49	1-	84.262	2+	E1	0.001084 16	$\alpha = 0.001084 \ 16; \ \alpha(K) = 0.000335 \ 5; \ \alpha(L) = 4.46 \times 10^{-5} \ 7; \\ \alpha(M) = 9.83 \times 10^{-6} \ 14; \ \alpha(N+) = 0.000695 \ 10$
								$\alpha(N)=2.30\times10^{-6}$ 4; $\alpha(O)=3.31\times10^{-7}$ 5; $\alpha(P)=1.82\times10^{-6}$ 3; $\alpha(IPF)=0.000692$ 10 $\alpha(K)\exp=0.00039$ 2 (1972Ca21, I γ ; 1968Ba54, I(ce)). Other: $\alpha(K)\exp=0.00026$ (1972Ca21).
2200.9 ^a 3	120 5	2200.91	$1^{-}, 2^{-}$	0.0	0^+			$\alpha(K)\exp=0.00056\ 18\ (1988DzZW)$
2205.3 4	76 <i>3</i>	2289.37	1+	84.262	2^{+}			α (K)exp=0.0007 3 (1988DzZW)
2219.4 ^{da} 6		3366.40	1	1145.72	2^{+}			
x2223.9 5	35 4							α (K)exp=0.0010 4 (1988DzZW)
2228.6 ^{da} 3		3366.40	1	1138.55	2^{+}			
2232.7 ^{<i>a</i>} 5	35.0 15	3301.95	1+	1069.36	0+	M1	0.001543 22	$\alpha = 0.001543 \ 22; \ \alpha(K) = 0.000890 \ 13; \ \alpha(L) = 0.0001251 \ 18; \alpha(M) = 2.78 \times 10^{-5} \ 4; \ \alpha(N+) = 0.000500 \alpha(N) = 6.52 \times 10^{-6} \ 10; \ \alpha(O) = 9.39 \times 10^{-7} \ 14; \ \alpha(P) = 5.19 \times 10^{-8} \ 8; \alpha(IPF) = 0.000492 \ 7 \alpha(K) exp = 0.0012 \ 3 \ (1988DzZW)$

 $^{170}_{70} \rm Yb_{100}\text{-}44$

From ENSDF

				170	Lu ɛ	decay	1990AbZT,1972	2Ca21,1970Dz11 (continued)
							$\gamma(^{170}\text{Yb})$ (co	ntinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^f	Comments
2243.7 ^{bi} 4 2246.8 ^a 5 ^x 2255.4 6 ^x 2257.4 4 x2263.0 ^d 4	72 5 25.0 15 17.5 15 70.0 25	2328.0? 3384.87	(0 ⁺) 1 ⁻	84.262 1138.55	2+ 2+			$\begin{array}{l} \alpha(\rm K) \exp = 0.0008 \ 5 \ (1988 \rm DzZW) \\ \alpha(\rm K) \exp = 0.0015 \ 8 \ (1988 \rm DzZW) \\ \alpha(\rm K) \exp = 0.0021 \ 10 \ (1988 \rm DzZW) \\ \alpha(\rm K) \exp = 0.00087 \ 21 \ (1988 \rm DzZW) \end{array}$
x2266.8 5 2268.2 3	36.0 <i>20</i> 420 <i>12</i>	2268.08	1-	0.0	0+	E1	0.001115 16	$\begin{aligned} &\alpha(\text{K})\exp=0.0013\ 5\ (1988\text{DzZW})\\ &\alpha=0.001115\ 16;\ \alpha(\text{K})=0.000317\ 5;\ \alpha(\text{L})=4.22\times10^{-5}\ 6;\ \alpha(\text{M})=9.30\times10^{-6}\\ &I3\ \alpha(\text{N}+)=0.000746\ 11\\ &\alpha(\text{N})=2.18\times10^{-6}\ 3;\ \alpha(\text{O})=3.13\times10^{-7}\ 5;\ \alpha(\text{P})=1.725\times10^{-8}\ 25;\\ &\alpha(\text{IPF})=0.000744\ 11\end{aligned}$
2275.40 10	1940 <i>60</i>	2275.49	1-	0.0	0+	E1	0.001118 16	α (K)exp=0.00039 9 (1988DzZW) α =0.001118 16; α (K)=0.000316 5; α (L)=4.20×10 ⁻⁵ 6; α (M)=9.25×10 ⁻⁶ 13; α (N+)=0.000751 11 (N)= 2.17, 10 ⁻⁶ 2, (0) 2.11, 10 ⁻⁷ 5, (0) 1.716, 10 ⁻⁸ 24
								$\begin{array}{l} \alpha(N)=2.1/\times10^{-5} 3; \ \alpha(O)=3.11\times10^{-5} 5; \ \alpha(P)=1.716\times10^{-6} 24; \\ \alpha(IPF)=0.000748 \ 11 \\ \alpha(K)\exp=0.00016 \ (1972Ca21); \ \alpha(K)\exp=0.00034 \ 4 \ (1988DzZW) \\ \alpha(K)\exp \ from \ 1972Ca21 \ is \ low \ for \ E1 \ but \ similar \ to \ \alpha(K)\exp \ for \ 2364 \\ and \ 2412 \ E1 \ transitions \ In \ 1972Ca21. \end{array}$
2279.9 2	425 15	2364.06	1-	84.262	2+	E1	0.001120 16	$\alpha = 0.001120 \ 16; \ \alpha(K) = 0.000315 \ 5; \ \alpha(L) = 4.19 \times 10^{-5} \ 6; \ \alpha(M) = 9.22 \times 10^{-6} \ 13$ $\alpha(N) = 2.16 \times 10^{-6} \ 3; \ \alpha(O) = 3.11 \times 10^{-7} \ 5; \ \alpha(P) = 1.711 \times 10^{-8} \ 24; $ $\alpha(IPF) = 0.000751 \ 11 $ $\alpha(K) \exp(=0.00030 \ 7 \ (1988DzZW))$
×2284.2 5 2289.2 4	32 10 95 5	2289.37	1+	0.0	0^+	M1	0.001518 22	α (K)exp=0.0012 6 (1988DZZW) α =0.001518 22; α (K)=0.000840 12; α (L)=0.0001180 17; α (M)=2.62×10 ⁻⁵ 4; α (N+)=0.000533
x2208.2 <u>d</u> 8								α (N)=6.15×10 ⁻⁶ 9; α (O)=8.86×10 ⁻⁷ 13; α (P)=4.89×10 ⁻⁸ 7; α (IPF)=0.000526 8
2308.3 8 2315.1 ^a 4	80 4	3384.87	1-	1069.36	0+	E1	0.001134 16	α =0.001134 <i>16</i> ; α (K)=0.000307 <i>5</i> ; α (L)=4.09×10 ⁻⁵ <i>6</i> ; α (M)=9.00×10 ⁻⁶ <i>13</i> ; α (N+)=0.000777 <i>11</i> α (N)=2.11×10 ⁻⁶ <i>3</i> ; α (O)=3.03×10 ⁻⁷ <i>5</i> ; α (P)=1.670×10 ⁻⁸ <i>24</i> ; α (PE)=0.000777 <i>11</i>
2315.9 2	460 15	2400.10	1-	84.262	2+	E1	0.001134 16	$\alpha(K) \exp\{-0.00036 \ (1988DzZW) \\ \alpha=0.001134 \ 16; \ \alpha(K)=0.000307 \ 5; \ \alpha(L)=4.08\times10^{-5} \ 6; \ \alpha(M)=8.99\times10^{-6} \\ 13; \ \alpha(N+)=0.000777 \ 11 \\ \alpha(N)=2.11\times10^{-6} \ 3; \ \alpha(O)=3.03\times10^{-7} \ 5; \ \alpha(P)=1.669\times10^{-8} \ 24;$
<i>*2325.0.4</i>	70.5							α (IPF)=0.000775 <i>11</i> α (K)exp=0.00022 7 (1988DzZW) Other α (K)exp: 0.00051 (1972Ca21) for doublet dominated by this transition. α (K)exp=0.0006 4 (1988DzZW)
2327.5 ^{dbi} 3	105	2328.0?	(0^{+})	0.0	0^{+}	E0		Mult.: observed In ce spectrum but absent In γ spectrum.

¹⁷⁰Lu ε decay **1990AbZT,1972Ca21,1970Dz11** (continued)

$\gamma(^{170}$ Yb) (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
^x 2330.6 6 ^x 2333.9 5 2344.9 5	13.0 <i>15</i> 24.0 20 100 <i>4</i>	2429.05	1+,2+	84.262	2+	M1	0.001497 21	$\begin{array}{l} \alpha(\text{K})\exp<0.0017 \ (1988\text{DzZW}) \\ \alpha(\text{K})\exp<0.0009 \ (1988\text{DzZW}) \\ \alpha=0.001497 \ 21; \ \alpha(\text{K})=0.000795 \ 12; \ \alpha(\text{L})=0.0001116 \ 16; \\ \alpha(\text{M})=2.47\times10^{-5} \ 4; \ \alpha(\text{N}+)=0.000566 \\ \alpha(\text{M})=2.65 \ 10^{-5} \ 0.003 \ 0.$
2352.3 ^a 5	110 4	2436.01	(2,3)-	84.262	2+	E1	0.001149 <i>16</i>	$\begin{aligned} \alpha(N) &= 5.81 \times 10^{-6} \ 9; \ \alpha(O) &= 8.57 \times 10^{-6} \ 12; \ \alpha(P) &= 4.63 \times 10^{-6} \ 7; \\ \alpha(IPF) &= 0.000559 \ 8 \\ \alpha(K) &= 0.0001149 \ 16; \ \alpha(K) &= 0.000300 \ 5; \ \alpha(L) &= 3.98 \times 10^{-5} \ 6; \ \alpha(M) &= 8.77 \times 10^{-6} \\ 13; \ \alpha(N+) &= 0.000801 \ 12 \\ \alpha(N) &= 2.06 \times 10^{-6} \ 3; \ \alpha(O) &= 2.95 \times 10^{-7} \ 5; \ \alpha(P) &= 1.629 \times 10^{-8} \ 23; \end{aligned}$
2364.10 <i>15</i>	3.24×10 ³ 10	2364.06	1-	0.0	0+	E1	0.001154 <i>17</i>	α (IPF)=0.000799 <i>12</i> α (K)exp=0.00029 <i>16</i> (1988DzZW) α =0.001154 <i>17</i> ; α (K)=0.000297 <i>5</i> ; α (L)=3.95×10 ⁻⁵ <i>6</i> ; α (M)=8.70×10 ⁻⁶ <i>13</i> ; α (N+)=0.000809 <i>12</i> α (N)=2.04×10 ⁻⁶ 3; α (Q)=2.93×10 ⁻⁷ 5; α (P)=1.616×10 ⁻⁸ 23;
^x 2398.1 3	100 20							α (IP)=2.0410 25, α (O)=2.95410 5, α (I)=1.010410 25, α (IPF)=0.000806 12 α (K)exp=0.000373 22 (1972Ca21, I γ ; 1968Ba54, I(ce)). Other: α (K)exp=0.00017 (1972Ca21). α (K)exp=0.00047 25 (1988DzZW)
2400.15 20	905-30	2400.10	1-	0.0	0+	El	0.001169 17	$\alpha = 0.001169 \ 17; \ \alpha(K) = 0.000290 \ 4; \ \alpha(L) = 3.86 \times 10^{-5} \ 6; \ \alpha(M) = 8.49 \times 10^{-6} \ 12; \ \alpha(N) = 1.99 \times 10^{-6} \ 3; \ \alpha(O) = 2.86 \times 10^{-7} \ 4; \ \alpha(P) = 1.578 \times 10^{-8} \ 22; \ \alpha(IPF) = 0.000829 \ 12 \ \alpha(K) \exp = 0.00040 \ 3 \ (1988DzZW)$
2411.90 <i>15</i>	1790 <i>60</i>	2496.20	1-	84.262	2+	E1	0.001174 <i>17</i>	$ \begin{array}{l} \alpha = 0.001174 \ 17; \ \alpha(\text{K}) = 0.000288 \ 4; \ \alpha(\text{L}) = 3.83 \times 10^{-5} \ 6; \ \alpha(\text{M}) = 8.43 \times 10^{-6} \\ 12; \ \alpha(\text{N}+) = 0.000839 \ 12 \\ \alpha(\text{N}) = 1.98 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 2.84 \times 10^{-7} \ 4; \ \alpha(\text{P}) = 1.567 \times 10^{-8} \ 22; \\ \alpha(\text{IPF}) = 0.000836 \ 12 \end{array} $
^x 2419.9 5 ^x 2424.4 3	43 7 270 <i>10</i>					M1	0.001475 21	α (K)exp=0.00033 <i>3</i> (1972Ca21, I γ ; 1970Dz11, I(ce)). Other: α (K)exp=0.00016 (1972Ca21). α (K)exp<0.00065 (1988DzZW) α =0.001475 <i>21</i> ; α (K)=0.000736 <i>11</i> ; α (L)=0.0001032 <i>15</i> ;
								$\alpha(M)=2.29\times10^{-5} 4; \ \alpha(N+)=0.000612$ $\alpha(N)=5.37\times10^{-6} 8; \ \alpha(O)=7.74\times10^{-7} 11; \ \alpha(P)=4.28\times10^{-8} 6;$ $\alpha(IPF)=0.000606 9$ $\alpha(K)\exp=0.00111 15 (1972Ca21, I\gamma; 1970Dz11, I(ce)).$
2429.0 4	105 <i>10</i>	2429.05	1+,2+	0.0	0+	(M1,E2)	0.00132 15	$\alpha = 0.00132 \ 15; \ \alpha(K) = 0.00066 \ 8; \ \alpha(L) = 9.2 \times 10^{-5} \ 11; \ \alpha(M) = 2.04 \times 10^{-5} \ 24; \ \alpha(N+) = 0.00055 \ 7 \ \alpha(N) = 4.8 \times 10^{-6} \ 6; \ \alpha(O) = 6.9 \times 10^{-7} \ 9; \ \alpha(P) = 3.8 \times 10^{-8} \ 5; \ \alpha(IPF) = 0.00055 \ 7 \ (I) = 0.00055 \ $
2438.6 <i>3</i>	230 10	2523.07	1+	84.262	2+	M1	0.001471 21	$\alpha(K)\exp=0.00073 (1988DzZW)$ $\alpha=0.001471 21; \ \alpha(K)=0.000726 11; \ \alpha(L)=0.0001018 15;$ $\alpha(M)=2.26\times10^{-5} 4; \ \alpha(N+)=0.000621$

46

 $^{170}_{70} \mathrm{Yb}_{100}$ -46

						^{170}L	u ɛ decay	1990AbZT,	1972Ca21,1970Dz11 (continued)
								$\gamma(^{170}\text{Yb})$	(continued)
	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
									α (N)=5.30×10 ⁻⁶ 8; α (O)=7.64×10 ⁻⁷ 11; α (P)=4.22×10 ⁻⁸ 6; α (IPF)=0.000615
									9 α(K)exp≈0.00117.22 (1972Ca21, Jγ: 1970Dz11, J(ce)). Other:
									α (K)exp=0.00076 (1972Ca21).
	2452.7 3	300 10	2536.97	1-	84.262	2+			α (K)exp=0.00057 17 (1972Ca21, I γ ; 1970Dz11, I(ce)). Mult : E2 M1 from α (K)exp is inconsistent with placement
	^x 2459.9 5	27.0 25							$\alpha(K) \exp\{-0.0019 (1988 DzZW)$
	2496.15 15	1650 50	2496.20	1-	0.0	0^+	E1	0.001208 17	α =0.001208 <i>17</i> ; α (K)=0.000273 <i>4</i> ; α (L)=3.63×10 ⁻⁵ <i>5</i> ; α (M)=7.98×10 ⁻⁶ <i>12</i> ; α (N+)=0.000891 <i>13</i>
									$\alpha(N)=1.87\times10^{-6}$ 3; $\alpha(O)=2.69\times10^{-7}$ 4; $\alpha(P)=1.485\times10^{-8}$ 21;
									$\alpha(\text{Irr}) = 0.000839 \text{ 15}$ $\alpha(\text{K}) \exp = 0.00033 \text{ 3} (1972\text{Ca21}, \text{I}\gamma; 1970\text{Dz11}, \text{I(ce)}). \text{ Other:}$
									α (K)exp=0.00014 (1972Ca21).
	2523.0 <i>3</i>	300 10	2523.07	1+	0.0	0+	M1	0.001455 21	$ \begin{array}{c} \alpha = 0.001455 \ 21; \ \alpha(\mathbf{K}) = 0.000672 \ 10; \ \alpha(\mathbf{L}) = 9.40 \times 10^{-5} \ 14; \ \alpha(\mathbf{M}) = 2.08 \times 10^{-5} \ 3; \\ \alpha(\mathbf{N}+) = 0.000669 \ 1 \end{array} $
									$\alpha(N)=4.90\times10^{-6}$ 7; $\alpha(O)=7.06\times10^{-7}$ 10; $\alpha(P)=3.90\times10^{-8}$ 6; $\alpha(IPF)=0.000663$
									α (K)exp=0.00091 7 (1972Ca21, I γ ; 1970Dz11, I(ce)).
	x2534.0 6	18 6				0.±	-		α (K)exp<0.0005 (1988DzZW)
	2536.9 4	140 10	2536.97	1-	0.0	0^+	E1	0.001225 18	$\alpha = 0.001225 \ I8; \ \alpha(K) = 0.000266 \ 4; \ \alpha(L) = 3.54 \times 10^{-5} \ 5; \ \alpha(M) = 7.78 \times 10^{-6} \ I1; \ \alpha(N+) = 0.000916 \ I3$
									$\alpha(N)=1.82\times10^{-6}$ 3; $\alpha(O)=2.62\times10^{-7}$ 4; $\alpha(P)=1.448\times10^{-8}$ 21;
									$\alpha(\text{IFF}) = 0.000915 15$ $\alpha(\text{K}) \exp = 0.00038 9 (1988 \text{DzZW})$
	^x 2542.8 6	25.0 25							α (K)exp=0.00065 23 (1988DzZW)
	x2546.1 6	15.0 15							α (K)exp=0.0018 9 (1988DzZW) (K)srrs 0.0012 5 (1088DzZW)
	x^{2}	80 S 30 S					F1	0.001235.18	$\alpha(K)\exp=0.0012 \ S (1988DzZW)$ $\alpha(K)\exp<0.00024 \ (1988DzZW)$
	2501.1 0	50 5					LI	0.001255 10	$\alpha = 0.001235 \ 18; \ \alpha(\text{K}) = 0.00262 \ 4; \ \alpha(\text{L}) = 3.48 \times 10^{-5} \ 5; \ \alpha(\text{M}) = 7.67 \times 10^{-6} \ 11; \ \alpha(\text{L}) = 0.00030 \ 13$
									$\alpha(N)=1.80\times10^{-6}$ 3; $\alpha(O)=2.58\times10^{-7}$ 4; $\alpha(P)=1.427\times10^{-8}$ 20;
									α(IPF)=0.000928 <i>13</i>
	^x 2575.3 7	60 <i>30</i>							α (K)exp<0.0011 (1988DzZW)
	2576.8 4	170 30	2661.02	1+	84.262	2+	M1,E2	0.00131 14	α =0.00131 14; α (K)=0.00058 6; α (L)=8.1×10 ⁻⁵ 9; α (M)=1.80×10 ⁻⁵ 19; α (N+)=0.00063 8
									$\alpha(N)=4.2\times10^{-6} 5; \ \alpha(O)=6.1\times10^{-7} 7; \ \alpha(P)=3.3\times10^{-8} 4; \ \alpha(IPF)=0.00062 8$ $\alpha(K)=0.00071 18 (1988DzZW)$
	2582.9 <i>3</i>	310 10	2667.19	$1^{(+)}$	84.262	2+			$\alpha(K)\exp=0.00021\ 6\ (1972Ca21,\ I\gamma;\ 1970Dz11,\ I(ce)).$
									Mult.: E1 from $\alpha(K)$ exp is inconsistent with this placement.
	^x 2589.3 ^a 8	70.7					(E1)	0.001251.10	· 0.001051.10· . (II) 0.000057.4 (I) 0.40· .10 ⁻⁵ .5. (D.D. 7.40· .10 ⁻⁶ .11
	- 2399.0 3	/0 /					(EI)	0.001251 18	$\alpha = 0.001251 \ 18; \ \alpha(K) = 0.000257 \ 4; \ \alpha(L) = 3.40 \times 10^{-5} \ 5; \ \alpha(M) = 7.49 \times 10^{-6} \ 11; \ \alpha(N+) = 0.000953 \ 14$
									$\alpha(N)=1.756\times10^{-6} 25; \ \alpha(O)=2.52\times10^{-7} 4; \ \alpha(P)=1.395\times10^{-8} 20;$
1									

				170	L u ε (decay 1	1990AbZT,1972	Ca21,1970Dz11 (continued)
							$\gamma(^{170}$ Yb) (con	tinued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^f	Comments
^x 2637.0 6 ^x 2642.1 4 ^x 2652.0 4	19.0 <i>20</i> 190 <i>10</i>							α (IPF)=0.000951 <i>14</i> α (K)exp=0.00031 <i>16</i> (1972Ca21, I γ ; 1970Dz11, I(ce)). α (K)exp<0.0016 (1988DzZW) α (K)exp=0.00057 <i>15</i> (1988DzZW) α (K)exp=0.0018 5 (1082DzZW)
x2653.0 6	80 8					E1	0.001275 18	$\begin{aligned} \alpha(\text{K}) \exp &= 0.0018 \text{ 5} (1983\text{DZZW}) \\ \alpha(\text{K}) \exp &= 0.00130 \text{ (}1988\text{DZZW)} \\ \alpha &= 0.001275 18; \ \alpha(\text{K}) &= 0.000249 4; \ \alpha(\text{L}) &= 3.30 \times 10^{-5} 5; \ \alpha(\text{M}) &= 7.25 \times 10^{-6} \\ 11; \ \alpha(\text{N}+) &= 0.000986 14 \\ \alpha(\text{N}) &= 1.700 \times 10^{-6} 24; \ \alpha(\text{O}) &= 2.45 \times 10^{-7} 4; \ \alpha(\text{P}) &= 1.352 \times 10^{-8} 19; \end{aligned}$
2661.0 <i>3</i>	500 <i>30</i>	2661.02	1+	0.0	0+	(M1)	0.001443 21	$\alpha(\text{IPF})=0.000985 \ 14$ $\alpha=0.001443 \ 21; \ \alpha(\text{K})=0.000594 \ 9; \ \alpha(\text{L})=8.31\times10^{-5} \ 12; \ \alpha(\text{M})=1.84\times10^{-5} \ 3; \ \alpha(\text{M}+)=0.000747 \ 11$ $\alpha(\text{N})=4.33\times10^{-6} \ 6; \ \alpha(\text{O})=6.24\times10^{-7} \ 9; \ \alpha(\text{P})=3.45\times10^{-8} \ 5; \ \alpha(\text{IPF})=0.000742 \ 11$ $\alpha(\text{K})\text{exp}=0.00060 \ 14 \ (1972\text{Ca21}, \ \text{I}\gamma; \ 1970\text{Dz11}, \ \text{I(ce)}). \ \text{Other} \ \alpha(\text{K})\text{exp}: \ 0.00037 \ (1972\text{Ca21}).$ Mult.: M1,E2 from $\alpha(\text{K})\text{exp}; \ E2 \ \text{inconsistent} \ \text{with} \ \log ft \ \text{from} \ 0^+ \ \text{in} \ \varepsilon$
2663.95 20	2.73×10 ³ 10	2748.08	1-	84.262	2+	E1	0.001280 <i>18</i>	decay to 2661 level. $\alpha = 0.001280 \ I8; \ \alpha(K) = 0.000247 \ 4; \ \alpha(L) = 3.28 \times 10^{-5} \ 5; \ \alpha(M) = 7.21 \times 10^{-6} \ I0; \ \alpha(N+) = 0.000993 \ I4 \ \alpha(N) = 1.689 \times 10^{-6} \ 24; \ \alpha(O) = 2.43 \times 10^{-7} \ 4; \ \alpha(P) = 1.343 \times 10^{-8} \ I9; \ \alpha(IPF) = 0.000991 \ I4 \ \alpha(K) \exp = 0.00025 \ 3 \ (1972Ca21, \ I\gamma; \ 1970Dz11, \ I(ce)). \ Other: \ \alpha(K) \exp = 0.00014 \ (1972Ca21)$
2667.4 5 *2677.3 7 *2680 3 7	180 <i>12</i> 15.0 <i>15</i> 17.0 <i>17</i>	2667.19	1 ⁽⁺⁾	0.0	0+		0.00073	$\alpha = 0.00073; \alpha(K) = 0.00062$ $\alpha(K) \exp = 0.00060 (1972 Ca21), mult=M1, but \alpha(K) \exp < 0.00028 adopted In 1988 DzZW implying mult=E1. Level scheme implies M1. \alpha(K) \exp < 0.0020 (1988 DzZW)\alpha(K) \exp < 0.0018 (1988 DzZW)$
2691.45 20	495×10 ¹ 20	2775.66	1-	84.262	2+	E1	0.001292 18	$\alpha(\mathbf{n}) \exp(6.0016 (1)60D22 \pi)$ $\alpha=0.001292 \ 18; \ \alpha(\mathbf{K})=0.000243 \ 4; \ \alpha(\mathbf{L})=3.22\times10^{-5} \ 5; \ \alpha(\mathbf{M})=7.09\times10^{-6} \ 10; \ \alpha(\mathbf{N}+)=0.001010 \ 15 \ \alpha(\mathbf{N})=1.662\times10^{-6} \ 24; \ \alpha(\mathbf{O})=2.39\times10^{-7} \ 4; \ \alpha(\mathbf{P})=1.322\times10^{-8} \ 19; \ \alpha(\mathbf{IPF})=0.001008 \ 15 \ \alpha(\mathbf{K})\exp=0.000263 \ 14 \ (1972Ca21, \ I\gamma; \ 1970Dz11, \ I(ce)). \ Other: \ \alpha(\mathbf{K})\exp=0.00011 \ (1972Ca21).$
2698.8 3	1320 50	2783.12	1+	84.262	2+	M1	0.001442 21	α =0.001442 21; α (K)=0.000576 8; α (L)=8.04×10 ⁻⁵ 12; α (M)=1.783×10 ⁻⁵ 25; α (N+)=0.000768 α (N)=4.19×10 ⁻⁶ 6; α (O)=6.04×10 ⁻⁷ 9; α (P)=3.34×10 ⁻⁸ 5; α (IPF)=0.000763 11 α (K)exp=0.00061 5 (1972Ca21, I γ ; 1970Dz11, I(ce)). Other: α (K)exp=0.00032 (1972Ca21).
^x 2718.3 6 ^x 2720.9 5	35 <i>4</i> 95 5					E1	0.001305 19	α (K)exp<0.0014 (1988DzZW) α (K)exp<0.00030 (1988DzZW)

I

				¹⁷⁰ Lu	ı ɛ de	ecay 19	90AbZT,1972C	a21,1970Dz11 (continued)
							$\gamma(^{170}$ Yb) (contin	nued)
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
								$ \begin{array}{l} \alpha = 0.001305 \ 19; \ \alpha(\mathrm{K}) = 0.000239 \ 4; \ \alpha(\mathrm{L}) = 3.17 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 6.97 \times 10^{-6} \\ 10; \ \alpha(\mathrm{N}+) = 0.001027 \ 15 \\ \alpha(\mathrm{N}) = 1.634 \times 10^{-6} \ 23; \ \alpha(\mathrm{O}) = 2.35 \times 10^{-7} \ 4; \ \alpha(\mathrm{P}) = 1.300 \times 10^{-8} \ 19; \\ \alpha(\mathrm{IPF}) = 0.001025 \ 15 \end{array} $
x2726.6 6	25.0 25							$\alpha(K) \exp < 0.0013 (1988 DzZW)$ $\alpha(K) \exp < 0.0008 (1988 DzZW)$
2735.6 6	55 5	2819.77	0-,1-	84.262	2+	(M2)	0.00194 3	$\alpha(\mathbf{R}) \propto \mathbf{P}(0, \mathbf$
								$\alpha(N)=9.27\times10^{-6} \ 13; \ \alpha(O)=1.335\times10^{-6} \ 19; \ \alpha(P)=7.34\times10^{-8} \ 11; \ \alpha(IPF)=0.000470 \ 7 \ \alpha(K)exp=0.0014 \ 5 \ (1988DzZW)$ Mult.: M1(+E2+E0) or M2 from $\alpha(K)exp; \ \Delta\pi=yes$ from level scheme.
x2737.2 4 2748.15 20	125 20 $463 \times 10^1 20$	2748.08	1-	0.0	0^+	E1	0.001317 19	α (K)exp=0.00054 <i>18</i> (1988DzZW) α =0.001317 <i>19</i> ; α (K)=0.000235 <i>4</i> ; α (L)=3.12×10 ⁻⁵ <i>5</i> ; α (M)=6.87×10 ⁻⁶ <i>10</i> : α (N+)=0.001043 <i>15</i>
								$\alpha(N)=1.609\times10^{-6}\ 23;\ \alpha(O)=2.32\times10^{-7}\ 4;\ \alpha(P)=1.281\times10^{-8}\ 18;\ \alpha(IPF)=0.001041\ 15$ $\alpha(K)\exp=0.000263\ 24\ (1972Ca21,\ I\gamma;\ 1970Dz11,\ I(ce)).\ Other:$ $\alpha(K)\exp=0.00015\ (1972Ca21)$
2775.7 ^a 3	245 10	2775.66	1-	0.0	0^+			α (K)exp=0.00015 (1972cd21). α (K)exp=0.00037 <i>19</i> (1988DzZW)
2783.00 20	2.24×10 ³ 10	2783.12	1+	0.0	0+	M1	0.001442 21	α =0.001442 21; α (K)=0.000537 8; α (L)=7.49×10 ⁻⁵ 11; α (M)=1.661×10 ⁻⁵ 24; α (N+)=0.000814 α (N)=3.90×10 ⁻⁶ 6; α (O)=5.62×10 ⁻⁷ 8; α (P)=3.11×10 ⁻⁸ 5; α (IPF)=0.000810 12 α (K)exp=0.00061 3 (1972Ca21, I γ ; 1970Dz11, I(ce)). Other α (K)exp: 0.00032 (1972Ca21)
^x 2793.1 7 ^x 2802 7 ^d 8	26.0 25							α (K)exp \approx 0.0012 (1972Ca21, I γ ; 1970Dz11, I(ce)).
x2805.0 6	65.0 25					(E1)	0.001340 <i>19</i>	$\begin{aligned} &\alpha(\text{K}) \exp \le 0.00015 \text{ (1988DzZW)} \\ &\alpha = 0.001340 \text{ 19}; \ \alpha(\text{K}) = 0.000228 \text{ 4}; \ \alpha(\text{L}) = 3.02 \times 10^{-5} \text{ 5}; \ \alpha(\text{M}) = 6.65 \times 10^{-6} \\ &10; \ \alpha(\text{N}+) = 0.001074 \text{ 15} \\ &\alpha(\text{N}) = 1.559 \times 10^{-6} \text{ 22}; \ \alpha(\text{O}) = 2.24 \times 10^{-7} \text{ 4}; \ \alpha(\text{P}) = 1.241 \times 10^{-8} \text{ 18}; \\ &\alpha(\text{IPE}) = 0.001073 \text{ 15} \end{aligned}$
^x 2813.7 6 ^x 2819.9 ^{dc} 9	45 5							α (K)exp=0.0010 5 (1972Ca21, I γ ; 1970Dz11, I(ce)). I(ce(K))/I(1450ce(K))=0.00025 15 (1988DzZW), but see additional comment on this transition.
x2823.4 ^d 7	272,101 20	2020 60	1-	04.060	2+	E1	0.001254.10	
2845.30 20	372×10° 20	2929.60	1	84.262	2	EI	0.001354 19	$\alpha = 0.001354 \ I9; \ \alpha(K) = 0.000223 \ 4; \ \alpha(L) = 2.96 \times 10^{-5} \ 5; \ \alpha(M) = 6.51 \times 10^{-6} \ I0; \ \alpha(N +) = 0.001095 \ I6 \ \alpha(N) = 1.525 \times 10^{-6} \ 22; \ \alpha(O) = 2.19 \times 10^{-7} \ 3; \ \alpha(P) = 1.215 \times 10^{-8} \ I7; \ \alpha(IPF) = 0.001093 \ I6 \ \alpha(K) \exp = 0.00027 \ 2 \ (1972 Ca21, \ I\gamma; \ 1970 Dz11, \ I(ce)). \ Other: \ \alpha(K) \exp = 0.00014 \ (1972 Ca21).$

I

					17	⁰ Lu ε dec	ay 1990AbZ	ZT,1972Ca21,1970Dz11 (continued)
							$\gamma(^{170})$	Yb) (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^{f}	Comments
^x 2849.5 3	460 40		_			E1	0.001356 19	$\alpha = 0.001356 \ 19; \ \alpha(K) = 0.000223 \ 4; \ \alpha(L) = 2.95 \times 10^{-5} \ 5; \ \alpha(M) = 6.49 \times 10^{-6} \ 9;$
								$\alpha(N=1.522\times10^{-6}\ 22;\ \alpha(O)=2.19\times10^{-7}\ 3;\ \alpha(P)=1.212\times10^{-8}\ 17;$
								α (IPF)=0.001095 16 α (K)exp=0.00029 6 (1972Ca21, I γ ; 1970Dz11, I(ce)). Other: α (K)exp=0.00027 (1972Ca21).
2855.4 <i>3</i>	710 30	2939.73	1-	84.262	2+	E1	0.001358 19	$\alpha = 0.001358$ <i>19</i> ; α (K)=0.000222 <i>4</i> ; α (L)=2.94×10 ⁻⁵ <i>5</i> ; α (M)=6.47×10 ⁻⁶ <i>9</i> ; α (N+)=0.001100 <i>16</i>
								$\alpha(N)=1.517\times10^{-6}\ 22;\ \alpha(O)=2.18\times10^{-7}\ 3;\ \alpha(P)=1.208\times10^{-8}\ 17;\ \alpha(IPF)=0.001098\ 16$
								α (K)exp=0.00031 6 (1972Ca21, I γ ; 1970Dz11, I(ce)). Other α (K)exp: 0.00014 (1972Ca21).
2863.6 <i>3</i>	287 10	2947.84	1-	84.262	2+	E1	0.001361 19	α =0.001361 <i>19</i> ; α (K)=0.000221 <i>3</i> ; α (L)=2.93×10 ⁻⁵ <i>5</i> ; α (M)=6.44×10 ⁻⁶ <i>9</i> ; α (N+)=0.001104 <i>16</i>
								α (N)=1.510×10 ⁻⁶ 22; α (O)=2.17×10 ⁻⁷ 3; α (P)=1.203×10 ⁻⁸ 17; α (IPF)=0.001102 16
								α (K)exp=0.00024 <i>10</i> (1972Ca21, I γ ; 1970Dz11, I(ce)).
2872.5 4	168 8	2956.55	1+	84.262	2+	M1	0.001447 21	α =0.001447 21; α (K)=0.000500 7; α (L)=6.97×10 ⁻⁵ 10; α (M)=1.544×10 ⁻⁵ 22; α (N+)=0.000863
								$\alpha(N)=3.63\times10^{-6} 5; \ \alpha(O)=5.23\times10^{-7} 8; \ \alpha(P)=2.90\times10^{-8} 4; \ \alpha(IPF)=0.000858 12$
								$\alpha(K)\exp=0.00058 / (1988DzZW)$ $\alpha(K)\exp$ adopted In 1988DzZW supported by $\alpha(K)\exp=0.00063 \ ls$ (1972Ca21,
								$I\gamma$; 1970Dz11, I(ce)).
2881.40 20	1630 75	2965.66	1+	84.262	2+	M1	0.001448 21	α =0.001448 21; α (K)=0.000496 7; α (L)=6.92×10 ⁻⁵ 10; α (M)=1.533×10 ⁻⁵ 22; α (N+)=0.000867
								α (N)=3.60×10 ⁻⁶ 5; α (O)=5.19×10 ⁻⁷ 8; α (P)=2.88×10 ⁻⁸ 4; α (IPF)=0.000863 12 α (K)exp=0.00062 4 (1972Ca21, I γ ; 1970Dz11, I(ce)).
2885.1 <i>3</i>	650 25	2969.45	1-	84.262	2+	(E1)	0.001369 20	α =0.001369 20; α (K)=0.000219 3; α (L)=2.90×10 ⁻⁵ 4; α (M)=6.37×10 ⁻⁶ 9; α (N+)=0.001115 16
								$\alpha(N)=1.493\times10^{-6}\ 2I;\ \alpha(O)=2.15\times10^{-7}\ 3;\ \alpha(P)=1.189\times10^{-8}\ I7;$ $\alpha(IPF)=0.001113\ I6$
								$\alpha(K) \exp = 0.00031 \ 9 \ (1972Ca21, I\gamma; 1970Dz11, I(ce)).$
X0907 (5	100.7							Mult.: E1 or E2 from $\alpha(K)$ exp; $\Delta \pi$ =yes from level scheme.
2897.0 3	400 20	3007.6	1-	84 262	2+	E1	0.001382.20	$\alpha(\mathbf{K})\exp(0.00055(1988D2ZW))$ $\alpha=0.001382.20; \ \alpha(\mathbf{K})=0.000214.3; \ \alpha(\mathbf{L})=2.84\times10^{-5}.4; \ \alpha(\mathbf{M})=6.24\times10^{-6}.9;$
2723.3 3	100 20	2007.0	1	01.202	-	DI	0.001202 20	$\alpha(N+)=0.001133 \ 16$
								$\alpha(N)=1.463\times10^{-6}\ 21;\ \alpha(O)=2.10\times10^{-7}\ 3;\ \alpha(P)=1.166\times10^{-8}\ 17;$
								$\alpha(\text{IPF})=0.00113176$ $\alpha(\text{K})\exp=0.00023.8 (1972Ca21, Iv: 1970Dz11, I(ce)).$
2929.50 20	1300 65	2929.60	1-	0.0	0^+	E1	0.001384 20	α =0.001384 20; α (K)=0.000214 3; α (L)=2.83×10 ⁻⁵ 4; α (M)=6.22×10 ⁻⁶ 9; α (N+)=0.001136 16
								$\alpha(N)=1.458\times10^{-6}\ 21;\ \alpha(O)=2.10\times10^{-7}\ 3;\ \alpha(P)=1.162\times10^{-8}\ 17;\ \alpha(IPF)=0.001134\ 16$
I								α (K)exp=0.00027 3 (1972Ca21, I γ ; 1970Dz11, I(ce)).

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100}$ -50

						-	150	
							$\gamma(^{170}\text{Yb})$ (con	tinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
2939.65 20	335×10 ¹ 20	2939.73	1-	0.0	0^{+}	E1	0.001388 20	α =0.001388 20; α (K)=0.000213 3; α (L)=2.81×10 ⁻⁵ 4; α (M)=6.19×10 ⁻⁶ 9; α (N+)=0.001141 16
								$\alpha(N)=1.450\times10^{-6}\ 21;\ \alpha(O)=2.09\times10^{-7}\ 3;\ \alpha(P)=1.156\times10^{-8}\ 17;\ \alpha(IPF)=0.001139\ 16\ \alpha(K)\exp=0.00025\ 2\ (1972Ca21,\ I\gamma;\ 1970Dz11,\ I(ce)).$
2947.80 20	1290 65	2947.84	1-	0.0	0^{+}	E1	0.001391 20	α =0.001391 20; α (K)=0.000212 3; α (L)=2.80×10 ⁻⁵ 4; α (M)=6.16×10 ⁻⁶ 9; α (N+)=0.001145 16
								$\alpha(N)=1.444\times10^{-6}\ 21;\ \alpha(O)=2.08\times10^{-7}\ 3;\ \alpha(P)=1.151\times10^{-6}\ 17;\ \alpha(IPF)=0.001143\ 16\ \alpha(K)\exp=0.00026\ 5\ (1972Ca21,\ I\gamma;\ 1968Ba54,\ I(ce)).$
^x 2953.1 5	75 15							$\alpha(K) \exp = 0.0006 \ 4 \ (1988 Dz ZW)$
2956.6 4	190 6	2956.55	1+	0.0	0+	(M1)	0.001455 21	α =0.001455 21; α (K)=0.000468 7; α (L)=6.52×10 ⁻⁵ 10; α (M)=1.445×10 ⁻⁵ 21; α (N+)=0.000907
								$\alpha(N)=3.39\times10^{-6} 5; \ \alpha(O)=4.89\times10^{-7} 7; \ \alpha(P)=2.71\times10^{-6} 4; \ \alpha(IPF)=0.000903 \ 13 \ \alpha(K)=n=0.0007 \ 3 \ (1988D77W)$
2958.1 4	100.5	3042.46	1+	84.262	2^{+}			$\alpha(K)\exp=0.0008 \ 4 \ (1988DzZW)$
2965.6 2	279×10 ¹ 15	2965.66	1+	0.0	0+	M1	0.001456 21	α =0.001456 21; α (K)=0.000465 7; α (L)=6.48×10 ⁻⁵ 9; α (M)=1.435×10 ⁻⁵ 20; α (N+)=0.000912 1 (2): α (N+)=0.000912 1
								$\alpha(N)=3.3/\times10^{-5}$ 5; $\alpha(O)=4.86\times10^{-7}$; $\alpha(P)=2.69\times10^{-6}$ 4; $\alpha(IPF)=0.000908$ 13 $\alpha(K)\exp=0.00048$ 3 (1988DzZW)
2969.7 ^{<i>a</i>} 5 ^{<i>x</i>} 2973.8 ^{<i>d</i>} 8	60 7	2969.45	1-	0.0	0^{+}			$\alpha(K)\exp<0.0006 (1988DzZW)$
2976.4 ^{da} 11		2975.32	1-	0.0	0^+			
2981.5 ^{<i>a</i>} 5	70 7	3065.36	1+	84.262	2+			α (K)exp=0.0016 3 (1988DzZW)
2983.1 4	170 10	3067.62	1-	84.262	2+			α (K)exp=0.00098 <i>15</i> (1988DzZW) Mult.: α (K)exp implies mult=M2 or M1+E2+E0, neither of which is consistent with level scheme.
2985.9 <mark>b</mark> 4	120 8	3070.52	0,1	84.262	2^{+}			α (K)exp=0.0010 9 (1988DzZW)
3007.5 ^h 3	305 ^h 15	3007.6	1-	0.0	0+			α (K)exp=0.00038 6 (1972Ca21, I γ ; 1968Ba54, I(ce)). Mult.: E2(+M1) from α (K)exp for doubly-placed γ is inconsistent with this 1 ⁻ to 0 ⁺ placement and also with alternative placement from 3092 level.
3007.5 ^{ha} 3	305 ^h 15	3091.93	1	84.262	2+			α (K)exp=0.00038 6 (1972Ca21, I γ ; 1968Ba54, I(ce)) for doubly-placed γ ; however, E2(+M1) from α (K)exp is inconsistent with this placement and also with alternative placement from 3008 level.
3015.1 <i>3</i>	550 25	3099.64	1 ⁽⁻⁾	84.262	2+	E1	0.001417 20	$\alpha = 0.001417 \ 20; \ \alpha(\text{K}) = 0.000205 \ 3; \ \alpha(\text{L}) = 2.71 \times 10^{-5} \ 4; \ \alpha(\text{M}) = 5.95 \times 10^{-6} \ 9; \ \alpha(\text{N}+) = 0.001180 \ 17$
								$\alpha(N)=1.395 \times 10^{\circ} 20; \ \alpha(O)=2.01 \times 10^{-7} 3; \ \alpha(P)=1.113 \times 10^{-6} 16; \ \alpha(IPF)=0.001178 17 \ \alpha(K)exp=0.00026 7 (1988DzZW)$
^x 3018.5 6	32 3							$\alpha(K) exp<0.0006 (1988DzZW)$

				¹⁷⁰ Lu ε ά	lecay 1	990AbZT,1972C	a21,1970Dz11 (continued)
						$\gamma(^{170}$ Yb) (cont	inued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger e}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α^f	Comments
3030.95 20	286×10 ¹ 15	3115.58	1-	84.262 2+	E1	0.001424 20	$\alpha = 0.001424 \ 20; \ \alpha(K) = 0.000203 \ 3; \ \alpha(L) = 2.68 \times 10^{-5} \ 4; \ \alpha(M) = 5.91 \times 10^{-6} \ 9; \ \alpha(N+) = 0.001188 \ 17 \ \alpha(N) = 1.384 \times 10^{-6} \ 20; \ \alpha(Q) = 1.00 \times 10^{-7} \ 3; \ \alpha(R) = 1.104 \times 10^{-8} \ 16;$
¥2026.0.2	460.00					0 001 407 00	$\alpha(\text{IV})=1.384\times10^{-2.0}$, $\alpha(\text{O})=1.99\times10^{-5}$, $\alpha(\text{F})=1.104\times10^{-1.0}$, $\alpha(\text{IPF})=0.001187$ 17 $\alpha(\text{K})\exp=0.000210$ 18 (1972Ca21, I γ ; 1968Ba54, I(ce)).
*3036.9 3	460 20				EI	0.001427 20	α (K)exp=0.00014 4 (1988DZZW) α =0.001427 20; α (K)=0.000202 3; α (L)=2.68×10 ⁻⁵ 4; α (M)=5.89×10 ⁻⁶ 9; α (N+)=0.001192 17
							α (N)=1.380×10 ⁻⁶ 20; α (O)=1.99×10 ⁻⁷ 3; α (P)=1.101×10 ⁻⁸ 16; α (IPF)=0.001190 17
3042.8 4	150 8	3042.46	1+	0.0 0+	M1	0.001465 21	$\alpha = 0.001465 \ 21; \ \alpha(K) = 0.000439 \ 7; \ \alpha(L) = 6.11 \times 10^{-5} \ 9; \ \alpha(M) = 1.353 \times 10^{-5} \ 19; \ \alpha(N+) = 0.000952 \ 1$
							$\alpha(N)=3.18 \times 10^{-6} 5; \ \alpha(O)=4.58 \times 10^{-7} 7; \ \alpha(P)=2.54 \times 10^{-6} 4; \ \alpha(IPF)=0.000948 \ 14 \ \alpha(V) \approx -0.00055 \ 11 \ (1088 Dz ZW)$
3046.9 5	75 8	3131.10	1 ⁺	84.262 2+	(M1)	0.001466 21	α = 0.001466 21; α (K)=0.000437 7; α (L)=6.09×10 ⁻⁵ 9; α (M)=1.349×10 ⁻⁵ 19; α (N+)=0.000954 1
							$\alpha(N)=3.17\times10^{-6} 5; \alpha(O)=4.57\times10^{-7} 7; \alpha(P)=2.53\times10^{-8} 4; \alpha(IPF)=0.000951 14$
							α (K)exp=0.00082 26 (1988DzZW) Mult.: α (K)exp exceeds α (K)(M1) significantly; level scheme inconsistent
^x 3053.1.3	240 20						$\alpha(K) \exp[0.00037/8.(1988DzZW)]$
3062.1 3	230 20	3146.03	1^{+}	84.262 2+	M1,E2	0.00135 13	$\alpha = 0.00135 \ 13; \ \alpha(\text{K}) = 0.000411 \ 23; \ \alpha(\text{L}) = 5.7 \times 10^{-5} \ 4; \ \alpha(\text{M}) = 1.25 \times 10^{-5} \ 8; \ \alpha(\text{N}+) = 0.00087 \ 10$
							α (N)=2.94×10 ⁻⁶ 20; α (O)=4.2×10 ⁻⁷ 3; α (P)=2.34×10 ⁻⁸ 17; α (IPF)=0.00086 10
2064.9.2	560 25	2140.00	1-	er 262 2+	E 1	0.001420.21	α (K)exp=0.00051 <i>I</i> 2 (1988DzZW) $\alpha = 0.001420, 21, \alpha$ (K)=0.000200, 2, α (L)=2.64×10 ⁻⁵ , 4, α (M)=5.81×10 ⁻⁶ , 0,
3004.8 3	500 25	5149.09	1	84.202 2	EI	0.001439 21	$\alpha = 0.001439 21; \ \alpha(\mathbf{K}) = 0.000200 \ 3; \ \alpha(\mathbf{L}) = 2.04 \times 10^{-9} \ 4; \ \alpha(\mathbf{M}) = 5.81 \times 10^{-9} \ 9; \\ \alpha(\mathbf{N}+) = 0.001207 \ 17 \\ \alpha(\mathbf{N}) = 1.261 \times 10^{-6} \ 10, \ \alpha(\mathbf{Q}) = 1.06 \times 10^{-7} \ 2; \ \alpha(\mathbf{D}) = 1.086 \times 10^{-8} \ 16;$
							$\alpha(N)=1.501\times10^{-5}$ $P; \alpha(O)=1.90\times10^{-5}$ $S; \alpha(P)=1.080\times10^{-5}$ $IO; \alpha(PF)=0.001206$ IZ
3067.0 3	260 20	3067.62	1-	$0.0 0^+$			$\alpha(K)\exp=0.000210(1988DzZW)$
3076.8 ^{da} 11		3161.02	(1^{-})	84.262 2+			
3085.4 6	33.0 20	3169.59	1-	84.262 2+			α (K)exp<0.0008 (1988DzZW)
3091.9 ^a 3	340 20	3091.93	1	$0.0 0^+$			$\alpha(K)\exp=0.00033\ 5\ (1988DzZW)$
							Mult.: E2(+M1) or E1+M2 from α (K)exp; adopted level scheme requires pure $\Delta J=1$.
3095.50 20	720 40	3179.76	1-	84.262 2+	E1	0.001453 21	α =0.001453 21; α (K)=0.000197 3; α (L)=2.60×10 ⁻⁵ 4; α (M)=5.72×10 ⁻⁶ 8; α (N+)=0.001224 18

					^{170}L	uε decay	1990AbZT,1	1972Ca21,1970Dz11 (continued)
							$\gamma(^{170}\text{Yb})$	(continued)
${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡ e	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{f}	Comments
								$\alpha(N)=1.340\times10^{-6}$ 19; $\alpha(O)=1.93\times10^{-7}$ 3; $\alpha(P)=1.069\times10^{-8}$ 15; $\alpha(IPF)=0.001223$ 18 $\alpha(K)\exp=0.000246$ 24 (1988DzZW)
3099.55 25	430 25	3099.64	1(-)	0.0	0+		0.00051	α =0.00051; α (K)=0.00044 α (K)exp=0.00036 4 (1988DzZW) Mult : E2 from α (K)exp: inconsistent with adopted level scheme
3102.1 6	33 <i>3</i>	3186.66	(1^{-})	84.262	2^{+}			$\alpha(K)\exp(-0.00043)$ (1988DzZW)
3111.5 3	390 20	3195.58	1-	84.262	2+	(E1)	0.001460 21	$\alpha = 0.001460 \ 21; \ \alpha(K) = 0.000195 \ 3; \ \alpha(L) = 2.58 \times 10^{-5} \ 4; \ \alpha(M) = 5.67 \times 10^{-6} \ 8; \\ \alpha(N+) = 0.001233 \ 18 \\ \alpha(N) = 1.330 \times 10^{-6} \ 19; \ \alpha(O) = 1.91 \times 10^{-7} \ 3; \ \alpha(P) = 1.061 \times 10^{-8} \ 15; \\ \alpha(IPF) = 0.001232 \ 18 $
								α (K)exp=0.00023 6 (1988DzZW)
2115 20 25	1620.00	2115 50	1-	0.0	0+	F 1	0.0014(2.21	other $\alpha(K)$ exp: 0.00031 5 (1972Ca21, 1 γ ; 1968Ba54, 1(ce)).
3115.20 25	1620 80	3115.58	I	0.0	0.	EI	0.001462 21	$\begin{array}{l} \alpha = 0.001462 \ 21; \ \alpha(\text{K}) = 0.000195 \ 3; \ \alpha(\text{L}) = 2.57 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 5.66 \times 10^{-6} \ 8; \\ \alpha(\text{N}) = 1.327 \times 10^{-6} \ 19; \ \alpha(\text{O}) = 1.91 \times 10^{-7} \ 3; \ \alpha(\text{P}) = 1.059 \times 10^{-8} \ 15; \end{array}$
								α (IPF)=0.001234 18 α (K)orp=0.000222 12 (1072Co21 Jay 1068Po54 J(o2))
3119.2 <mark>4</mark> 6	45 15	3202.94	1+	84 262	2+			$\alpha(\mathbf{K})\exp=0.000222.12 (1972Ca21, 17, 1908Ba34, 1(Ce)).$ $\alpha(\mathbf{K})\exp=0.00032.25 (1988DzZW)$
$3123.0^{a} 6$	42 4	3123.94	1-	0.0	0^{+}			$\alpha(\mathbf{K})\exp=0.00030 \ 19 \ (1988DzZW)$
3128.1 ^{<i>a</i>} 5	90 9	3213.27	1-	84.262	2+	E1	0.001468 21	α =0.001468 21; α (K)=0.000194 3; α (L)=2.56×10 ⁻⁵ 4; α (M)=5.63×10 ⁻⁶ 8; α (N+)=0.001243 18
								$\alpha(N)=1.319\times10^{-6} \ 19; \ \alpha(O)=1.90\times10^{-7} \ 3; \ \alpha(P)=1.053\times10^{-8} \ 15; \ \alpha(PF)=0.001241 \ 18 \ \alpha(K)=0.00012 \ 6 \ (1988DzZW)$
3130.9 7	25 4	3131.10	1+	0.0	0^{+}	(M1)	0.001479 21	$\alpha = 0.001479 \ 21; \ \alpha(K) = 0.000411 \ 6; \ \alpha(L) = 5.72 \times 10^{-5} \ 8; \ \alpha(M) = 1.268 \times 10^{-5} \ 18; \\ \alpha(N+) = 0.000998 \ 1$
								$\alpha(N)=2.98\times10^{-6} 5; \ \alpha(O)=4.29\times10^{-7} 6; \ \alpha(P)=2.38\times10^{-8} 4; \ \alpha(IPF)=0.000994$
								$\alpha(\mathbf{K})\exp=0.00058\ 20\ (1988DzZW)$
3139.6 <mark>4</mark> .8	6515	3140.60	(1)	0.0	0^{+}			Mult.: M1(+E2) from $\alpha(\mathbf{K})\exp(E2)$ component inconsistent with level scheme. $\alpha(\mathbf{K})\exp(0.0006)$ (1988DzZW)
3146.1 <i>4</i>	250 20	3146.03	1^{+}	0.0	0^{+}	(M1)	0.001482 21	$\alpha = 0.001482 \ 21; \ \alpha(K) = 0.000407 \ 6; \ \alpha(L) = 5.66 \times 10^{-5} \ 8; \ \alpha(M) = 1.254 \times 10^{-5} \ 18; \ \alpha(N+) = 0.001006 \ 1$
								$\alpha(N)=2.94\times10^{-6} 5; \ \alpha(O)=4.25\times10^{-7} 6; \ \alpha(P)=2.35\times10^{-8} 4; \ \alpha(IPF)=0.001002$
								$\alpha(\mathbf{K})\exp=0.00039 \ 9 \ (1988DZZW)$ Mult : M1 E2 from $\alpha(\mathbf{K})\exp$ not E2 from level scheme
3149.4 4	225 20	3149.09	1-	0.0	0^+	E1	0.001477 21	α =0.001477 21; α (K)=0.000192 3; α (L)=2.53×10 ⁻⁵ 4; α (M)=5.57×10 ⁻⁶ 8; α (N+)=0.001255 18
								$\alpha(N)=1.305\times10^{-6}$ 19; $\alpha(O)=1.88\times10^{-7}$ 3; $\alpha(P)=1.042\times10^{-8}$ 15; $\alpha(IPF)=0.001253$ 18
^x 3157.0 8	9.0 10							α (K)exp=0.00022 7 (1988DzZW) α (K)exp<0.0005 (1988DzZW)

¹⁷⁰₇₀Yb₁₀₀-53

					17	70 Lu ε dec	ay 1990Ab2	ZT,1972Ca21,1970Dz11 (continued)
							$\gamma(^{170})$	Yb) (continued)
E_{γ}^{\dagger}	Ι _γ ‡ e	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α^f	Comments
3161.1 ^{<i>a</i>} 5	100 10	3161.02	(1 ⁻)	0.0	0+	(E1)	0.001482 21	$ \begin{array}{l} \alpha = 0.001482 \ 21; \ \alpha(\mathrm{K}) = 0.000191 \ 3; \ \alpha(\mathrm{L}) = 2.52 \times 10^{-5} \ 4; \ \alpha(\mathrm{M}) = 5.54 \times 10^{-6} \ 8; \\ \alpha(\mathrm{N}+) = 0.001261 \ 18 \\ \alpha(\mathrm{N}) = 1.298 \times 10^{-6} \ 19; \ \alpha(\mathrm{O}) = 1.87 \times 10^{-7} \ 3; \ \alpha(\mathrm{P}) = 1.036 \times 10^{-8} \ 15; \ \alpha(\mathrm{IPF}) = 0.001259 \\ 18 \end{array} $
3165.3 4	220 20	3165.59	1-	0.0	0+	E1	0.001484 <i>21</i>	$\begin{aligned} &\alpha(\text{K}) = 0.00021 \ 11 \ (1972\text{Ca21}, \text{I}\gamma; 1970\text{Dz11}, \text{I(ce)}). \\ &\alpha = 0.001484 \ 21; \ \alpha(\text{K}) = 0.000190 \ 3; \ \alpha(\text{L}) = 2.51 \times 10^{-5} \ 4; \ \alpha(\text{M}) = 5.53 \times 10^{-6} \ 8; \\ &\alpha(\text{N}+) = 0.001263 \ 18 \\ &\alpha(\text{N}) = 1.295 \times 10^{-6} \ 19; \ \alpha(\text{O}) = 1.86 \times 10^{-7} \ 3; \ \alpha(\text{P}) = 1.034 \times 10^{-8} \ 15; \ \alpha(\text{IPF}) = 0.001262 \end{aligned}$
3169.6 8 3173.4 ^a 7	10.0 <i>15</i> 30 <i>3</i>	3169.59 3258.18	1- 1+	0.0 84.262	$0^+ 2^+$	M1	0.001487 21	α(K)exp=0.00018 5 (1972Ca21, Iγ; 1970Dz11, I(ce)). α(K)exp≤0.0005 (1988DzZW) α=0.001487 21; α(K)=0.000399 6; α(L)=5.55×10-5 8; α(M)=1.229×10-5 18;
3170 84 7	38 /	3170 76	1-	0.0	0+			$\alpha(N+)=0.001020 I$ $\alpha(N)=2.89\times10^{-6} 4; \alpha(O)=4.16\times10^{-7} 6; \alpha(P)=2.31\times10^{-8} 4; \alpha(IPF)=0.001016 I5$ $\alpha(K)\exp=0.00054 II (1988DzZW)$ $\alpha(K)\exp=0.00043 I7 (1972C_{2}21 hz; 1970Dz11 I(ce))$
3183.6 ^{<i>a</i>} 5	140 <i>14</i>	3268.91	1 1 ⁽⁺⁾	84.262	0 2 ⁺	M1	0.001488 21	$\alpha(R) \exp [-0.00045 I] (1972Ca21, 17, 1970D211, 1(Ce)).$ $\alpha = 0.001488 2I; \alpha(K) = 0.000396 6; \alpha(L) = 5.51 \times 10^{-5} 8; \alpha(M) = 1.221 \times 10^{-5} I7;$ $\alpha(N+) = 0.001025 I$ $\alpha(N) = 2.87 \times 10^{-6} 4; \alpha(O) = 4.13 \times 10^{-7} 6; \alpha(P) = 2.29 \times 10^{-8} 4; \alpha(IPF) = 0.001022 I5$
3190.3 5	125 12	3274.17	1-	84.262	2+	E1	0.001495 21	$\begin{aligned} \alpha(\mathbf{K}) = 2.57 \times 10^{-10} \text{ f}, \ \alpha(\mathbf{G}) = 1.15 \times 10^{-10} \text{ f}, \ \alpha(\mathbf{K}) = 2.127 \times 10^{-10} \text{ f}, \ \alpha(\mathbf{M}) = 0.001622 \text{ f} \text{ f} \\ \alpha(\mathbf{K}) = 0.00159 \text{ f} \text{ f}, \ \alpha(\mathbf{K}) = 0.000188 \text{ f}, \ \alpha(\mathbf{L}) = 2.48 \times 10^{-5} \text{ f}, \ \alpha(\mathbf{M}) = 5.46 \times 10^{-6} \text{ g}; \\ \alpha(\mathbf{N}+) = 0.001276 \text{ f} \text{ f} \\ \alpha(\mathbf{N}) = 1.280 \times 10^{-6} \text{ f} \text{ f}; \ \alpha(\mathbf{O}) = 1.84 \times 10^{-7} \text{ f}; \ \alpha(\mathbf{P}) = 1.022 \times 10^{-8} \text{ f} \text{ f}; \ \alpha(\mathbf{IPF}) = 0.001275 \end{aligned}$
3195.3 4	200 20	3195.58	1-	0.0	0+	(E1)	0.001497 21	<i>18</i> α (K)exp=0.00016 8 (1972Ca21, I γ ; 1970Dz11, I(ce)). α =0.001497 21; α (K)=0.000188 3; α (L)=2.48×10 ⁻⁵ 4; α (M)=5.45×10 ⁻⁶ 8; α (N+)=0.001279 <i>18</i> α (N)=1.277×10 ⁻⁶ <i>18</i> ; α (Q)=1.84×10 ⁻⁷ 3; α (P)=1.020×10 ⁻⁸ <i>15</i> ; α (IPE)=0.001278
								$a(K)=1.277\times10^{-7}$ Is, $a(G)=1.84\times10^{-7}$ S, $a(F)=1.020\times10^{-7}$ IS, $a(FF)=0.001278$ I8 $a(K)\exp=0.00024$ 3 (1988DzZW) Other $a(K)\exp$: 0.00027 6 (1972Ca21, I γ ; 1970Dz11, I(ce)); value is midway between those expected for E1 and E2, suggesting that line might be complex. Adopted $\Delta\pi$ =yes.
3202.4 ^{<i>a</i>} 5	150 15	3202.94	1+	0.0	0+	M1	0.001492 21	$\alpha = 0.001492 \ 21; \ \alpha(K) = 0.000391 \ 6; \ \alpha(L) = 5.44 \times 10^{-5} \ 8; \ \alpha(M) = 1.204 \times 10^{-5} \ 17; \\ \alpha(N+) = 0.001034 \ 1 \\ \alpha(N) = 2.83 \times 10^{-6} \ 4; \ \alpha(O) = 4.08 \times 10^{-7} \ 6; \ \alpha(P) = 2.26 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.001031 \ 15 $
3206.8 ^a 8	30 <i>3</i>	3291.82	1+	84.262	2+	M1,E2	0.00137 13	α (K)exp=0.00059 <i>10</i> (19/2Ca21, 1 γ ; 19/0Dz11, I(ce)). α =0.00137 <i>13</i> ; α (K)=0.000374 <i>17</i> ; α (L)=5.2×10 ⁻⁵ <i>3</i> ; α (M)=1.14×10 ⁻⁵ <i>7</i> ; α (N+)=0.00093 <i>11</i> α (N)=2.68×10 ⁻⁶ <i>15</i> : α (O)=3.86×10 ⁻⁷ 22: α (P)=2.13×10 ⁻⁸ <i>13</i> : α (IPE)=0.00093 <i>11</i>
3212.2 ^{<i>a</i>} 8 3218.4 9	15.0 <i>15</i> 5.0 <i>10</i>	3213.27 3301.95	1^{-} 1^{+}	0.0 84.262	$0^+ 2^+$			$\begin{aligned} \alpha(K) &= 2.0010 - 15, \ \alpha(G) &= 5.0010 - 22, \ \alpha(I) &= 2.15 \times 10^{-15}, \ \alpha(IIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIIIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIIIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIIIIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIIIIIIIII) &= 0.00095 \ 11^{-15}, \ \alpha(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$

					170	Lu ɛ deca	y 1990AbZT	F,1972Ca21,1970Dz11 (continued)
							$\gamma(^{170}$ Yt	b) (continued)
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡ <i>е</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^f	Comments
3229.5 8	15.0 15	3314.42	1	84.262	2+	E1	0.001510 22	α =0.001510 22; α (K)=0.000185 3; α (L)=2.44×10 ⁻⁵ 4; α (M)=5.36×10 ⁻⁶ 8; α (N+)=0.001296 19 (C)=1.057.16 ⁻⁶ 49 (C)=1.01110 ⁻⁷ 3 (C)=1.004110 ⁻⁸ 14
^x 3255.9 7	30 <i>3</i>					M1,E2	0.00138 <i>13</i>	$\begin{array}{l} \alpha(\mathrm{N})=1.25/\times10^{-7} 13; \ \alpha(\mathrm{O})=1.81\times10^{-5} 3; \ \alpha(\mathrm{P})=1.004\times10^{-7} 14; \\ \alpha(\mathrm{IPF})=0.001295 \ 19 \\ \alpha(\mathrm{K})\exp{<0.00020} \ (1988\mathrm{DzZW}) \\ \alpha(\mathrm{K})\exp{=0.00042} \ 7 \ (1988\mathrm{DzZW}) \\ \alpha=0.00138 \ 13; \ \alpha(\mathrm{K})=0.000363 \ 15; \ \alpha(\mathrm{L})=5.00\times10^{-5} \ 25; \ \alpha(\mathrm{M})=1.11\times10^{-5} \ 6; \\ \alpha(\mathrm{M})=0.00065 \ 10^{-5} \ 10^{-$
								$\alpha(N+)=0.00096 II$ $\alpha(N)=2.60\times10^{-6} I4; \ \alpha(O)=3.74\times10^{-7} 20; \ \alpha(P)=2.07\times10^{-8} I2; \ \alpha(IPF)=0.00095$ II
3258.2 ^{<i>a</i>} 8	25.0 25	3258.18	1+	0.0	0+	M1,E2	0.00138 13	$\alpha = 0.00138 \ 13; \ \alpha(K) = 0.000363 \ 15; \ \alpha(L) = 4.99 \times 10^{-5} \ 25; \ \alpha(M) = 1.10 \times 10^{-5} \ 6; \\ \alpha(N+) = 0.00096 \ 11 \\ \alpha(N) = 2.59 \times 10^{-6} \ 14; \ \alpha(O) = 3.73 \times 10^{-7} \ 20; \ \alpha(P) = 2.06 \times 10^{-8} \ 12; \ \alpha(IPF) = 0.00095$
3274.2 5	100 10	3274.17	1-	0.0	0^{+}	E1	0.001527 22	11 α (K)exp=0.00036 11 (1988DzZW) α =0.001527 22; α (K)=0.000181 3; α (L)=2.39×10 ⁻⁵ 4; α (M)=5.25×10 ⁻⁶ 8; α (N)=)=0.001317 10
								$\alpha(N=)=0.001517179$ $\alpha(N)=1.231\times10^{-6}18; \alpha(O)=1.772\times10^{-7}25; \alpha(P)=9.83\times10^{-9}14; \alpha(IPF)=0.00131519$ $\alpha(K)=n=0.00021.6(1972C_{2}21.4x; 1970D_{2}11.4(c_{2}))$
3282.1 ^{<i>a</i>} 8 3291.4 7	5.0 <i>10</i> 10.0 <i>10</i>	3366.40 3291.82	$1 \\ 1^+$	84.262 0.0	$2^+_{0^+}$	E1,E2		$\alpha(K)\exp{-0.00016} (1972ea21, 17, 1970D211, 1(cc)).$ $\alpha(K)\exp{-0.00016} (1988DzZW)$ $\alpha(K)\exp{-0.00016} (1988DzZW)$ Mult : E1 from $\alpha(K)\exp{-1}$ level scheme requires M1
3302.4 7	26.0 25	3301.95	1+	0.0	0^+	(M1)	0.001512 22	$\alpha = 0.001512 \ 22; \ \alpha(\text{K}) = 0.000365 \ 6; \ \alpha(\text{L}) = 5.07 \times 10^{-5} \ 8; \ \alpha(\text{M}) = 1.123 \times 10^{-5} \ 16; \ \alpha(\text{N}+) = 0.001085 \ 1$
								$\alpha(N)=2.64\times10^{-6}$ 4; $\alpha(O)=3.80\times10^{-7}$ 6; $\alpha(P)=2.11\times10^{-6}$ 3; $\alpha(IPF)=0.001082$ 16 $\alpha(K)\exp=0.00035$ 12 (1972Ca21, I γ ; 1970Dz11, I(ce)). Mult.: E2,M1 from $\alpha(K)\exp; \Delta J<2$ from log ft.
3314.1 7	28 3	3314.42	1	0.0	0+	(M1)	0.001515 22	$\alpha = 0.001515 \ 22; \ \alpha(K) = 0.000362 \ 5; \ \alpha(L) = 5.03 \times 10^{-5} \ 7; \ \alpha(M) = 1.114 \times 10^{-5} \ 16; \alpha(N+) = 0.001091 \ 1 \alpha(N) = 2.62 \times 10^{-6} \ 4; \ \alpha(O) = 3.77 \times 10^{-7} \ 6; \ \alpha(P) = 2.09 \times 10^{-8} \ 3; \ \alpha(IPF) = 0.001088 \ 16$
aaaa ahi a		2 4 2 2 2 2			a +		0.001640.00	α (K)exp=0.00043 <i>11</i> (1972Ca21, Ιγ; 1968Ba54, I(ce)). Mult.: M1,E2 from α (K)exp; Δ J<2 from log <i>ft</i> .
3338.907 8	4.0 10	3423.2?	(0)	84.262	21	(M2)	0.001642 23	$ \begin{array}{l} \alpha = 0.001642 \ 23; \ \alpha(\text{K}) = 0.000783 \ 11; \ \alpha(\text{L}) = 0.0001111 \ 16; \ \alpha(\text{M}) = 2.47 \times 10^{-9} \ 4; \\ \alpha(\text{N}+) = 0.000723 \\ \alpha(\text{N}) = 5.80 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 8.35 \times 10^{-7} \ 12; \ \alpha(\text{P}) = 4.61 \times 10^{-8} \ 7; \ \alpha(\text{IPF}) = 0.000716 \ 10 \end{array} $
3385.0 ^a 8	4.0 10	3384.87	1-	0.0	0^{+}			Mult.: α (K)exp=0.0011 4 (1972Ca21, I γ ; 1968Ba54, I(ce)), mult=M1+E2+E0 or M2; ε feeding of parent level favors the latter.
[†] From 19	72Ca21, exc	ept As note	ed.					

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -55

L

$\gamma(^{170}$ Yb) (continued)

- [‡] Relative photon intensities, normalized so $I\gamma(1365\gamma)=10000$. The data are taken from 1972Ca21; data from 1971Bo09 are in satisfactory agreement with these.
- [#] From $\alpha(K)$ exp, except As noted. However, see general comment above concerning $\alpha(K)$ exp data.
- [@] Member of multiplet unresolved in singles. E from authors' level energy difference; I γ from $\gamma\gamma$ coin data (1972Ca21).
- [&] From L3:M1:M2:M3:(M4+M5):N1:N2:N3:O1:(O2+O3)=4.00 *6*: 0.0731 *6*:0.970 *7*:1.0:0.0204 *4*:0.0163 *11*:0.229 *3*:0.236 *3*:0.0093 *8*: 0.0558 *18* (1980Bu28). Other conversion coefficient data: 1977Ka30, 1969Bo10, 1960Ha18. *α*(K)exp>0.65 from adopted I*γ* and I(ce(K)) In 1960Ha18.
- ^a Placement from 1988DzZW.
- ^b Placement from 1990Gr19.
- ^c Postulated to be an M0 transition (1988Gr29) connecting the 2819.6 level to the 0⁺ g.s. not observed by 1993Ku09 In ce spectrum ($<2\times10^{-8}$ electrons per ¹⁷⁰Lu decay) or In internal pair spectrum. Evaluator considers there to be insufficient evidence to place this transition As suggested by 1988Gr29 and 1990Gr19; In fact, its very existence In ¹⁷⁰Yb ε decay seems questionable.
- ^d Quoted from 1988DzZW; observed In ce spectrum only.
- ^e For absolute intensity per 100 decays, multiply by 0.000447 18.
- f Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*g*} Multiply placed.
- ^h Multiply placed with undivided intensity.
- ^{*i*} Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

 $^{170}_{70} \rm{Yb}_{100}$

 $^{170}_{70}$ Yb $_{100}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

Leg	gend
•	$\begin{array}{l} I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < & 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > & 10\% \times I_{\gamma}^{max} \end{array}$

$10\% \times I_{w}^{max}$		0+ 0.	.0 2.012 d <i>30</i>
	$\% \epsilon + \% \beta^+$	=100.0 / Q _e $=3458$ 17	
		/ 170L II.	
	zzer a zer	/1 20099	
	LEST 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\frac{1\beta^+}{1\beta^+}$	$\underline{I\varepsilon}$ $\underline{Log ft}$
1-	N 2 2 K X X K & 6 5 6 7 6 7 2 2 0 0 0 0 0 0 0 0 2 2 4 3274.17		0.22 7.30
1(+)	<u>3268.91</u>		0.20 7.37
1+	3258.18	*/.	0.27 7.31
1-	3115.58	,	2.11 7.00
1+	2965.66	* /,	2.32 7.32
1+	¥	¥/,	0.501 8.00
$\frac{0^{-},1^{-}}{1^{+}}$	<u> </u>	y /,	5.9 7.16
1(+)	2/83.12 2/(7.10)	* /,	1.60 7.78
<u>1(+)</u>	¥ 2007.19	*/	0.38 8.55
$\frac{1^+}{(2 \ 2)^-}$		+	0.32 8.78
$\frac{(2,3)}{1^{-}}$	2436.01		
1+	2289.37	· /	
1-	2115.90		0.15 0.4
$\frac{1}{0^{-},1^{-},2^{-}}$	2052.59		0.13 9.4
1+	2039.85	0.0025	3.84 8.08
		1.	
(1^+)	1634.84	0.0016	0.15 9.72
0+	1566.38	0.0050	0.35 9.39
$\frac{2^+}{1^-}$./	
$\frac{1}{(2)^{-}}$		0.010	0.58 9.19
1-	1364.53	0.03	0.9 9.07
2+	1306.39	-	
		/	
2+	84.262	. / 1.58 ns 7	
0	0.0	0.24	0.56 9.71

 $^{170}_{70} \rm{Yb}_{100}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Legend

 $^{170}_{70} \rm{Yb}_{100}$

 $^{170}_{70} \mathrm{Yb}_{100}$

 $^{170}_{70} \rm{Yb}_{100}$

 $^{170}_{70} \rm{Yb}_{100}$

Legend

Log ft

7.78

7.54

7.94

8.68

8.06

8.02

7.592

9.4

9.32

9.19

9.07

9.71

10.47¹*u*

170 Lu ε decay 1990AbZT,1972Ca21,1970Dz11

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

¹⁷⁰₇₀Yb₁₀₀

¹⁷⁰Lu ε decay 1990AbZT,1972Ca21,1970Dz11

¹⁷⁰Lu ε decay 1990AbZT,1972Ca21,1970Dz11

¹⁷⁰Lu ε decay 1990AbZT,1972Ca21,1970Dz11

