	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

 $Q(\beta^{-}) = -3458 \ 17; \ S(n) = 8457.7 \ 12; \ S(p) = 6777.7 \ 8; \ Q(\alpha) = 1737.2 \ 12$ 2017Wa10

S(2n)=15324.7 12; S(2p)=12350.7 12 (2017Wa10).

% Abundance: 2.982 6 (from compilation by 2008De16).

Other Reactions:

¹⁸⁶W(n,4p13n γ): 2000Ya22: E(n)=250-600 MeV; 4 HPGe detectors; measured E γ , $\gamma\gamma$ coin; tentatively observed 296 γ and 390 γ cascade connecting J=2, 4 and 6 members of g.s. band.

Muonic atoms: 1975Ze04: Measured muonic x ray spectra; deduced isotope shift and intrinsic Q=7.80 *30* (which implies Q(84 level)=2.23 *9*, based on rotational model).

Isotope shifts, hfs: see, e.g., 2003Ba90, 2002Zi04, 2001Lo30, 1991Ji06, 1991Ki14, 1991Ma48.

Study of order-to-chaos transition In ¹⁷⁰Yb: 2006Le41.

Measurement of level density and radiative strength function: 2004Ag05.

170 Yb Levels

For discussions of rotational band configurations see, e.g., 1972Ca21, 1981Wa14, 1985SuZX, 1994Go29, 1998Ar08.

Cross Reference (XREF) Flags

	4	A 1 B 1 C 1 D 1	170 Tm β^{-1} 170 Lu ε d 174 Hf α d 160 Gd(14	decay lecay lecay C,4nγ)	E F G H	${}^{168}\text{Er}(\alpha,2n\gamma)$ ${}^{169}\text{Yb}(n,\gamma) \text{ E=res}$ ${}^{170}\text{Er}(\alpha,4n\gamma)$ ${}^{170}\text{Yb}(d,d')$	I J K L	Coulomb excitation 171 Yb(d,t) 171 Yb(3 He, $\alpha\gamma$) 172 Yb(p,t)
E(level)	J^{π}	$T_{1/2}^{+}$		KREF	_			Comments
0.0 ^{<i>a</i>}	$0^{+}b$	stable	ABCD	E GHIJ	L			
84.25468 ^{<i>a</i>} 8	2+ <i>b</i>	1.61 ns 2	AB D	E GHIJ	L	$\mu = +0.675 \ 12 \ (1968Mu 01, M)$ $\mu: \text{ from } 1968Mu 01, M$ $Q: \text{ from } Q(^{172} \text{Yb})/Q(^{172} \text{Yb})/Q(^{172} \text{Yb})/2(^{172} \text{Yb})/$	u01); Iossba ⁷⁰ Yb) e of 1 VKa10 2), 1.5	Q=2.1 4 (1971Pl03) auer effect. Other: +0.67 4 (1965Ti02).)=1.020 12 (1971Pl03, Mossbauer effect). 60 ns 2 (1972Gr05), 1.8 ns 3 (1967Ba27),). Others: 1.58 ns 5 (Coulomb excitation), 58 ns 7 from $\gamma\gamma$ (t) in ¹⁷⁰ Lu ε decay.
277.43 ^a 4	4+ b	98 [@] ps 4	B D	E GHIJ	L	J ^{π} : stretched E2 193 γ	to 2 ⁺	; band assignment.
573.30 ^a 8	6+ b	13 [@] ps 3	D	E GHIJ	L	J ^{π} : stretched E2 296 γ	to 4 ⁺	; band assignment.
963.32 ^a 10	8+ b	2.97 ps 25	D	EGI		J^{π} : stretched E2 390 γ	to 6 ⁺	; band assignment.
1069.35 ^c 6	0^{+}		В	J	L	J^{π} : E2 985 γ to 2 ⁺ ; J=	0 from	n $\gamma\gamma(\theta)$ in ¹⁷⁰ Lu ε decay; L(p,t)=0.
1138.55 ^c 3	2+	2.1 ps 4	В	I		J ^{π} : E2 1139 γ to 0 ⁺ . T _{1/2} : from B(E2)=0.0	30 6 i	in Coulomb excitation and adopted branching.
1145.72 ^d 5	2+	0.83 ps 16	B	HIJ	L	J^{π} : E2 1146 γ to 0 ⁺ . T _{1/2} : from B(E2)=0.0 branching.	77 15	in Coulomb excitation and adopted
1225.35 ^e 6	(3)+		В	J	L	J^{π} : E2 1141 γ to 2 ⁺ ; E from band assignment	2,M1 ent.	948 γ to 4 ⁺ ; E1,E2 1921 γ from 1 ⁺ ; J=3
1228.84 10	0^{+}	0.51 ps 10	В	I		J^{π} : E0 1228 γ to 0 ⁺ ; I	.(p,t)=	=0.
1258.46 ^h 14	4 ^{-<i>i</i>}	370 ns 15		EG		J ^{π} : E2+M1 87 γ from T _{1/2} : from γ (t) measure	$5^-; \gamma$	(θ) of E1 981G to 4 ⁺ in (α ,2n γ).
1292.4 ^c 7	(4)+			E GH J		XREF: H(1300). J ^{$π$} : M1(+E2) 1015γ to	o 4⁺;∣	band structure in $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.

¹⁷⁰Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF	Comments
1306.39 5	2+		В	I	J^{π} : 1222 γ to 2 ⁺ has E0 component; E2 1029 γ to 4 ⁺ .
1329.31 ^d 20	$(4)^{+}$			E GHIJ L	J^{π} : E2(+M1) 1052 γ to 4 ⁺ ; band assignment.
1345.18 ^j 9	5- <i>i</i>			EGJL	J^{π} : E1 1068 γ to 4 ⁺ and E1 772 γ to 6 ⁺ .
1364.539 4	1-		В	JL	J^{π} : E1 1365 γ to 0 ⁺ .
1397.05 ⁹ 13	(3)-		В	HJL	J^{π} : E1 1119 γ to 4 ⁺ ; M1,E2 967 γ from 1 ⁻ . J ^{π} supported by σ for E=1398 5 doublet In (p,t) and E=1400 or 1398 levels In (d,d') and (d,t). However, log <i>tt</i> =9.5 from 0 ⁺ is too low for a Δ J=3 branch.
1408.73 ⁰ 20 1425.24 ^r 4	$(4)^+$ $(2)^-$		В	EG	J^{π} : E2(+M1) 1132 γ to 4 ⁺ ; K ^{π} =(4) ⁺ bandhead. J ^{π} : 1 ⁻ ,2 ⁻ based on E1 287 γ to 2 ⁺ and M1 938 γ from 1 ⁻ ; band assignment (1999GrZV) requires J=2.
1437.53 ^a 13	10+ b	1.16 ps 8		DE G I	J^{π} : stretched E2 474 γ to 8 ⁺ ; band assignment.
1450.35 ^h 13	6- <i>i</i>	-		EG	J^{π} : E2 192 γ to 4 ⁻ ; D+Q 105 γ to 5 ⁻ ; D+Q 123 γ from 7 ⁻ .
1459.75 ^e 18	$(5)^{+}$			EGJ	J^{π} : E2(+M1) 1182 γ to 4 ⁺ ; possible γ to 6 ⁺ ; band structure.
1479.91 6	0^{+}		В	JL	J ^{π} : J=0 from $\gamma\gamma(\theta)$ in ¹⁷⁰ Lu ε decay; E2 1397 γ to 2 ⁺ ; L(p,t)=0.
1510.2 ⁹ 5	(5 ⁻)			EG	J^{π} : γ to 4^+ ; $K^{\pi} = 1^-$ band assignment.
1512.37 4	1-		В	JL	J^{π} : E1 1512 γ to 0 ⁺ .
1521.31° 14	6+ 5+			EG	J^{π} : M1 948 γ to 6 ⁺ ; stretched E2 1244 γ to 4 ⁺ .
1528./4P 18	5' 2+		D	EG	J [*] : M1(+E2) 955 γ to 6' from $\gamma(\theta)$ in (α ,2n γ); M1+E2 1251 γ to 4'.
1552	2		D	J L 1	J^{*} . E2 1554 γ to 0 .
1566.38 8	0^{+}		В	ĴL	J^{π} : E0 transitions to 0 ⁺ ; L(p,t)=0.
1572.73 ^j 11	7- <i>i</i>			E GH	J^{π} : 228 γ E2 to 5 ⁻ : E1 609 γ to 8 ⁺ .
1573.10 ^r 20	(4 ⁻)			G	
1601.33 ^d 17	6+			EG L	J^{π} : $\Delta J=0$ E2(+M1) 1028 γ to 6 ⁺ from $\gamma(\theta)$ in (α .2n γ).
1634.84 8	(1 ⁺)		В	L	J^{π} : 1635 γ to 0 ⁺ g.s. is M1(+E2) or E1 based on separate α (K)exp data; $\Delta \pi$ =no 1551 γ to 2 ⁺ , but γ may be a doublet (see ¹⁷⁰ Lu ε decay dataset).
1658.06 9	$(2)^{+}$		В	J 1	J^{π} : 1381 γ to 4 ⁺ ; M1 865 γ from 1 ⁺ .
1660.26 ^{<i>f</i>} 14	(5 ⁻)			EG 1	J^{π} : (E1) 1087 γ to 6 ⁺ ; D 1383 γ to 4 ⁺ from $\gamma(\theta)$ in (α ,2n γ). However, (4 ⁺) suggested in (p,t).
1669.03 ⁰ 17	6+			EG	J^{π} : $\Delta J=0$ E2(+M1) 1096 γ to 6 ⁺ ; 260 γ to (4) ⁺ .
1690 1712 41 <mark>9</mark> 21	(7^{-})			FC I	I^{π} : AI-1 1130 α to 6^+ ; band assignment in (α 2n α) (α 4n α)
$1712.41^{2}21$	(7)				J : $\Delta J = 1$ 1157 (100), band assignment in $(a, 2\pi)$, $(a, 4\pi)$.
1713.95 4	$\binom{0}{(2)^{-}}$		R	EG	J^{*} : E2 2037 to 0 ; D+Q 1437 to 7 ; band assignment. I^{π} : E1 572 γ to 2 ⁺ : log $f_{t=9}$ 4 from 0 ⁺ : E1 493 γ to (3) ⁺
1762.63 ^g 22	(6 ⁻)		2	EGJ	XREF: J(1774).
					J^{π} : $\Delta J=1$ 102 γ to 5 ⁽⁻⁾ ; band assignment.
1780.55° <i>15</i>	(7) ⁺			EG	J^{n} : M1(+E2) 817 γ to 8 ⁺ ; 321 γ to (5) ⁺ .
1783	(3 ⁻) ^{x}			H L	E(level): from (d,d') ; 1780 5 for doublet in (p,t) .
≈1789	(3 ⁻)&			J	E(level): may be same level as seen in (d,d') at 1783 and in (p,t) at 1780 5; however, E from (d,t) is, typically,≈6 keV low, so it does not appear to be consistent with those.
1793.37 ^r 18	(6 ⁻)			G	
1803.39 ^c 14	(8)+			EG	J^{π} : M1 840 γ to 8 ⁺ ; 1230 γ to 6 ⁺ ; band assignment.
1835.06 ^P 21	$7^{(+)}$		_	EG	J^{π} : D 1261 γ to 6 ⁺ ; D 872 γ to 8 ⁺ ; band assignment.
1838.2 3	(2)+		В	JĹ	XKEF: J(1829). I^{π} : M1(+F2+F0) 1754a TO 2 ⁺ However log ft is only ~10.0 from 0 ⁺
1851 23 ^k 16	6-	<0.2 ns		FG	J . MI(TE2+E0) 173+7 10.2 . However, log <i>jt</i> is only≈10.0 from 0 ⁺ . I^{π_1} AI=1 for M1+E2 506v to 5 ⁻ · M1+E2 401v to 6 ⁻
1051.25 10	0	NO.2 115		2.0	$T_{1/2}$: from $\gamma(t)$ measurement in $(\alpha, 2n\gamma)$.
1871 5				L	
1872.09 ^j 14	9- <i>i</i>			EG	J^{π} : E1 909 γ to 8 ⁺ ; E2 299 γ to 7 ⁻ ; 434 γ to 10 ⁺ ; band assignment.
1903.14 ^{<i>f</i>} 14	7^{-}			EG	J^{π} : E1 939 γ to 8 ⁺ ; E1 1330 γ to 6 ⁺ .

¹⁷⁰Yb Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$		XREF		Comments
1911				J		
1954.13 ^d 17	8+			EG		J^{π} : $\Delta J=0$ M1+E2 991 γ to 8 ⁺ .
1964.64 ^{<i>l</i>} 22	(7 ⁻)			E GH		J ^{π} : intraband $\Delta J=1$ D+Q 113 γ to 6 ⁻ ; K ^{π} =6 ⁻ band member in (α ,2n γ),
1971 10				J	L	$\begin{array}{c} (a, \pi_1) \\ \text{XREF: } J(1963). \\ \text{E(evel): from (n t)} \end{array}$
1983.36 ^{<i>a</i>} 17	12^{+b}	0.77 ps 6	D	EGI		J^{π} : stretched E2 546 γ to 10 ⁺ ; K ^{π} =0 ⁺ g.s. band member.
2001 <i>10</i>	1,2		в	J	L	J^* : E1 19019 to Z^* ; log $h=9.2$ from 0 ⁺ . XREF: J(2000).
2005 439 18	$(9)^{-}$			FG		E(level): for doublet in (p,t). I^{π} , $\gamma(\theta)$ of F1 1043 γ to 8^+ in (α 2n γ) favors AI=1: hand assignment
2009.35° 17	8+			EG		J^{π} : E2(+M1), ΔJ =0 1046 γ to 8 ⁺ .
2039.85 8	1+		В			J^{π} : M1 2040 γ to 0 ⁺ .
2044.64 ⁸ 17 2047 7	(8 ⁻)			EG	L	J^{π} : $\Delta J=(1)$ 142 $\gamma(\theta)$ to 7 ⁻ ; (Q) intraband 282 γ to (6 ⁻); band assignment.
2052.59 7	0-,1-,2-		В			J^{π} : M1 540 γ to 1 ⁻ .
2056.73 ^h 15	10 ^{-<i>i</i>}			EG		J^{π} : stretched E2 341 γ to 8 ⁻ ; 185 γ to 9 ⁻ ; band structure.
2088	0^{+}				L	$J^{\pi}: L(p,t)=0.$
2096.81' 18	(8 ⁻)			G		
2098.5 ^{<i>k</i>} 3	(8 ⁻)		_	EG		J^{π} : $\Delta J=1$ from 134 $\gamma(\theta)$ to (7 ⁻); band assignment.
2115.90 7	1 1-		В	ΗJ		J [*] : (E1) 2116 γ to 0 ⁺ ; E1 2032 γ to 2 ⁺ ; log <i>ft</i> =9.1 from 0 ⁺ .
2120.14 J 2125 33° 15	1 10 ⁺		в	FC		J [*] : E1 21207 10 0 ⁺ . I^{π} : M1 608 α to 10 ⁺ , stratched O 1172 α to 8 ⁺ , hand structure
2135.35 15	10			LG	L	\mathbf{J} . We observe to 10 , succeeded Q 1172 to 8 , band structure.
2170.04^{e} 19	(9^{+})			G	-	
21712 7	$(2^+)^{\&}$				L	
2186	0^{+}				ĩ	J^{π} : L(p,t)=0.
2189.65 ^m 17	7-	2.5 ns 3		EG		J^{π} : $\Delta J=1$ M1(+E2) 338 γ to 6 ⁻ ; stretched E2 845 γ to 5 ⁻ ; E2(+M1) 739 γ to 6 ⁻ ; band structure.
						$T_{1/2}$: from $\gamma(t)$ in $(\alpha, 2n\gamma)$.
2200.91 9	$1^{-},2^{-}$		В			J^{n} : E1 2117 γ to 2 ⁺ ; log <i>ft</i> =8.8 from 0 ⁺ .
2220.69 <i>15</i> 2229 7	$(9)^{-}$ 0 ⁺			EG	L	J^{π} : $\Delta J=1$ 1258 γ to 8 ⁺ ; 783 γ to 10 ⁺ . J^{π} : L(p,t)=0.
2242.00 ^j 16 2249 7	11 ⁻ⁱ			EG	L	J^{π} : stretched E2 370 γ to (9) ⁻ ; E1 804 γ to 10 ⁺ .
2253.5 ¹ 3	(9 ⁻)			EG		J^{π} : $\Delta J=1$ 155 $\gamma(\theta)$ to (8 ⁻); $K^{\pi}=6^{-}$ band assignment.
2268.08 17	1-		В			J^{π} : E1 2268 γ to 0 ⁺ .
2275.49 5	1-		В		1	XREF: 1(2281).
2289.37 10	1+		В		1	J^{*} : EI 22/5 γ to 0 ⁺ . XREF: 1(2281).
2328.0? 4	(0 ⁺)		В		L	J^{π} : possible E0 2328-keV transition to 0 ⁺ g.s.; possible γ to 2 ⁺ ;
2341 6 ⁿ 3	(8^{-})			FG		$I_{\alpha} I_{\alpha} = 1.152 \gamma$ to 7^{-1} band assignment
2351.71.6	$0^{-}.1^{-}.2^{-}$		в	2 0	L	I^{π} : M1 987v to 1 ⁻ : log $ft=8.0$, log $f^{1}ut=8.65.4$ from 0 ⁺ .
2364.06 4	1-,-,-,-		B		_	J^{π} : E1 2364 γ to 0 ⁺ .
2367.65 5	(1) ⁻		В			J^{π} : M1 242 γ to 1 ⁻ ; log $f^{1u}t < 8.5$ from 0 ⁺ ; 1061 γ to 2 ⁺ .
2372.83 ^d 19	10+			EG		J^{π} : stretched Q 418 γ to 8 ⁺ ; M1+E2 935 γ to 10 ⁺ .
2388.06 ⁹ 18	(11) ⁻			EG		J^{π} : $\Delta J=1 E1 951\gamma$ to 10^+ ; band assignment.
2398.51 ^g 19	(10 ⁻)			EG		J^{π} : ΔJ=1 178γ to (9) ⁻ ; intraband 354γ to (8 ⁻).
2399	0^{+}				L	$J^{\pi}: L(p,t)=0.$
2400.10 6	1-		В		L	XREF: L(2390). J^{π} : E1 2400 γ to 0 ⁺ .

¹⁷⁰Yb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2412.39 ⁰ 19	$(10)^{+}$	E G	J ^{π} : M1,E2 975 γ to 10 ⁺ ; Δ J=0,2 404 γ to 8 ⁺ ; band assignment.
2429.0 ^k 3	(10^{-})	EG	J^{π} : 175.4 γ to (9 ⁻), 330.7 γ to (8 ⁻); band structure.
2429.05 11	$(2,3)^{-}$	B I.	J^{*} : M1 2345 γ to 2'; M1 /12 γ from 1. I^{π} : E1 2352 γ to 2 ⁺ : 2158 γ to 4 ⁺ .
2460.55 23	(10^{-})	G	
2473.69 ^h 19	12 ^{-<i>i</i>}	EG	J ^{π} : E2 417 γ to 10 ⁻ ; γ to 11 ⁻ ; band structure in (α ,2n γ).
2477.8' 3	(10^{-})	G B I	I^{π} . E1 24960 to 0 ⁺
2498.19 7	$0^{-}, 1^{-}, 2^{-}$	B	J^{π} : M1 1134 γ to 1 ⁻ .
2501	0^{+}	L	$J^{\pi}: L(\mathbf{p}, \mathbf{t}) = 0.$
2523.07 14 $2524 27^{\circ} 17$	1+ 12+	В	J^{π} : M1 2523 γ to 0 ⁺ .
2524.27 17 2525.1^{m} 3	(9^{-})	EG	J^{π} : 183.6 γ to (8 ⁻), 335.4 γ to 7 ⁻ : band assignment.
2536.97 6	1-	B L	J^{π} : E1 2537 γ to 0 ⁺ ; π supported by E2 612 γ from 1 ⁻ and M1(+E2) 587 γ from 1 ⁻ . However, M1 498 γ to 1 ⁺ .
2560	0^{+}	L	J^{π} : L(p,t)=0.
2580.35 ^{<i>a</i>} 24 2595 7	14 ⁺ b	DE G L	J ^{π} : stretched E2 597 γ to 12 ⁺ ; band structure in (α ,2n γ), (α ,4n γ).
2603.60 ^f 21	(11 ⁻)	E G	J^{π} : 205 γ to (10 ⁻); 382 γ to (9) ⁻ ; band assignment.
2603.8 ^e 3	(11^+)	EG	J^{π} : Q 433.8 γ to (9 ⁺); $K^{\pi}=2^+$ band assignment.
2661.02 12	1 · 1(+)	B	J [*] : M1,E2 2001 γ to 0 ⁺ ; log <i>f1</i> =8./ Ifom 0 ⁺ .
2007.17 7	1	D	2583γ to 2 ⁺ and (M1) 152 γ from π =- 2819.
2678 7		L	
2680.75^{J} 19	13^{-1}	EG L	J^{π} : E2 439 γ to (11) ⁻ ; D 698 γ to 12 ⁺ ; band structure in (α ,xn γ).
2732.5 3	(10) 1^{-}	B	J^{π} : 20/7 to (9); 5917 to (8); $K^{\pi} = 7$ band assignment. J^{π} : E1 27487 to 0^{+} .
2768.34 8	0-,1-	B	J^{π} : M1 1404 γ to 1 ⁻ ; log ft=7.9, log f ^{1u} t=8.1 from 0 ⁺ .
2775.66 8	1-	В	J^{π} : E1 2691 γ to 2 ⁺ ; log ft=7.6, log f ^{1u} t=7.7 from 0 ⁺ .
2783.12 10	1^+ (12 ⁻)	В	J^{n} : M1 2783 γ to 0 ⁺ ; M1 2699 γ to 2 ⁺ ; however, M1 1419 γ to 1 ⁻ .
2819.77 <i>4</i>	$(12^{-})^{-}$	B	J^{π} : M1 324 γ to 1 ⁻ ; (M2) 2736 γ to 2 ⁺ favors J=0; mixed multipolarity for 531 γ and possibly for the 1308 γ and 1565 γ favor J=1.
2826.8 ^{<i>d</i>} 3	(12^{+})	E G	J^{π} : stretched Q 454 γ to 10 ⁺ ; K ^{π} =2 ⁺ band assignment.
2847.0? ^k 11	(12 ⁻)	G	
2854	0^+	L	J^{π} : L(p,t)=0.
2855.614 21 2859.20 3	(13) (12^+)	EG	$J^{*}: 8/3\gamma$ to 12° ; band assignment.
2927.2^{r} 4	(12^{-}) (12 ⁻)	G	
2929.60 8	1-	В	J^{π} : E1 2930 γ to 0 ⁺ ; E1 1860 γ to 0 ⁺ .
2938.6 3	$12^{(-)}$	G	I^{π} : E1 1405a to 2 ⁺ : however, 1305a to (1 ⁺) is M1 E2
2939.73 5	0^{+}	L	J^{π} : L(p,t)=0.
2947.84 6	1-	В	J^{π} : E1 2948 γ to 0 ⁺ ; E1 1810 γ to 2 ⁺ .
2956.55 11 2050 4^{m} 3	1^+ (11 ⁻)	В	J^{n} : log ft=8.0 from 0 ⁺ ; 2957 γ to 0 ⁺ ; M1 2873 γ to 2 ⁺ .
2965.66 8	1^+	В	J^{π} : M1 2966 γ to 0 ⁺ ; however, M1 467 γ to π =- 2498 and M1,E2 1601 γ to π =- 1365.
2966.42 ^h 22	14 ^{-<i>i</i>}	E G	J^{π} : E2 493 γ to 12 ⁻ ; K ^{π} =4 ⁻ band member.
2969.45 13	1- 1-	B	J^{π} : 2970y to 0; M1 917y to π =-2053.
2913.32 11 2986.67 ^C 21	(14^+)	ь G	J. MI 10117 to 1; MI(+E0) 6397 to 1. However, weak MI(+E2) 1/407 to 0°. J ^{π} : stretched O intraband 4627 to (12) ⁺ : 10037 to 12 ⁺ .
2995	0+	- L	J^{π} : L(p,t)=0.
3007.6 3	1-	В	J^{π} : E1 2923 γ to 2 ⁺ ; log <i>ft</i> =8.2, log $f^{1u}t$ =8.0 from 0 ⁺ .

¹⁷⁰Yb Levels (continued)

E(level) [†]	Jπ‡	XRE	EF	Comments					
3027	0^{+}		L	J^{π} : L(p,t)=0.					
3042.46 17	1+	В	_	J^{π} : M1 3043 γ to 0 ⁺ .					
3049.95 <i>f</i> 24	(13^{-})	EG		J^{π} : 234 γ to (12 ⁻): 446 γ to (11 ⁻): band assignment.					
3065.36 12	1+	В		J^{π} : E2.M1 1996 γ to 0 ⁺ .					
3067.0 ^e 4	(13^{+})	G							
3067.62 10	1-	В		J^{π} : 3067.0 γ to 0 ⁺ ; M1 1703 γ to 1 ⁻ .					
3070.52 19	0.1	В		J^{π} : log ft=8.1, log $t^{lu}t=7.75$ from 0 ⁺ .					
3077	0^{+}		L	J^{π} : L(p,t)=0.					
3091.93 11	1	В		J^{π} : M1 596 γ to 1 ⁻ ; M1 692 γ to 1 ⁻ . Inconsistent with (E2(+M1)) 3008 γ to 2 ⁺ and E2(+M1) or E1+M2 3092 γ to 0 ⁺ .					
3099.64 9	1 ⁽⁻⁾	В		J^{π} : E1 2030 γ to 0 ⁺ ; however, π =+ based on E2 3100 γ to 0 ⁺ g.s. and (M1) 1620 γ and (M1) 1954 γ to 2 ⁺ .					
3108	0^{+}		L	$J^{\pi}: L(p,t)=0.$					
3115.58 11	1-	В		J^{π} : E1 3115 γ to 0 ⁺ .					
3123.94 12	1-	В		J^{π} : E1 2054 γ to 0 ⁺ .					
3131.10 16	1^{+}	В		J^{π} : log ft=7.9, log f ^{1u} t=7.4 from 0 ⁺ ; (M1) 3046.9 γ to 0 ⁺ ; E2,M1 1993 γ to 2 ⁺ .					
3140.60 13	(1)	В		J^{π} : weak 3140y to 0 ⁺ , M1 712y to 1 ⁺ ,2 ⁺ , and M1+E2 480y to 1 ⁺ ; inconsistent with M1 1776y to 1 ⁻ .					
3146.03 9	1^{+}	В		J^{π} : M1,E2 3146 γ to 0 ⁺ .					
3149.09 9	1-	В		J^{π} : E1 3149 γ to 0 ⁺ .					
3150	0^{+}		L	$J^{\pi}: L(\mathbf{p}, \mathbf{t}) = 0.$					
3153	0^{+}		L	J^{π} : L(p,t)=0.					
3161.02 17	(1^{-})	В		J^{π} : (E1) 3161 γ to 0 ⁺ .					
3165.59 9	1-	В		J^{π} : E1 3165 γ to 0 ⁺ . However, (M1,E2) 1686 γ to 0 ⁺ .					
3169.59 12	1-	В		J^{π} : 3169.6 γ to 0 ⁺ , M1 401.3 γ to 0 ⁻ ,1 ⁻ 2783.					
3179.76 16	1-	В		J^{n} : E1 3096 γ to 2 ⁺ .					
3186.2 ^J 4	15 ⁻¹	EG		J^{π} : E2 505 γ to 13 ⁻ ; 4 ⁻ band member.					
3186.66 13	(1 ⁻)	В		J^{π} : M1 1061 γ to 1 ⁻ ; 3102 γ to 2 ⁺ ; doubly-placed 751 γ to (2,3) ⁻ . However, M1 758 γ TO π =+ 2429.					
3195.1 ^a 3	16+ ⁰	DE G	ł	J^{π} : E2 615 γ to (14 ⁺); band assignment.					
3195.58 8	1-	В		J ^π : E1,E2 3196γ to 0 ⁺ ; M1 448γ to 1 ⁻ ; log <i>ft</i> =7.3, log $f^{1u}t$ =6.6 from 0 ⁺ . However, (M1) 1967γ to 0 ⁺ .					
3202.1 ⁿ 4	(12^{-})	EG	ł	J^{π} : 242.5 γ to (11 ⁻), 469.9 γ to (10 ⁻); band structure.					
3202.94 13	1^{+}	В		J^{π} : M1 3202 γ to 0 ⁺ .					
3213.27 13	1-	В		J^{π} : E1 2144 γ to 0 ⁺ .					
3258.18 10	1+	В		J^{π} : M1 3173 γ to 2 ⁺ ; however, M1 822 γ to (2,3) ⁻ .					
3268.91 15	$1^{(+)}$	В		J^{π} : M1 3184 γ to 2 ⁺ ; however, M1 449 γ to 0 ⁻ ,1 ⁻ .					
3274.17 14	1-	В		J^{π} : E1 3274 γ to 0 ⁺ , E1 3190 γ to 2 ⁺ , and E1 1235 γ to 1 ⁺ . The J^{π} assignment, however, is in disagreement with M1(+E2) 491 γ to 1 ⁺ .					
3291.82 21	1+	В		J^{π} : E2,M1 2063 γ to 0 ⁺ ; however, weak E1 3291 γ to 0 ⁺ g.s.					
3296.5 ⁸ 3	(14 ⁻)	G							
3301.95 11	1+	В		J^{n} : M1 2232.7 γ to 0 ⁺ , M1 518.9 γ to 1 ⁺ . J^{n} assignment is, however, in disagreement with M1 806 γ 1 ⁻ .					
3307.3 ^d 4	(14^{+})	EG		J^{π} : stretched Q 481 γ to (14 ⁺); band structure in (α ,2n γ), (α ,4n γ).					
3314.42 11	1	В		J^{π} : (M1) 3314 γ to 0 ⁺ and (M1) 1748 γ to 0 ⁺ give 1 ⁺ ; however, π =- from E1 3230 γ TO 2 ⁺ , and M1+E2+E0 963 γ TO 1 ⁻ ,2 ⁻ .					
3325	0^{+}		L	J^{π} : L(p,t)=0.					
3333.2? <mark>0</mark> 11	(14^{+})	G							
3366.40 11	1	В		J ^{π} : log <i>ft</i> =6.5, log <i>ft</i> ¹⁰ <i>t</i> =5.3 from 0 ⁺ ; 1799 γ to 0 ⁺ . M1 301 γ to 1 ⁺ , E2 598 γ to 0 ⁻ ,1 ⁻ give conflicting π assignments.					
3384.87 17	1-	В		J^{π} : E1 2315 γ to 0 ⁺ .					
3401.7 ⁹ 3	(15 ⁻)	EG	ł	J^{π} : band structure in (α ,4n γ).					
3423.2? 8	(0-)	В		J^{π} : possible M1+E2+E0 or M2 3339 γ to 2 ⁺ .					
3437.8 ^r 6	(14^{-})	G							

¹⁷⁰Yb Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
3466.8? ^m 8 ≈3500	(13 ⁻)	G	L J^{π} : E and excitation probability fit systematics for 5 ⁻ and 7 ⁻ doublets observed to be strongly excited in (p,t) for neighboring nuclei.
3533.8 ^h 3 3547.3 ^c 3 3558.1 ^e 4 3567.4 ^f 3	16^{-i} (16 ⁺) (15 ⁺) (15 ⁻)	E G G G	J^{π} : E2 567 γ to 14 ⁻ ; 4 ⁻ band member. J^{π} : intraband 561 γ to (14 ⁺); band assignment.
$3742.1^{n} 4$ $3756.5^{j} 4$ $3806.8^{a} 4$	(14^{-}) $(17^{-})^{i}$ 18^{+b} (16^{+})	G E G DE G	J ^{π} : E2 570 γ to (15 ⁻); band structure. J ^{π} : E2 612 γ to (16 ⁺); band assignment.
3833.3 ^a 4 3842.3 ^g 6 3844.2? ^o 15 4011.8 ^r 12	(16^{-}) (16^{-}) (16^{+}) (16^{-})	G G G	
$4017.6^{q} 6$ $4065.1?^{e} 11$ $4174.0^{h} 4$ $4207.1^{c} 5$	(17^{-}) (17^{+}) 18^{-i} (18^{+})	G G G G	J^{π} : intraband 659 γ to (16 ⁺); 1012 γ to 16 ⁺ ; band assignment.
4390.3 ^j 5 4436.5 ^a 7 4885.9 ^h 7 5084.8 ^j 5	19^{-i} 20^{+b} 20^{-i} 21^{-i}	G E G G G	J ^{π} : (E2) 631 γ to 18 ⁺ ; K ^{π} =0 ⁺ g.s. band assignment.

[†] From least-squares fit to adopted $E\gamma$.

[‡] For levels observed only in (α ,4n γ), J^{π} is based on DCO ratio data and probable band structure deduced in that reaction.

[#] From Doppler-broadened lineshape analyses in Coulomb excitation, unless noted otherwise.

[@] from $\gamma\gamma$ (t) in (α ,2n γ).

- & Based on measured $\sigma(\theta)$, comparison to Nilsson-model prediction, and band configuration analysis in ¹⁷⁰Er(d,d'), ¹⁷¹Yb(d,t) or ¹⁷²Yb(p,t).
- ^{*a*} Band(A): $K^{\pi}=0^+$ g.s. band. Rotational parameters: $\alpha=14.1$, $\beta=-0.012$.

^b Definite J^{π} assigned to members of g.s. band based on smooth progression of level energies and independently-established $J^{\pi}(g.s.)=0^+$ and E2 multipolarity for J=2 to 0 84 γ .

^{*c*} Band(B): $K^{\pi}=0^+$, $\alpha=0$ β band. Rotational parameters: $\alpha=11.6$, $\beta=-0.021$. Sharp rise in alignment at low rotational frequency probably indicates a change from vibrational to two-quasiparticle character as states gradually mix with low-spin members of (ν i_{13/2})² band. However, 2001Ga02 suggest that the J=0, 1069 level is not a good β -vibration candidate.

^d Band(C): $K^{\pi}=2^+$, $\alpha=0 \gamma$ band. Rotational parameters: $\alpha=13.0$, $\beta=-0.011$. Small alignment at low spin. At higher frequencies, vibrational states probably mix with two-quasiparticle ($\nu 5/2[512])\otimes(\nu 1/2[521])$ band.

^{*e*} Band(c): $K^{\pi}=2^+$, $\alpha=1 \gamma$ band. Rotational parameters: $\alpha=13.6$, $\beta=-0.016$. Small alignment at low spin. At higher frequencies, vibrational states probably mix with two-quasiparticle ($\nu 5/2[512]) \otimes (\nu 1/2[521])$ band.

- ^{*f*} Band(d): $K^{\pi}=(3)^{-}$, $\alpha=1$. Rotational parameters: $\alpha=9.3$, $\beta=-0.0003$. Signature partner of $K^{\pi}=3^{-}$, $\alpha=0$ band. See comments on that band. J=3 member not yet identified.
- ^{*g*} Band(D): $K^{\pi}=(3)^{-}$, $\alpha=0$. Rotational parameters: $\alpha=9.5$, $\beta=-0.0014$. Bandhead energy very close to that calculated for the (ν 7/2[633])-(ν 1/2[521]) configuration; assignment supported by absence of a (ν i_{13/2})² crossing in kinematic moment of inertia and by in-band transition strength ratios (B(M1)(cascade)/B(E2)(crossover)) (1998Ar08). Probable admixture with K^{π}=1⁻ (1981Wa14). J=4 member not yet identified.

^h Band(E): $K^{\pi}=4^{-}$, $\alpha=0$. Rotational parameters: $\alpha=8.7$, $\beta=+0.0024$. Configuration (ν 7/2[633])+(ν 1/2[521]) supported by

¹⁷⁰Yb Levels (continued)

two-quasiparticle plus rotor calculations, by large splitting from signature partner (as in 7/2[633] band in ¹⁷¹Yb), by similarity of kinematic moment of inertia plot to that for (ν 7/2[633])+(ν 1/2[521]) band in ¹⁷²Yb, by alignment (which is close to sum of alignments for 7/2[633] and 1/2[521] bands in ¹⁷¹Yb and ¹⁶⁹Tm), and by in-band transition strength ratios (B(M1)(cascade)/B(E2)(crossover)) (1998Ar08).

- ^{*i*} Definite J^{π} assigned to members of $(\nu 7/2[633])+(\nu 1/2[521])$ band based on smooth progression of level energies and independently-established $J^{\pi}(1258)=4^{-}$ and multipolarity of M1+E2 for J=5 to 4 87 γ .
- ^{*j*} Band(e): $K^{\pi}=4^{-}$, $\alpha=1$. Rotational parameters: $\alpha=8.7$, $\beta=+0.0008$. Signature partner of $K^{\pi}=4^{-}$, $\alpha=0$ band. See comments on that band.
- ^k Band(F): $K^{\pi}=6^{-}$, $\alpha=0$. Rotational parameters: $\alpha=8.0$, $\beta=+0.0065$. Configuration (ν 7/2[633])+(ν 5/2[512]) consistent with observed alignment and with behavior of ¹⁷²Yb band with same configuration.
- ^{*l*} Band(f): $K^{\pi}=6^{-}$, $\alpha=1$. Rotational parameter: $\alpha=8.5$. Configuration (ν 7/2[633])+(ν 5/2[512]) consistent with observed alignment and with behavior of ¹⁷²Yb band with same configuration.
- ^{*m*} Band(g): $K^{\pi}=7^{-}$, $\alpha=1$. Rotational parameters: $\alpha=9.6$, $\beta=+0.0063$. Signature partner of $K^{\pi}=7^{-}$, $\alpha=0$ band. See comments on that band.
- ^{*n*} Band(G): $K^{\pi}=7^{-}$, $\alpha=0$. Rotational parameters: $\alpha=10.3$, $\beta=-0.00075$. Configuration (π 7/2[523])+(π 7/2[404]) consistent with observed alignment and with in-band transition strength ratios (B(M1)(cascade)/B(E2)(crossover)) for J=9, 10, 11 (1998Ar08).
- ^o Band(H): $K^{\pi}=(3)^+$ band, $\alpha=0$. Rotational parameters: $\alpha=12.3$, $\beta=-0.0145$. Band's decay characteristics imply K \leq 4; probably analogous (based on comparison of kinetic moment of inertia plots) to a $K^{\pi}=3^+$ band in ¹⁷²Yb which includes the (ν 5/2[512])+(ν 1/2[521]) configuration. 1998Ar08 suggest that configuration for this band also. However, postulated in 1993Wu03 to be $\gamma\gamma$ vibrational band (K=4). J=3 member not yet identified.
- ^{*p*} Band(h): $K^{\pi}=(3)^+$, $\alpha=1$ (1998Ar08). Signature partner of the $K^{\pi}=(3)^+$, $\alpha=0$ band. See comments on that band.
- ^{*q*} Band(i): $K^{\pi}=1^{-}$, $\alpha=1$ octupole band. $K^{\pi}=3^{-}$ admixture. Probable dominant configuration (ν 7/2[633])-(ν 5/2[512]). Assignment supported by large B(E3) for J=3 member of this band and by observed alignment relative to g.s. band of $\approx 3\hbar\omega$. Large energy splitting relative to signature partner is observed, as expected (1998Ar08).
- ^{*r*} Band(I): $K^{\pi}=(1)^{-}$, $\alpha=0$ octupole band. Possible signature partner of $K^{\pi}=1^{-}$, $\alpha=1$ octupole band (1998Ar08). Large energy splitting relative to signature partner is observed, as expected.

$\gamma(^{170}\mathrm{Yb})$

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ} †	E_f	J_f^{π}	Mult. [‡]	α^{c}	Comments
84.25468	2+	84.25474 8	100	0.0	0^{+}	E2	6.28	B(E2)(W.u.)=201 6
								E_{γ} : from ¹⁷⁰ Tm β^- decay.
077.40	4	100.10.5	100	04.05460	2+	50	0.000	Mult.: from $\alpha(K)$ exp and subshell ratios in ¹⁷⁰ Tm β^- decay.
277.43	4 ⁺	193.13 5	100	84.25468	2*	E2	0.302	
573.30	6 ⁺	295.86 9	100	277.43	4	E2 ^{ee}	0.07/1	E_{γ} : weighted average from $(\alpha, 4n\gamma)$ and $(\alpha, 2n\gamma)$.
963.32	8+	390.06 9	100	573.30	6+	E2 ^a	0.0345	B(E2)(W.u.)= $3.6 \times 10^2 \ 3$ E _y : weighted average from (α ,4ny) and (α ,2ny).
1069.35	0^{+}	985.10 <i>10</i>	100	84.25468	2+	E2		
1120 55	2+	1069.4	100.2	0.0	0^+	E0		
1138.55	2.	1054.28 5	100 3	84.25468	2 · 0+	E2 E2		$B(F2)(W_{11}) = 1.08.21$
1145 72	2+	868 10 20	364	277.43	4^+	(F2)		B(E2)(W.u.) = 1.06.21 B(F2)(W.u.) = 0.48.11
1115.72	2	1061.39 10	100 3	84.25468	2+	E2		B(E2)(W.u.)=0.1011 B(E2)(W.u.)=4.810
		1145.80 20	83 <i>3</i>	0.0	0^{+}	E2		B(E2)(W.u.)=2.7 6
1225.35	$(3)^{+}$	947.80 15	30.7 9	277.43	4^{+}	E2,M1		
		1141.30 20	100 3	84.25468	2+	E2		
1228.84	0^{+}	160.2		1069.35	0^{+}	EO		
		1144.65 20	100 3	84.25468	2 ⁺	E2		$B(E2)(W.u.)=10.1\ 21$
		1228.9		0.0	0.	EU		Ce(K)/Ce=0.87. I(ac(K))/I(1145c)=0.0027 from 170 us a decay
								$1(ce(K))/1(11437)=0.0027$ from ~ Lu ε decay. $c^{2}(E0)=0.027$ 5 (avaluation in 1000We07)
1050 46	4-	0.01 1 @ 2	100	277.42	4+	F18		p (E0)=0.027 5 (evaluation in 1999 w007).
1258.46	4	981.1 2	100	277.43	4 ·	EI C		B(E1)(W.U.)=0.3×10 ⁻¹⁰ -3
1292.4	(4)+	1015.0 7	100	277.43	4+	M1(+E2)		E_{γ} : weighted average of 1014.7 2 in $(\alpha, 4n\gamma)$ and 1016.7 5 in $(\alpha, 2n\gamma)$.
1306.39	2+	1028.80 10	100 3	277.43	4+	E2	0.040	
		1222.3 3	79 3	84.25468	2'	E0+E2+M1	0.013	α : estimated from $\alpha(K)$ exp.
1220.21	(1)+	1306.30 20	61 3	0.0	0.	(E2)		
1329.31	(4)	1051.84 2	100	277.43	4'	$E_2(+M_1)^{\sim}$		
1345.18	5	86.8" 2	13 5	1258.46	4-	E2+M1	5.3 3	iy: unweighted average of 8.0 8 and 18.7 13 from (α,4nγ) and (α,2nγ), respectively. δ: -0.42 7 or -1.63 20 from (α,2nγ). α: for range of δ allowed by $\gamma(\theta)$.
		771.8 [@] 1	33.2 ^a 16	573.30	6+	E1 ^{&}		
		1067.8 [@] 1	100 ^a 4	277.43	4+	E1 ^{&}		
1364.53	1-	1280.25 10	100 <i>3</i>	84.25468	2^{+}	E1		
		1364.60 10	56.5	0.0	0^{+}	E1		
1397.05	(3)-	1119.40 20	57.1 17	277.43	4 ⁺	E1		
		1312.9 3	100.6	84.25468	2*	Q.		
1408.73	$(4)^+$	1131.3 ^{<i>u</i>} 2	100	277.43	4^+	E2(+M1) ^{&}	0.017	
1425.24	(2)	118.80 15	1.02 10	1306.39	21	[EI]	0.217	

 ∞

 $^{170}_{70} \rm Yb_{100} \text{--} 8$

L

$\gamma(^{170}$ Yb) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	${\rm I_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{c}	Comments
1425.24	$(2)^{-}$	286.60 5	14.3 4	1138.55	2+	E1	0.0223	
	(-)	1341.20 10	100 3	84.25468	2+	(E1)		
1437.53	10^{+}	474.2 ^a 2	100	963.32	8+	E2 ^{&}	0.0204	B(E2)(W.u.) = 356.25
1450.35	6-	105.2 ^{<i>a</i>} 2	89 ^{<i>a</i>} 6	1345.18	5-	(M1+E2)	2.78 15	Mult.: D+Q from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; δ larger than typical for E1+M2. δ : -0.41 5 or -1.75 <i>I</i> 5 from $(\alpha, 2n\gamma)$.
		191.9 ^a 2	100 ^a 6	1258.46	4-	E2 ^{&}	0.308	
1459.75	$(5)^{+}$	887.0 5	33.9	573.30	6 ⁺		01200	E_{ν} , I_{ν} : weighted average from (α , $2n\gamma$) and (α , $4n\gamma$).
		1182.2 ^{<i>a</i>} 2	100 ^a 18	277.43	4^{+}	E2+M1		Mult.: E2(+M1) from $(\alpha, 2n\gamma)$; D from $(\alpha, 4n\gamma)$.
1479.91	0^{+}	251.0		1228.84	0^{+}	E0		ce(K)/ce=0.87.
								I(ce(K))/I(1396 γ)=0.0051 from ¹⁷⁰ Lu ε decay.
		410.5		1069.35	0^{+}	E0		ce(K)/ce=0.87.
								I(ce(K))/I(1396 γ)=0.00103 from ¹⁷⁰ Lu ε decay.
		1395.65 10	100 3	84.25468	2+	E2		
		14/9.9		0.0	0.	E0		$ce(\mathbf{K})/ce=0.87$.
1510.0	(1000 00 5	100	077 10	4	(D) h		$I(ce(K))/I(1390\gamma) = 0.0133$ from $10^{-1}Lu \epsilon$ decay.
1510.2	(5)	1232.84 5	100	277.43	4' 2+	(D) ⁰		
1512.57	1	1428.08 10	100 3	84.25468	2 · 0+	EI F1		
1521 21	6+	228.2af 5	13.220	1202.4	$(4)^{+}$	LI		
1521.51	0	220.2 5 5	11 4	572.20	(4) (+	M1&		\mathbf{L}_{i} , such that a sum on \mathbf{r}_{i} (5.2) 15 from (1.2) and 0(1.2) from (1.4)
		948.04 2	/9 //	573.30	0	MI		I_{γ} : weighted average of 52 15 from (α ,2n γ) and 96 13 from (α ,4n γ).
		1243.64 2	100 20	277.43	4+	E2 ^{cc}		I_{γ} : weighted average from $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.
1528.74	5+	955.3 4	41 10	573.30	6+	M1(+E2)		E_{γ}, I_{γ} : weighted average from $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.
		1251.3 ^{<i>a</i>} 2	$100^{a} 21$	277.43	4+	M1+E2 ^{&}		170
1534.57	2^{+}	228.05 15	2.29 14	1306.39	2+	E0+M1+E2	≈0.65	α : adopted value estimated from $\alpha(K)$ exp in ¹⁷⁰ Lu ε decay.
		388.80 10	5.71 77	1145.72	2+ 2+	M1(+E0+E2)	0.081	α : if M1.
		395.95 10	12.0 3	1138.55	2 · 1+	MI(+E0+E2)	0.077	α : if M1.
		1450 20 10	100 3	84 25468	$\frac{1}{2^{+}}$	E0+M1+E2		
		1534.55 10	58.3 17	0.0	$\bar{0}^{+}$	E2		
1566.38	0^{+}	201.75 15	2.59 22	1364.53	1-	[E1]	0.0542	
		337.5		1228.84	0^+	E0		ce(K)/ce=0.87.
								I(ce(K))/I(1482 γ)=0.00111 from ¹⁷⁰ Lu ε decay.
		497.0		1069.35	0^{+}	E0		ce(K)/ce=0.87.
					- 1			I(ce(K))/I(1482 γ)=0.0032 from ¹⁷⁰ Lu ε decay.
		1482.15 10	100 4	84.25468	2 ⁺	(E2)		-(V)
		1300.4		0.0	0.	EU		Ce(K)/Ce=U.8/. L(co(K))/L(1482c)=0.0061 from 170L contractions
1572 72	7-	122 69 5	6 5 ^a 11	1450 35	6-	(M1 + E2)	1.60.20	$I(ce(\mathbf{K}))/I(1482\gamma)=0.0001$ If $Om ^{11}$ Lu \mathcal{E} decay.
1372.13	/	122.0 3	0.3 14	1430.33	0	(IVI1+E2)	1.09 20	Mult.: D+Q from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; δ larger than typical for E1+M2. δ : -0.37 7 or -1.95 25 from $(\alpha, 2n\gamma)$.
		227.5 ^a 2	21.0 ^{<i>a</i>} 14	1345.18	5-	E2 ^{&}	0.176	

9

$^{170}_{70} \mathrm{Yb}_{100} \text{-} 9$

From ENSDF

 $^{170}_{70} Yb_{100}$ -9

	Adopted Levels, Gammas (continued)													
						$\gamma(^{170})$	(conti	nued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ #	α ^c	Comments					
1572.73	7-	609.2 ^a 2 999.5 [@] 1	34.1 ^a 22 100 ^a 4	963.32 573.30	8+ 6+	E1 ^{&} (E1) ^{&}			I_{γ} : other: 20 3 in (α ,2n γ).					
1573.10 1601.33	(4 ⁻) 6 ⁺	1295.7 ^a 2 271.6 ^a 5	$ \begin{array}{r} 100 \\ 7^{a} 4 \end{array} $	277.43 1329.31	4^+ (4) ⁺									
1634.84	(1 ⁺)	1028.1 ^{<i>a</i>} 2 1550.55 <i>10</i> 1634.8 <i>3</i>	100 ^a 21 100 3 21.0 8	573.30 84.25468 0.0		E2(+M1) (M1) (M1)	>1.5							
1658.06	$(2)^{+}$	1380.80 <i>20</i> 1573.60 <i>25</i>	100 <i>13</i> 74 <i>4</i>	277.43 84.25468	4+ 2+	0								
1660.26	(5 ⁻)	1086.8 ^{<i>a</i>} 2 1382.9 ^{<i>a</i>} 2	100 ^a 10 100 ^a 12	573.30 277.43	6+ 4+	(E1) ^{&} (E1)			Mult.: D from $(\alpha, 2n\gamma)$; $\Delta \pi$ from level scheme.					
1669.03	6+	$260.4^{a} 5$ $1095.8^{a} 2$	15 ^a 7 100 ^a 19	1408.73 573.30	(4) ⁺ 6 ⁺	E2(+M1) ^{&}								
1712.41 1715.95	(7 ⁻) 8 ⁻	1139.1 ^{<i>a</i>} 2 143.2 ^{<i>a</i>} 2	$ \begin{array}{c} 100 \\ 42^{a} & 3 \end{array} $	573.30 1572.73	6+ 7-	D ^b (M1+E2)		1.03 <i>19</i>	 I_γ: other: 28.3 22 in (α,2nγ). Mult.: D+Q from γ(θ) in (α,2nγ); δ larger than typical for E1+M2. 					
1717.95	(2)-	265.4 ^{<i>a</i>} 2 205.55 20 292.55 ^{<i>e</i>} 20 492.58 5 572.20 5	$100.0^{a} 9$ 0.63 5 <0.43 ^e 45.4 14 100 3	1450.35 1512.37 1425.24 1225.35 1145.72	6^{-} 1^{-} $(2)^{-}$ $(3)^{+}$ 2^{+}	E2 ^{&} (M1+E2) [M1,E2] E1 E1		0.1077 0.34 <i>10</i> 0.12 <i>5</i>	δ: -0.51 6 or -1.50 20 from (α,2nγ).					
1762.63 1780.55	(6 ⁻) (7) ⁺	579.40 5 102.4 ^a 5 320.7 4	35.7 <i>11</i> 100 6.4 <i>23</i>	1138.55 1660.26 1459.75	2 ⁺ (5 ⁻) (5) ⁺	E1 (M1)			Mult.: D from $(\alpha, 2n\gamma)$; $\Delta \pi =$ (No) from level scheme. E _{γ} ,I _{γ} : weighted average from $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$.					
		817.1 ^{<i>a</i>} 2 1207.0 ^{<i>a</i>} 2	18.1 ^a 25 100 ^a 13	963.32 573.30	8+ 6+	M1(+E2) ^{&} D ^b								
1793.37	(6 ⁻)	$132.9^{a} 2$ $220.5^{a} 5$	23^{a} 7 27^{a} 10	1660.26 1573.10	(5^{-}) (4^{-})	0 ^b								
1803.39	(8) ⁺	$ \begin{array}{c} 1220.2 \ 5 \\ 281.8^{a} \ 2 \\ 840 \ 1^{a} \ 2 \end{array} $	$100 \ 33 \ 18^a \ 5 \ 100^a \ 10$	573.30 1521.31 963.32	6 ⁺ 6 ⁺ 8 ⁺	M1&		0.01101						
1835.06	7 ⁽⁺⁾	$\begin{array}{c} 1230.3^{a} \\ 306.1^{a} \\ 5 \end{array}$	$63^a 9$ 10 6	573.30 1528.74	6 ⁺ 5 ⁺	141 1		0.01101	I_{γ} : other: 91 18 in (α ,2n γ).					
		871.8 ^{<i>aa</i>} 2	100 ^a 11	963.32	8+	D ^b			Eγ=870.6 5 in (α,2nγ). I(872γ)/I(1261γ)=2.3 3 in (α,4nγ) but 0.35 13 in (α,2nγ).					
1838.2	(2)+	1261 ^{<i>a</i>} <i>1</i> 1753.9 ^{<i>f</i>} <i>3</i>	31 ^{<i>a</i>} 7 100 5	573.30 84.25468	6 ⁺ 2 ⁺	D ^b M1(+E2+E0)			I_{γ} : see comment on 870.6 γ .					

10

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100} \mathrm{-}10$

	Adopted Levels, Gammas (continued)													
						$\gamma(^{170}\mathrm{Yb})$	(continued)							
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ#	α ^C	Comments					
1838.2	$(2)^{+}$	1838.2 ^{ef} 5	<97 ^e	0.0	0^{+}									
1851.23	6-	400.9 ^{<i>a</i>} 2	46 ^{<i>a</i>} 5	1450.35	6-	M1+E2 ^{&}	0.7 +6-4	0.059 13	B(M1)(W.u.)>1.5×10 ⁻⁴ I _{γ} : other: 20.4 20 from (α ,2n γ).					
		505.9 ^a 2	100 a 10	1345.18	5-	M1+E2&	0.9 +6-4	0.030 6	B(M1)(W.u.)>0.00012; B(E2)(W.u.)>0.12					
1872.09	9-	156.4 ^{<i>a</i>} 2	11.7 <mark>a</mark> 14	1715.95	8-	$D^{\boldsymbol{b}}$								
		299.2 ^{<i>a</i>} 2	60.0 ^{<i>a</i>} 21	1572.73	7-	E2 ^{&}		0.0745						
		434.2 [@] <i>f</i> 5	8 <i>3</i>	1437.53	10^{+}				I_{γ} : from (α ,2n γ); γ absent in (α ,4n γ).					
		908.8 ^{<i>a</i>} 2	100 ^a 3	963.32	8+	E1&								
1903.14	7-	141.0 ^{<i>a</i>} 5	4.9 ^{<i>a</i>} 24	1762.63	(6 ⁻)									
		234.4 [@] f 5	14 7	1669.03	6+				I_{γ} : from (α ,2n γ); γ absent in (α ,4n γ).					
		243.3 4	24 ^{<i>a</i>} 7	1660.26	(5 ⁻)	$Q^{\boldsymbol{b}}$			E_{γ} : weighted average from (α ,2n γ) and (α ,4n γ).					
		939.6 ^{<i>a</i>} 2	43 ^a 7	963.32	8+	E1 ^{&}			I _{γ} : weighted average of 36 7 from (α ,2n γ) and 49 7 from (α ,4n γ).					
		1329.8 ^{<i>a</i>} 2	100 ^{<i>a</i>} 12	573.30	6+	E1 ^{&}								
1954.13	8+	352.8 ^{<i>a</i>} 2	27 ^a 7	1601.33	6+	$Q^{\boldsymbol{b}}$								
		990.8 ^a 2	100 ^a 11	963.32	8+	M1+E2&								
1964.64	(7 ⁻)	113.6 ^{<i>a</i>} 5	54 8	1851.23	6-	(M1+E2)			I _{γ} : weighted average of 50 <i>17</i> from (α ,4n γ) and 55 9 from (α ,2n γ). Mult : D : O from (α ,2n α): $\Delta \pi$ =(No) from level scheme					
		514.3 ^a 2	100 ^a 17	1450.35	6-				where $D+Q$ from $(a,2a)$, $\Delta x = (100)$ from level scheme.					
1983.36	12+	545.7 ^a 2	100	1437.53	10+	E2		0.01433	B(E2)(W.u.)=268 21					
									Mult.: Q from (α ,4n γ); not M2 from RUL.					
1985.64	1-,2-	560.55 15	2.8 4	1425.24	$(2)^{-}$	M1		0.0305						
		621.40° 15	<8.1	1364.53	$\frac{1}{2^{+}}$	[MI] E1		0.0235						
		1901.55 <i>15</i> 1985 5 ^e 3	$< 13.3^{e}$	0.0		EI								
2005.43	(9)-	292.9^{a} 5	5.8 ^{<i>a</i>} 19	1712.41	(7^{-})									
		1042.1 ^{<i>a</i>} 2	100 ^a 9	963.32	8+	E1 ^{&}								
2009.35	8+	340.4 ^{<i>a</i>} 2	20 ^a 4	1669.03	6+				I_{γ} : other: 50 20 in (α ,2n γ).					
		1046.0 ^{<i>a</i>} 2	100 ^a 11	963.32	8+	E2(+M1) ^{&}								
2039.85	1+	675.45 20	0.42 3	1364.53	1-									
		901.40 ^e 20	<2.8 ^e	1138.55	2^+									
		970.20° 20	<4.5°	1069.35	0^+ 2 ⁺	(M1) M1+E2								
		2040 00 15	32.3 18 100 4	04.20408 00	$\overset{\scriptstyle \angle}{0^+}$	M1 + EZ								
2044.64	(8 ⁻)	$141.5^a 2$	88 ^{<i>a</i>} 8	1903.14	7-	(D+O)			I_{γ} : other: 30 10 in (α ,2n γ).					
	(~)	281.9 ^{<i>a</i>} 2	100 ^{<i>a</i>} 13	1762.63	(6 ⁻)	(Q)			/····///					
2052.59	0-,1-,2-	540.15 10	100 4	1512.37	1-	M1		0.0336						
		688.00 8	96 <i>3</i>	1364.53	1-	M1		0.0181						

 $^{170}_{70} \rm Yb_{100} \text{--} 11$

 $^{170}_{70} \mathrm{Yb}_{100}$ -11

L

From ENSDF

						$\gamma(^{170}$ Yb) (continue	d)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α ^C	Comments
2056.73	10-	$184.6^{a} 2$ $341.0^{a} 1$	17.8 ^a 18 100.0 ^a 18	1872.09 1715.95	9- 8-	D ^{&} E2 ^{&}		0.0506	
2096.81	(8 ⁻)	303.3 ^{<i>a</i>} 2 334.4 ^{<i>a</i>} 5 1133.6 ^{<i>a</i>} 2	100 ^a 19 <16 ^a 69 ^a 9	1793.37 1762.63 963.32	(6 ⁻) (6 ⁻) 8 ⁺	Q ^b			
2098.5	(8 ⁻)	133.9 ^a 2 247.0 ^a 5	$100^{a} 12$ $29^{a} 12$	1964.64 1851.23	(7 ⁻) 6 ⁻	D ^{&}			
2115.90	1-	457.90 15	5.9 5	1658.06	$(2)^+$	(E1+M2)	0.36 7	0.026 7	Mult.: α (K)exp In ε decay implies E2(+M1) or E1+M2 with δ =0.36 7; level scheme requires $\Delta \pi$ =yes.
2126.14	1-	970.20 ^e 20 2031.70 20 2116.0 614.00 ^e 20	<32 ^e 100 3 43 5 <0.16 ^e	1145.72 84.25468 0.0 1512.37	2^+ 2^+ 0^+ 1^- 2^+	E1 E1			
		645.80 20 700.80 20 819.50 20 980.30 20 988.5	$\begin{array}{c} 0.23 \ 1 \\ 0.530 \ 15 \\ 0.530 \ 15 \\ 2.20 \ 23 \\ 2.27 \ 23 \end{array}$	1479.91 1425.24 1306.39 1145.72 1138.55	0^{+} (2) ⁻ 2 ⁺ 2 ⁺ 2 ⁺ 2 ⁺	M1		0.01732	$\alpha(K)$ exp in Lu ε decay is inconsistent with placement.
		2041.88 <i>10</i> 2126.11 <i>10</i>	100 <i>3</i> 84 <i>3</i>	84.25468 0.0	$\frac{1}{2^{+}}$ 0 ⁺	E1 E1			
2135.33	10+	331.9 ^{<i>a</i>} 2 697.8 ^{<i>a</i>} 2	44 ^a 12 100 ^a 18	1803.39 1437.53	(8) ⁺ 10 ⁺	Q ^b M1 ^{&}		0.01751	Mult.: possible E0 component suggested in $(\alpha, 2n\gamma)$.
2170.04	(9+)	1172.3 ^{<i>a</i>} 2 389.1 ^{<i>a</i>} 2 732.9 ^{<i>a</i>} 2	53^{a} 15 100 ^a 18 7.3 ^a 18	963.32 1780.55 1437.53	8 ⁺ (7) ⁺ 10 ⁺	Q ⁰			I_{γ} : other: $I_{\gamma}(1172\gamma)$: $I_{\gamma}(698\gamma)=117$ 33:100 33 in (α,2nγ).
2189.65	7-	338.3 ^a 2	100 a 6	1851.23	6-	M1(+E2) ^{&}		0.08 4	
		739.2 ^{<i>a</i>} 5	18 6	1450.35	6-	E2(+M1) ^{&}	≥1.1	0.0089 19	B(M1)(W.u.)<1.6×10 ⁻⁶ ; B(E2)(W.u.)>0.00076 I _{γ} : average of 12 6 in (α ,4n γ), 23 6 in (α ,2n γ).
		844.6 ^{<i>a</i>} 2	35 12	1345.18	5-	E2 ^{&}			 B(E2)(W.u.)=0.0020 8 I_γ: 35 12 for γ possibly contaminated by ²⁷Al(n,n'γ) line in (α,2nγ); however, Iγ=110 10 from (α,4nγ). Reason for discrepancy has not been identified. Mult.: M1,E2 from α(K)exp in (α,2nγ), Q from DCO ratio in (α,4nγ).
2200.91	1-,2-	1055.23 2116.60 <i>15</i> 2200 9 3	45 9 100 4 10 9 5	1145.72 84.25468	2^+ 2^+ 0^+	E1 E1			
2220.69	(9)-	175.9^{a} 2	23^{a} 3	2044.64	(8-)				I_{γ} : other: 11 5 in (α ,2n γ).
		317.5 ^a 2	25 ^a 3	1903.14	7-	Q ^b			
		783.1 ^{<i>a</i>} 2	25 ^a 3	1437.53	10^{+}	(D) ^{<i>b</i>}			

12

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -12

 $^{170}_{70} \mathrm{Yb}_{100}$ -12

	tinued)	mmas (con	ed Levels, Ga	Adopte					
		continued)	$\gamma(^{170}\text{Yb})$ (c						
Comments	α^{c}	δ [#]	Mult. [‡]	J_f^π	E_f	I_{γ}^{\dagger}	${\rm E_{\gamma}}^{\dagger}$	\mathbf{J}_i^π	E _i (level)
			D ^b	8+	963.32	100 ^{<i>a</i>} 7	1257.6 ^{<i>a</i>} 2	(9)-	2220.69
			D ^b	10-	2056.73	10.7 ^a 10	185.3 ^a 2	11-	2242.00
	0.0401		E2&	0-	1872 09	100^{a} 3	$369.9^{a}.2$		
	0.0401			10+	1427.52	044 2	904.2 4 .2		
Ault . D from				10^{-1}	1437.33	94^{-5}	$804.5^{\circ} 2$	(0^{-})	1252 5
fuit.: D from.			$(\mathbf{N}\mathbf{I}\mathbf{I})$	(0) (7-)	2098.3	$100^{\circ} 13$ $73^{\circ} 20$	$134.9^{\circ} 2$	(9)	2235.5
				(7)	1904.04	8 22 24	200.0 2	1-	2260 00
				$\frac{2}{2^+}$	1143.72 84.25468	0.35 24	1122.3 5	1	2208.08
			E1	$\overset{2}{0^+}$	04.23400	100.3	2103.9 J 2268 2 3		
			EI	$(2)^{-}$	1425.24	2 96 14	2200.2 J 850.05 15	1-	2275 49
				1-	1364 53	2.50 14	910.8.3	1	221J.77
				2+	1306 39	$\sim 3.8^{\circ}$	969 05 ^e 20		
				0^{+}	1228 84	<5.8 ^e	1046.60^{e} 25		
Ault.: $\alpha(K)$ exp In ε decay implies E2(+M1) or E1+M2 ($\delta = 0.57$ 16): level scheme requires $\Delta \pi =$ ves		0.57 16	(E1+M2)	2^{+}	1138.55	9.9 3	1137.1 3		
(° ° ° ° ° °), • ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			E1	0^{+}	1069.35	8.5 4	1206.30 20		
			E1	2+	84.25468	100 3	2191.15 15		
			E1	0^{+}	0.0	54.6 17	2275.40 10		
	0.19 7		[M1,E2]	1^{+}	2039.85	<11.6 ^e	249.95 <mark>°</mark> 20	1+	2289.37
				2+	84.25468	80 <i>3</i>	2205.3 4		
			M1	0^{+}	0.0	100 5	2289.2 4		
				2^{+}	1145.72	<149 ^e	1181.5 ^{ef} 3	(0^+)	2328.0?
				2+	84.25468	100 7	2243.7 ^{<i>f</i>} 4		
			F0	0^{+}	0.0		2327.5f 3		
			LO	7-	2189.65	100	$152.0^{a}.2$	(8^{-})	2341.6
	0.26 8		[M1.E2]	1-	2126.14	<0.40 ^e	225.45 ^e 20	012-	2351.71
	0.23 8		[M1.E2]	1-	2115.90	<2.6 ^e	235.55 ^e 15	· ,1 , -	
	0.0181		[E1]	1+	2039.85	0.43 4	311.80 20		
				$1^{-}, 2^{-}$	1985.64	<1.51 ^e	366.35 ^e 15		
				$(2)^{-}$	1717.95	0.54 3	633.75 25		
	0.01104		M1	1-	1512.37	42.4 12	839.30 10		
			E2	$(2)^{-}$	1425.24	15.7 5	926.40 15		
			M1	1-	1364.53	100 3	987.25 10		
	0.22 8		[M1,E2]	1-	2126.14	<0.38 ^e	238.25 ^e 15	1-	2364.06
			E1	2+	1534.57	10.1 3	829.30 10		
	0.01065		M1	1-	1512.37	1.67 9	851.45 20		
			E1	0^{+}	1479.91	7.1 4	884.10 15		
			M1	$(2)^{-}$	1425.24	32.6 9	938.75 8		
fult.: M1,E2 from α (K)exp In ε decay; Δ J=2 from leve scheme.			(E2)	(3)-	1397.05	2.96 9	966.85 20		
			M1	1-	1261 52	2150	000 60 10		

13

I

Adopted Levels, Gammas (continued)												
						γ (¹⁷⁰ Yb) (continued	<u>)</u>				
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	J_f^π	Mult. [‡]	α^{c}	Comments				
2364.06	1-	1057.70 15	4.40 14	1306.39	$2^{+}_{0^{+}}$	E1						
2367.65	(1)-	1135.2 1218.50 20 1225.65 10 1294.70 10 2279.9 2 2364.10 15 166.70 ^e 20 241.50 5 251.75 10 649.60 ^e 15 855.15 15 942.45 15 1003.20 10 1061.35	$\begin{array}{c} 28.2 \ 9 \\ 100 \ 3 \\ 58.8 \ 19 \\ 3.94 \ 14 \\ 30.0 \ 9 \\ < 0.20^{e} \\ 6.62 \ 19 \\ 1.36 \ 6 \\ < 1.38^{e} \\ 27.8 \ 8 \\ 6.10 \ 19 \\ 100 \ 3 \\ 6 \ 5 \ 13 \end{array}$	1228.84 1145.72 1138.55 1069.35 84.25468 0.0 2200.91 2126.14 2115.90 1717.95 1512.37 1425.24 1364.53 1306 30	0^{-} 2^{+} 2^{+} 0^{+} 2^{+} 0^{+} 1^{-} , 2^{-} 1^{-} $(2)^{-}$ 1^{-} $(2)^{-}$ 1^{-} 2^{+}	E1 E1 E1 E1 [M1,E2] M1 [M1,E2] [M1] M1 E2 M1,E2	0.64 <i>15</i> 0.283 0.19 7 0.0210 0.01054					
2372.83	10^{+}	418.7 ^{<i>a</i>} 2	92^{a} 15	1954.13	2 8 ⁺	Q ^b						
2388.06	(11)-	935.3 ^{<i>a</i>} 2 382.6 ^{<i>a</i>} 2	$100^{a} 23$ $13^{a} 3$	1437.53 2005.43	10+ (9) ⁻	M1+E2 ^a						
2398.51	(10 ⁻)	950.5 ^{<i>a</i>} 2 177.8 ^{<i>a</i>} 2	$ \begin{array}{r} 100^{a} & 10 \\ 67^{a} & 5 \end{array} $	1437.53 2220.69	10 ⁺ (9) ⁻	E1 ^{&} (M1+E2)		I_{γ} : other: 33 11 in $(\alpha, 2n\gamma)$. Mult.: intraband D+O from $(\alpha, 2n\gamma)$.				
2400.10	1-	353.9 ^{<i>a</i>} 2 741.50 20 1330.7 ^{<i>e</i>} 3 2315.9 2	100 ^a 5 10.7 3 <9.2 ^e 50.8 17	2044.64 1658.06 1069.35 84.25468	(8^{-}) $(2)^{+}$ 0^{+} 2^{+}	Q ^b E1						
2412 30	$(10)^{+}$	2400.15 20 403 1 ^a 2	100 <i>3</i>	0.0	0^+	E1						
2412.39	(10)	974.8 ^{<i>a</i>} 2	56^{a} 13	1437.53	0 10 ⁺	Q M1,E2 ^{&}		I_{γ} : $I_{\gamma}(975\gamma)/I_{\gamma}(403\gamma)=1.7~9$ in $(\alpha, 2n\gamma)$.				
2429.0	(10 ⁻)	$175.4^{a} 2$	93^{a} 13 100 ^a 13	2253.5 2098 5	(9^{-}) (8^{-})							
2429.05	1+,2+	$303.20^{e} 20$	<4.5 ^e	2126.14	1^{-}	[E1]	0.0194					
2436.01	(2,3)-	2344.9 5 2429.0 4 235.55 ^e 15 801.25 20 901.40 ^e 20 1211.2 3 2157.7 5	100 9 86 16 45.5 18 48 5 <87 ^e 73 4 <143 ^e 73 4 20.0 9	1312.37 1138.55 84.25468 0.0 2200.91 1634.84 1534.57 1225.35 277.43	2^{+} 2^{+} 0^{+} $1^{-},2^{-}$ (1^{+}) 2^{+} $(3)^{+}$ 4^{+}	(E2) M1 (M1,E2) [M1,E2] E1	0.23 8	Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; level scheme requires $\Delta \pi$ =No.				

 $^{170}_{70}$ Yb $_{100}$ -14

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100}$ -14

				ontinued)					
						$\gamma(^{170}\text{Yb})$ (co	ontinued))	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ#	α^{c}	Comments
2436.01	(2,3)-	2352.3 5	100 4	84.25468	2+	E1			
2460.55	(10 ⁻)	1023.0 ^{<i>a</i>} 2	100	1437.53	10^{+}				Mult.: transition interpreted as D ($\Delta J=0$) in (α ,4n γ).
2473.69	12-	231.6 ^{<i>a</i>} 2	13.1 ^a 21	2242.00	11-				
		417.0 ^{<i>a</i>} 2	100.0 ^a 21	2056.73	10-	E2 ^{&}		0.0287	
2477 8	(10^{-})	$381.0^{a}.2$	100	2096 81	(8^{-})	O^{b}			
2496.20	1-	220.90.15	2 37 8	2275 49	1-	[M1 E2]		0.28.9	
2190.20	1	369.80 15	3.24 17	2126.14	1-	[[]]],22]		0.20 >	
		983.67 20	39 3	1512.37	1-	M1			
		1070.9 <i>3</i>	6.54 22	1425.24	$(2)^{-}$	M1			
		1426.72	56 6	1069.35	0^{+}	E1			
		2411.90 15	100 3	84.25468	2+	E1			
		2496.15 15	92 <i>3</i>	0.0	0^{+}	E1			
2498.19	$0^{-}, 1^{-}, 2^{-}$	222.40 ^e 15	<4.0 ^e	2275.49	1-	[M1]		0.355	
		371.90 15	2.96 17	2126.14	1-	(M1)		0.0887	
		382.35 10	5.65 22	2115.90	1-	(M1)		0.0825	
2522.05	4.4	1133.60 10	100 3	1364.53	1-	M1		0.01004	
2523.07	1'	864.85 25	26.7 13	1658.06	(2)	MI		0.01024	
		1158.5° 3	<16.2	1364.53	1				
		$1217.30^{\circ} 20$	<155°	1300.39	2+	M1			
		2436.0 3	100.3	0.0	$^{2}_{0^{+}}$	M1			
2524.27	12+	2323.0 5	560 6	0.0	10+	ob			\mathbf{E} , and constant in (, 2π)
2324.27	12	589.2 2	30° 0	2155.55	10	Q ¹	.1.0	0.000.5	E_{γ} : not reported in $(\alpha, 2i\gamma)$.
		540.6° 2	91 ^a 10	1983.36	12	$MI(+E2)^{\circ\circ}$	≤ 1.0	0.029 5	I_{γ} : other: 4// in $(\alpha, 2n\gamma)$.
		1080.80" 20	100- 16	1437.33	10	(E2)			doublet) in $(\alpha 2n\gamma)$ consistent with E1+E2 doublet
2525.1	(9^{-})	183.6 ^{<i>a</i>} 2	100 ^a 8	2341.6	(8^{-})				
	(-)	335.4 ^a 5	15 ^a 8	2189.65	7-				
2536.97	1-	497.50 15	10.3 <i>3</i>	2039.85	1^{+}				Mult.: M1 from $\alpha(K)$ exp in ¹⁷⁰ Ly ε decay, but E1 is
									required by level scheme.
		1002.3	100 10	1534.57	2+				
		1173.2 ^e 4	<33 ^e	1364.53	1-				
		1230.2 <i>3</i>	83 <i>3</i>	1306.39	2+				
		1307.97	87 10	1228.84	0^{+}				
		1398.30 20	50 10	1138.55	2+				
		1467.50	50 5	1069.35	0^+				170-
		2452.7 3	100 3	84.25468	2+				Mult.: M1,E2 from $\alpha(K)$ exp in ¹⁷⁰ Lu ε decay is inconsistent with placement.
		2536.9 4	47 3	0.0	0^{+}	E1			
2580.35	14+	597.0 ^a 2	100	1983.36	12^{+}	E2 ^{&}		0.01152	
2603.60	(11^{-})	205.1 ^{<i>a</i>} 2	46 ^{<i>a</i>} 3	2398.51	(10 ⁻)	D ^b			I_{γ} : other: 100 33 in $(\alpha, 2n\gamma)$.
		382.9 ^{<i>a</i>} 2	100 ^{<i>a</i>} 5	2220.69	(9)-				,

 $^{170}_{70} \mathrm{Yb}_{100}$ -15

 $^{170}_{70} \mathrm{Yb}_{100}$ -15

From ENSDF

Adopted Levels, Gammas (continued)												
						$\gamma(^{170}\mathrm{Yb})$	(continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α ^C	Comments				
2603.8 2661.02	(11 ⁺) 1 ⁺	$\begin{array}{c} 433.8^{a} \ 2\\ 225.45^{e} \ 20\\ 296.70^{e} \ 20\\ 621.40^{e} \ 15\\ 1181.5^{e} \ 3\\ 2576.8 \ 4\end{array}$	$ \begin{array}{r} 100 \\ <3.0^{e} \\ <3.7^{e} \\ <21^{e} \\ <24^{e} \\ 34 6 \end{array} $	2170.04 2436.01 2364.06 2039.85 1479.91 84.25468	(9^+) $(2,3)^-$ 1^- 1^+ 0^+ 2^+	Q ^b [E1] [E1] [M1] M1,E2	0.0407 0.0205 0.0235	E_{γ} : doubly placed in (α ,2n γ).				
2667.19	1(+)	2661.0 3 231.15 ^e 20 238.25 ^e 15 303.20 ^e 20 1009.5 3 1132.86 1187.5 3	$100 \ 6 \\ <4.7^{e} \\ <13.2^{e} \\ <3.2^{e} \\ 28.4 \ 16 \\ 48 \ 5 \\ 32.3 \ 16 \\ \end{cases}$	$\begin{array}{c} 0.0 \\ 2436.01 \\ 2429.05 \\ 2364.06 \\ 1658.06 \\ 1534.57 \\ 1479.91 \end{array}$	$0^{+} (2,3)^{-} \\1^{+},2^{+} \\1^{-} (2)^{+} \\2^{+} \\0^{+} \\0^{+} \\$	(M1) [E1] [M1,E2] [E1] M1	0.0382 0.22 8 0.0194					
		1241.95 20	35.5 16	1425.24	(2)-	(E1)		Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; $\Delta \pi = (yes)$ from level scheme.				
		1361.1 3	81 8	1306.39	2+	(E2)		Mult.: E1 or E2 from α (K)exp In ε decay; $\Delta \pi$ =(No) from level scheme.				
		1438.1 <i>3</i> 1521.7 <i>3</i> 1529.0 <i>3</i>	35.5 <i>16</i> 26 6 52 5	1228.84 1145.72 1138.55	0+ 2+ 2+	M1 M1,E2						
		1597.6 <i>3</i> 2582.9 <i>3</i>	52 <i>3</i> 100 <i>3</i>	1069.35 84.25468	0+ 2+	M1		Mult.: E1 from $\alpha(K)$ exp in ¹⁷⁰ Lu ε decay inconsistent with this				
		2667.4 5	58 4	0.0	0^{+}			Mult.: two α (K)exp measurements In ε decay are mutually inconsistent: they imply mult=E1 (1988DzZW) or M1 (1972Ca21).				
2680.75	13-	206.9 ^{<i>a</i>} 5	4.7 ^a 19	2473.69	12-							
		438.7 ^{<i>a</i>} 2	100 ^{<i>a</i>} 3	2242.00	11-	E2 ^{&}	0.0251					
		697.5 ^{<i>a</i>} 2	49.5 ^{<i>a</i>} 19	1983.36	12^{+}	D ^b						
2732.3	(10 ⁻)	207.3^{a} 2 390 5 ^a 2	100^{a} 10 42^{a} 7	2525.1 2341.6	(9^{-}) (8^{-})							
2748.08	1-	249.95 ^e 20 472.50 15 547.25 15 762.55 15 1113.10 20 1181.5 ^e 3 1213.65 20 1235.90 10 1268.30 20 1323.00 20 1383.60 20 1518.9 3	<0.23 ^e 0.54 2 1.86 9 1.34 4 4.86 22 <2.6 ^e 2.48 13 11.0 3 5.62 22 8.4 7 9.1 3 2.81 11	2498.19 2275.49 2200.91 1985.64 1634.84 1566.38 1534.57 1512.37 1479.91 1425.24 1364.53 1228.84	$0^{-}, 1^{-}, 2^{-}$ 1^{-} $1^{-}, 2^{-}$ $1^{-}, 2^{-}$ (1^{+}) 0^{+} 2^{+} 1^{-} 0^{+} $(2)^{-}$ 1^{-} 0^{+}	[M1,E2] M1 M1(+E2) M1 M1	0.19 7 0.0474 0.023 <i>10</i> 0.01402					

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -16

					Adopt	ed Levels, Ga	ammas (conti	nued)	
						$\gamma(^{170}$ Yb) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\#}$	α ^{<i>c</i>}	Comments
2748.08	1-	1602.2 <i>3</i>	4.97 22	1145.72	2+	E1			
		1609.40 20	10.4 5	1138.55	2+	E1			
		1678.60 20	10.8 <i>3</i>	1069.35	0^{+}	E1			
		2663.95 20	59.0 22	84.25468	2+	E1			
	0-1-	2748.15 20	100 4	0.0	0^+	E1			
2768.34	$0^{-}, 1^{-}$	231.15° 20	<0.66	2536.97	1-	[M1,E2]		0.24 8	
		339.45° 20	<0.37	2429.05	1+,2+			0.07.0	
		368.30 20	0.91 5	2400.10	l^{-}	[M1,E2]		0.07 3	
		416.50 20	0.61 /	2351.71	$(2)^{-}$	(M1,E2)		0.047 19	
		1050.40 10	100 3	1/1/.95	(2)	E2			
		1110.7 5	1.25 / 20.5 23	1038.00	$(2)^{+}$	M1			
2775 66	1-	279 40 15	20.3 23	2496 20	1	M1 F21		0 14 5	
2115.00	1	649.60^{e} 15	$\sim 2.1^{e}$	2126.14	1	[M1]		0.0210	
		659.70 20	0.48.3	2120.14	1-	(M1)		0.0202	
		723.05 20	0.89 4	2052.59	$0^{-}.1^{-}.2^{-}$	(111)		0.0202	
		1263.45 20	13.9 4	1512.37	1-	M1			
		1350.5 <i>3</i>	2.59 12	1425.24	$(2)^{-}$				
		1469.10 20	4.04 20	1306.39	2+	E1			
		2691.45 20	100 4	84.25468	2+	E1			
		2775.7 3	4.95 20	0.0	0^{+}				
2783.12	1^{+}	656.65 ^e 20	<1.32 ^e	2126.14	1-				
		1418.7 3	3.13 18	1364.53	1-				Mult.: M1 from $\alpha(K)$ exp in ¹⁷⁰ Lu ε decay is inconsistent with this placement.
		1636.9 ^e 3	<5.5 ^e	1145.72	2+				
		1714.4 ^e 4	<2.15 ^e	1069.35	0^{+}				
		2698.8 <i>3</i>	58.9 22	84.25468	2+	M1			
		2783.00 20	100 4	0.0	0^{+}	M1			
2815.73	(12 ⁻)	212.1 ^{<i>a</i>} 2	47 ^{<i>a</i>} 3	2603.60	(11 ⁻)	D ^b			
		417.2 ^{<i>a</i>} 2	100 ^{<i>a</i>} 6	2398.51	(10^{-})	Q ^b		0.0287	
2819.77	0-,1-	152.60 3	23.9 8	2667.19	$1^{(+)}$	[E1]		0.1123	Mult.: $\alpha(K)$ exp In ε decay implies M1, inconsistent with placement.
		283.05 10	17.5 6	2536.97	1-	M1		0.184	
		323.57 5	30.2 10	2496.20	1-	M1		0.1285	
		390.40 ^e 15	4.90 ^e 20	2429.05	$1^+, 2^+$	[E1]		0.01061	
		419.65 5	43.9 12	2400.10	1-	M1		0.0646	
		455.50 10	11.4 4	2364.06	1-	M1	0.00 6 -	0.0521	
		530.50 10	8.2 4	2289.37	1+	(E1+M2)	0.28 +6-7	0.013 4	Mult.: E2 or E1+M2 (δ =0.28 +6-7) from α (K)exp In ε decay; $\Delta \pi$ =yes from level scheme. Mixed multipolarity inconsistent with level scheme if J(2820)=0.
		544.24 5	72.5 20	2275.49	1-	M1(+E2)		0.024 10	Mult.: E2 component inconsistent with decay scheme if J(2820)=0.

 $^{170}_{70} \mathrm{Yb}_{100}$ -17

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100}$ -17

L

Adopted Levels, Gammas (continued)												
						$\gamma(^{170}\text{Yb})$ (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α^{c}	Comments				
2819.77	0-,1-	618.95 ^e 10 693.55 20 703.85 15 834.45 ^e 10	<6.7 ^e 2.08 20 6.67 20 <9.1 ^e	2200.91 2126.14 2115.90 1985.64	$1^{-},2^{-}$ 1^{-} 1^{-} $1^{-},2^{-}$	[M1,E2] M1 M1	0.017 7 0.01778 0.01713					
		1101.70 <i>10</i> 1307.55 <i>10</i>	83.5 <i>24</i> 94 <i>4</i>	1717.95 1512.37	(2) ⁻ 1 ⁻	E2 M1+E2		Mult.: M1+E2 from $\alpha(K)$ exp In ε decay; mixed multipolarity				
		1455.25 10	100 3	1364.53	1-	E2(+M1)		Mult.: mixed multipolarity inconsistent with level scheme if I(2820)=0				
		2735.6 6	2.16 20	84.25468	2+	(M2)		Mult.: M1(+E2+E0) or M2 from α (K)exp In ε decay; $\Delta \pi$ =yes from level scheme.				
2826.8	(12^{+})	454.0 ^a 2	100	2372.83	10^{+}	Q <mark>b</mark>						
2847.0?	(12 ⁻)	418 ^{af} 1	100	2429.0	(10 ⁻)							
2855.61	(13 ⁻)	467.5 ^a 2	43 ^a 10	2388.06	(11) ⁻	Q ^b						
		872.3 ^{<i>a</i>} 2	100 ^a 14	1983.36	12+	D ^b						
2859.2	(12^{+})	446.8 ^{<i>a</i>} 2	100	2412.39	$(10)^{+}$							
2927.2	(12 ⁻)	449.4 ^{<i>a</i>} 2	100	2477.8	(10 ⁻)	Q ^b						
2929.60	1-	406.25 ^e 15	<1.48 ^e	2523.07	1^+	[E1]	0.00968					
		500.50 15	0.59 3	2429.05	1+,2+			Mult.: $\alpha(K)$ exp In ε decay favors mult=M1, but large uncertainty				
		728.85.20	2.6.5	2200.91	$1^{-}.2^{-}$			may render result unremable. Fracement requires E1.				
		813.55 ^e 20	<2.66 ^e	2115.90	1-,2							
		876.80 25	1.61 8	2052.59	0-,1-,2-	M1	0.00990 14					
		1294.74	2.7 3	1634.84	(1^+)							
		1395.03	24 3	1534.57	2^{+} 0 ⁺							
		1503.9 ^e 4	<0.59 ^e	1425.24	$(2)^{-}$							
		1564.97	5.4 5	1364.53	1-							
		1700.90 ^e 20	<8.3 ^e	1228.84	0^{+}							
		1783.3 4	1.45 13	1145.72	$2^+_{2^+}$							
		1/91./ 4	2.10 5	1138.55	2 · 0+	F1						
		2845.30 20	100 5	84.25468	2^+	E1						
		2929.50 20	34.9 17	0.0	0^{+}	E1						
2938.6	$12^{(-)}$	478.0 ^{<i>a</i>} 2	100 ^{<i>a</i>} 11	2460.55	(10 ⁻)							
2020 72	1-	955.3 ⁴ 5	$56^{\circ} 22$	1983.36	12^+	IM1 E21	1 91 20	Mult.: transition interpreted as D ($\Delta J=0$) in (α ,4n γ).				
2939.13	1	119.90 20	0.27 3	2819.77	0, 1 $1^{(+)}$	[MII,E2] [E1]	1.81 20					
		443.40 15	1.61.5	2496.20	1-	M1.E2	0.0233					
		575.95 25	0.77 4	2364.06	1-	M1	0.0285					
		813.55 ^{ef} 20	<1.75 ^e	2126.14	1-							

18

 $^{170}_{70} \mathrm{Yb}_{100}$ -18

L

 $^{170}_{70} \mathrm{Yb}_{100} \mathrm{-18}$

From ENSDF

Adopted Levels, Gammas (continued)													
						$\gamma(^{170}\text{Yb})$) (continued	<u>D</u>					
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{c}	Comments					
2939.73	1-	954.30 ^e 15	<9.1 ^e	1985.64	1-,2-								
		1304.85 20	3.89 14	1634.84	(1^{+})			Mult.: $\alpha(K)$ exp implies mult=M1,E2, inconsistent with placement.					
		1373.50 20	6.6 6	1566.38	0^{+}	E1							
		1405.15 10	100 3	1534.57	2+	E1							
		1427.27	12.9 14	1512.37	1-								
		1459.85 <i>10</i>	41.6 13	1479.91	0^{+}	E1							
		1514.60 20	21.6 9	1425.24	$(2)^{-}$	M1							
		1575.10 20	19.8 5	1364.53	1-	M1							
		1633.3 ^e 3	<2.4 ^e	1306.39	2+								
		1714.4 ^e 4	<0.85 ^e	1225.35	$(3)^+$								
		2855.4 <i>3</i>	12.6 5	84.25468	2+	E1							
		2939.65 20	59 4	0.0	0^{+}	E1							
2947.84	1-	199.65 ^e 15	<1.28 ^e	2748.08	1-	[M1]	0.478						
		410.55 15	1.3 3	2536.97	1-								
		746.90 20	3.95 12	2200.91	1-,2-	M1	0.01476						
		895.00 25	3.14 17	2052.59	0-,1-,2-	(M1,E2)							
		1313.03	5.8 6	1634.84	(1 ⁺)								
		1413.20 20	28.5 20	1534.57	2+								
		1435.40 20	32.0 12	1512.37	1-	M1							
		1467.93	11.6 12	1479.91	0+	El							
		1583.3 3	7.6 3	1364.53	1	MI							
		1641.30 20	40.1 12	1306.39	2	EI							
		1/19.10 20	18.9.6	1228.84	0^{+}	EI E1							
		1802.25 15	20.4 0	1145.72	2* 2+	EI E1							
		1809.30 13	100 5	1138.33	2 ·								
		18/8.03 13	1676	1009.55	0^{+}								
		2003.0 3	10.70	0.0	2 0 ⁺	EI E1							
2056 55	1+	1531 30 20	100 1	1425.24	$(2)^{-}$	LI							
2950.55	1	1592.05.20	77 5 25	1364 53	(2)	(F1)		Mult : E1 E2 from $\alpha(K)$ even In a decay: $\Lambda \pi$ -ves from level scheme					
		1731.3°	~5.8 ^e	1225 35	$(3)^+$	(L1)		Mult. E1, E2 from $u(\mathbf{x})$ exp in z decay, Δx -yes from level scheme.					
		1818 8 5	11 8 73	1138 55	2+	M1							
		1887 1 ⁶ 5	<21 ^e	1069.35	0^{+}	1011							
		2872 5 4	42 0 20	84 25468	2^+	M1							
		2956.6.4	47 5 15	0.0	0^{+}	(M1)							
29594	(11^{-})	$227.0^{a}.2$	57^{a}_{4}	2732.3	(10^{-})	(111)							
	(11)	131 10 2	1004 13	2525 1	(10^{-})	o^{b}							
2065 66	1+	454.4 2	176.0	2323.1	(7)	Ч (F1)		Mult \cdot M1 from $\alpha(K)$ evo In c decay: inconsistent with placement					
2703.00	1		-1.05°	2400 10	0,1,2 1 ⁻	ננינו		with the and a set of					
		614.00° 20	< 1.03	2400.10	$0^{-} 1^{-} 2^{-}$								
		1330.7 ^e 3	$<3.0^{\circ}$	1634.84	(1^+)								
		1486.0.3	<u>358</u> 18	1479 91	(1)								
		1100.0 J	5.50 10	17/2.71	0								

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100} \mathrm{-} 19$

Adopted Levels, Gammas (continued)												
						$\gamma(^{170}\mathrm{Yb})$	(continued	<u>D</u>				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^π	Mult. [‡]	α ^C	Comments				
2965.66	1+	1540.4 3 1601.2 3 1659.9 5 1736.6 ^e 3 1820.7 5	6.8 4 9.3 4 <3.6 ^e 1.25 14	1425.24 1364.53 1306.39 1228.84 1145.72	$ \begin{array}{c} (2)^{-} \\ 1^{-} \\ 2^{+} \\ 0^{+} \\ 2^{+} \\ \end{array} $	M1		Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; placement requires E1.				
		1896.5 ^e 3 2881.40 20 2965.6 2	<4.6 ^e 58 3 100 5	1069.35 84.25468 0.0	$0^+ 2^+ 0^+$	M1 M1						
2966.42	14-	$285.7^{a} 2$ $492.7^{a} 2$	$15.2^{a} 25$ $100^{a} 4$	2680.75 2473.69	13 ⁻ 12 ⁻	E2 ^b	0.0185					
2969.45	1-	916.90 1457.12 <i>15</i> 1662.8 <i>3</i> 2885.1 <i>3</i> 2969 7 5	23.1 23 58 6 22.0 12 100 4 9 2 11	2052.59 1512.37 1306.39 84.25468	$0^{-}, 1^{-}, 2^{-}$ 1^{-} 2^{+} 2^{+} 0^{+}	M1 (E2) (E1) (E1)		Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; $\Delta \pi$ =No from level scheme. Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; $\Delta \pi$ =yes from level scheme. Mult.: E1 or E2 from $\alpha(K)$ exp In ε decay; $\Delta \pi$ =yes from level scheme.				
2975.32	1-	539.05 ^e 15 859.45 20 1463.3 3 1549.92 1610.70 15 1746 3 3	$<6.1^{e}$ 13.5 10 16.7 21 26 3 100 5 7 1 4	2436.01 2115.90 1512.37 1425.24 1364.53 1228.84	$(2,3)^{-}$ 1^{-} $(2)^{-}$ 1^{-} 0^{+}	M1(+E0) M1 M1		Mult · M1(+F2) from $\alpha(K)$ eyp In s decay inconsistent with level				
		1836.7 ^e 5	<14.9 ^e	1138.55	$2^+_{0^+}$			scheme.				
2986.67	(14+)	$462.4^{a} 2$ $1003.3^{a} 2$	43^a 7 100 ^a 12	2524.27 1983.36	12 ⁺ 12 ⁺	Q ^b						
3007.6	1-	955.22 ^d 24 1021.5 ^d 3 1778.8 ^e 4 2923.3 3	<14.75 ^e 100 5	2052.59 1985.64 1228.84 84.25468	0 ⁻ ,1 ⁻ ,2 ⁻ 1 ⁻ ,2 ⁻ 0 ⁺ 2 ⁺	E1						
3042.46	1+	3007.5^{e} 3 1507.80 20 1736.6^{e} 3 1896.5^{e} 3 1904.6^{e} 5 2958.1 4	<pre>/60 4 67 10 <66^e <86^e <31^e 67 3</pre>	0.0 1534.57 1306.39 1145.72 1138.55 84.25468	0^{+} 2^{+} 2^{+} 2^{+} 2^{+} 2^{+}							
3049.95	(13 ⁻)	3042.8 <i>4</i> 234.3 ^{<i>a</i>} 2	100 5 45 ^a 5	0.0 2815.73	0 ⁺ (12 ⁻)	M1						
3065.36	1+	$\begin{array}{r} 446.4^{a} \ 2 \\ 296.70^{e} \ 20 \\ 404.00^{e} \ 15 \end{array}$	100 ^a 9 <10 ^e <18 ^e	2603.60 2768.34 2661.02	(11 ⁻) 0 ⁻ ,1 ⁻ 1 ⁺	Q ^b [E1] [M1]	0.0205 0.0714					

20

 $^{170}_{70} \mathrm{Yb}_{100}$ -20

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -20

Adopted Levels, Gammas (continued)												
						γ (¹⁷⁰ Y	b) (continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α ^C	Comments				
3065.36	1^{+}	863.7 3		2200.91	1-,2-							
		1012.3° 3	<16°	2052.59	$0^{-}, 1^{-}, 2^{-}$							
		1498.8 3	42.2 22	1500.38	0+							
		1383.8° 4 1700 90 ^e 20	<167 ^e	1479.91	0 1 ⁻							
		1758 95 20	100 3	1306 39	2^{+}	E2						
		1836.7 ^e 5	<79 ^e	1228.84	$\tilde{0}^{+}$	22						
		1995.8 <i>3</i>	100 4	1069.35	0+	(M1)		Mult.: E2,M1 from $\alpha(K)$ exp In ε decay; not $\Delta J=2$ from level scheme.				
		2981.5 5	39 4	84.25468	2^{+}							
3067.0	(13^{+})	463.2 ^{<i>a</i>} 2	100	2603.8	(11^{+})	Q ^b						
3067.62	1-	406.25 ^e 15	<19 ^e	2661.02	1+	[È1]	0.00968 14					
		700.15 20	16.3 5	2367.65	$(1)^{-}$	(M1)	0.01736					
		792.00 15	82 4	2275.49	1-	E2						
		1082.1 3	20.0 21	1985.64	1-,2-	M1						
		1410.4 4	100 11	1658.06	$(2)^+$	1.01						
		1703.3 3	66.7 21	1364.53	1	MI						
		1/01.4° 3	<3/6	1306.39	2' 0+							
		1838.2° 5	<34°	1228.84	0+							
		1998.4 5	<17.5	1009.33	$\frac{0}{2^+}$			Mult: $\alpha(K)$ and In a decay implies M2 or M1+E2+E0, paither of				
		2965.1 4	00 4	84.23408	2			which is consistent with level scheme.				
		3067.0 <i>3</i>	917	0.0	0^{+}							
3070.52	0,1	574.2 3		2496.20	1-							
		670.35 ^e 20	<73 ^e	2400.10	1-							
		802.40 ^e 20	<64 ^e	2268.08	1-							
		954.30 ^e 15	<430 ^e	2115.90	1-							
		1558.4 <i>3</i>		1512.37	1-							
		1645.4 ^e 4	<37 ^e	1425.24	$(2)^{-}$							
		1706.0 ^e 3	<100 ^e	1364.53	1-							
		1925.1 7		1145.72	2+							
		1932.6 ^{<i>a</i>} 7		1138.55	2+							
		2985.9 4	100 7	84.25468	2+		0.00					
3091.93	1	595.70 15	20.6 6	2496.20	1-	M1	0.0261					
		691.75 20	10.9 4	2400.10	1-	M1	0.0179					
		802.40° 20	<230	2289.37	1							
		965.52 ^{<i>u</i>} 26	o il	2126.14	1-							
		3007.5° 3	<94°	84.25468	2*			Mult.: E2(+M1) from $\alpha(K)$ exp for doubly-placed $\gamma \ln \varepsilon$ decay is				
		3091.9 <i>3</i>	100 6	0.0	0+			Mult.: E2(+M1) or E1+M2 from α (K)exp In ε decay; adopted level scheme requires pure $\Delta J=1$.				

 $^{170}_{70} \rm Yb_{100}\text{--}21$

From ENSDF

I

Adopted Levels, Gammas (continued)												
						$\gamma(^{170}$ YI	b) (continue	<u>d)</u>				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α^{c}	Comments				
3099.64	1 ⁽⁻⁾	134.05 <i>15</i> 670.35 ^e 20	4.4 5 <13.7 ^e	2965.66 2429.05	1 ⁺ 1 ⁺ ,2 ⁺	[E1] [E1]	0.1579					
		1565.08	70 <i>3</i>	1534.57	2+							
		1619.7 <i>3</i>	31.3 16	1479.91	0+			Mult.: M1(+E2) from α (K)exp In ε decay; however, level scheme requires E1.				
		1793.8 3	31.3 16	1306.39	2+ 2+	E1						
		1954.0 <i>3</i>	56 <i>3</i>	1145.72	2+			Mult.: (M1) from α (K)exp In ε decay; however, level scheme requires E1.				
		1960.8 <i>3</i>	100 3	1138.55	2+	(E1)						
		2030.15 20	100 6	1069.35	0^{+}	E1						
		3015.1 3	86 4	84.25468	2 ⁺	El						
2115 50	1-	3099.55 25	67 4	0.0	0			Mult.: E2 from $\alpha(K)$ exp In ε decay; inconsistent with adopted J ^{<i>x</i>} .				
3115.58	1	339.45° 20	<0.28	2775.66	1 1-		0.017.7					
		618.95° 10	<3.9°	2496.20	1	[MII,E2]	0.0177					
		678.84 3 752.3 3		2436.01 2364.06	$(2,3)^{-}$ 1 ⁻							
		1603.8 ^d 5		1512.37	1-							
		1887.1 ^e 5	<3.0 ^e	1228.84	0^{+}							
		1977.4 ^e 5	<3.0 ^e	1138.55	2+							
		2046.5 5	<2.1	1069.35	0^{+}							
		3030.95 20	100 5	84.25468	2+	E1						
		3115.20 25	57 3	0.0	0+	E1						
3123.94	1-	166.70 ^e 20	<5.4 ^e	2956.55	1+	[E1]	0.0890					
		340.90° 15	<12.7°	2783.12	1+	[E1]	0.01461					
		587.15 15	24 4	2536.97	1-	M1(+E2)	0.020 8					
		/56.15 20	16.1 /	2367.65	(1)	MI	0.01431					
		834.45° 10	<830	2289.37	1'							
		1985.5° 3	<03	1138.55	2 · 0+	E 1						
		2034.4 5	100 4	1009.55	0^{+}	EI						
3131 10	1+	605.2.3	13.0 14	2436.01	$(2 3)^{-}$							
5151.10	1	1078 3 4	100.27	2450.01	(2,3) $0^{-} 1^{-} 2^{-}$							
		1651 4 4	91.3	1479 91	$0^{+}, 1^{-}, 2^{-}$	(M1)						
		1706.0^{e} 3	<160 ^e	1425.24	$(2)^{-}$	(1111)						
		1824.6.5	91.9	1306.39	2+							
		1985.5 ^e 3	<235 ^e	1145.72	2+							
		1992.7 5	53.3 27	1138.55	2+	E2,M1						
		2061.3 5	41.3 20	1069.35	0^{+}	(M1)						
		3046.9 5	100 11	84.25468	2+	(M1)		Mult.: $\alpha(K)\exp \ln \varepsilon$ decay exceeds $\alpha(K)(M1)$ significantly; level scheme inconsistent with M1+E0 or M2.				
		3130.9 7	33 5	0.0	0+	(M1)		Mult.: M1(+E2) from α (K)exp In ε decay; E2 component is inconsistent with level scheme.				

 $^{170}_{70}$ Yb $_{100}$ -22

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -22

L

Adopted Levels, Gammas (continued)													
						$\gamma(^{170}\text{Yb})$ (co	ontinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α^{c}	Comments					
3140.60	(1)	479.50 15	11.7 5	2661.02	1+	M1+E2	0.033 13						
		711.65 15	27.8 9	2429.05	$1^+, 2^+$	M1	0.01667						
		1776.1 <i>3</i>	100 3	1364.53	1-	M1							
		3139.6 8	1.13 26	0.0	0^{+}								
3146.03	1+	170.80 ^e 20	<3.2 ^e	2975.32	1-								
		478.80 10	50 6	2667.19	$1^{(+)}$	M1	0.0458						
		622.75 20	22.0 16	2523.07	1^{+}	M1	0.0233						
		709.9 4		2436.01	$(2,3)^{-}$								
		1107.1 5		2039.85	1+	(M1+E2+E0)							
		1633.3 ^e 3	<54 ^e	1512.37	1-								
		1667.1 ^e 4	<29 ^e	1479.91	0^{+}								
		1917.7 5	20.0 10	1228.84	0^{+}								
		1920.7 3	84 <i>3</i>	1225.35	(3)+	(E2)		Mult.: E1,E2 from $\alpha(K)$ exp In ε decay; not E1 from level scheme.					
		2007.3 5	11.2 16	1138.55	2+	(E2)		Mult.: E1,E2 from $\alpha(K)$ exp In ε decay; not E1 from level scheme.					
		3062.1 3	92.8	84.25468	2	MI,E2							
2140.00	1-	3146.1 4	100 8	0.0	0^{-} 1-	(M1)	0.1226	Mult.: M1,E2 from $\alpha(\mathbf{K})$ exp in ε decay; not E2 from level scheme.					
3149.09	1	329.3 2 366 35 <mark>6</mark> 15	4.54	2819.77	0,1 1+	IVI I	0.1220						
		500.55 IS 612.15 IS	<10.0	2765.12	1	E2	0.01086						
		652 65 20	665	2330.97	1	L2 M1	0.01080						
		873 85 ^e 25	<5.9 ^e	2775 49	1-	1411	0.0207						
		1614 7 3	14.6.7	1534 57	2^{+}								
		1636.9 ^e 3	<22.1 ^e	1512.37	1-								
		1784.7 4	16.3	1364.53	1-	M1(+E2)							
		1842.8 5	20.5 13	1306.39	2+	(E1)		Mult.: E1,E2 from α (K)exp In ε decay; not E2 from level scheme.					
		3064.8 <i>3</i>	100 4	84.25468	2+	Ē1							
		3149.4 4	40 4	0.0	0^{+}	E1							
3161.02	(1^{-})	340.90 ^e 15	<35.5 ^e	2819.77	$0^{-}, 1^{-}$	[M1]	0.1118						
		809.25 20	62 <i>3</i>	2351.71	0-,1-,2-								
		1503.9 ^e 4	<22 ^e	1658.06	$(2)^{+}$								
		1648.7 ^e 3	<36 ^e	1512.37	1-								
		1736.6 ^e 3	<99 ^e	1425.24	$(2)^{-}$								
		1796.3 5	40.0 20	1364.53	1-								
		1855.0 <i>5</i>	35 4	1306.39	2+								
		1932.6 ^d 7		1228.84	0^{+}								
		3076.8 11		84.25468	2+								
		3161.1 5	100 10	0.0	0^{+}	(E1)							
3165.59	1-	1630.5 <i>3</i>	46.3 11	1534.57	2+	(E1)		Mult.: E1,E2 from $\alpha(K)$ exp In ε decay; not E2 from level scheme.					
		1653.2 4	9.9 5	1512.37	1-	M1+E2+E0							
		1685.6 <i>3</i>	27 3	1479.91	0^+			Mult.: $\alpha(K)$ exp In ε decay favors M1,E2; level scheme requires					
		1740 7 2	27.0.12	1425.24	$(2)^{-}$	E2(+M1)		$\Delta \pi =$ yes.					
		1/40./ 3	51.9 13	1423.24	(2)	E2(+WII)							

23

 $^{170}_{70} \mathrm{Yb}_{100}$ -23

From ENSDF

 $^{170}_{70}$ Yb $_{100}$ -23

	Adopted Levels, Gammas (continued)												
						$\gamma(^{170}$ Yb) (con	ntinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^{C}	Comments					
3165.59	1-	1859.20 20 1936.9 3 2019.7 3 2027.2 3 2096.3 2 3165.3 4	95 15 100 3 28.4 21 77 3 65.3 21 46 4	1306.39 1228.84 1145.72 1138.55 1069.35 0.0	2^+ 0^+ 2^+ 2^+ 0^+ 0^+	E1 (E1) (E1) E1 E1							
3169.59	1-	386.45 20 401.30 20 674.1 3 802.40 ^e 20 879.65 25 901.40 ^e 20 1603.8 ^d 5 3085.4 6 3169.6 8	$ \begin{array}{r} 40 \ 3 \\ 38 \ 12 \\ <154^{e} \\ 100 \ 5 \\ <314^{e} \\ 66 \ 4 \\ 20 \ 3 \end{array} $	2783.12 2768.34 2496.20 2367.65 2289.37 2268.08 1566.38 84.25468 0.0	1^+ $0^-, 1^-$ 1^- $(1)^-$ 1^+ 1^- 0^+ 2^+ 0^+	[E1] M1	0.01087 0.0726						
3179.76	1-	404.00 ^e 15 656.65 ^e 20 681.50 25 1053.7 1645.4 ^e 4 1667.1 ^e 4 3095.50 20 3179 8 7	$\begin{array}{c} < 3.7^{e} \\ < 4.1^{e} \\ 2.43 \ 14 \\ 35 \ 7 \\ < 6.2^{e} \\ < 10.1^{e} \\ 100 \ 6 \\ 5 \ 3 \ 6 \end{array}$	2775.66 2523.07 2498.19 2126.14 1534.57 1512.37 84.25468 0.0	1^{-} 1^{+} $0^{-}, 1^{-}, 2^{-}$ 1^{-} 2^{+} 1^{-} 2^{+} 0^{+}	[M1] (M1) E1	0.0714 0.0186						
3186.2	15-	220^{af} 1 505.4 3	<4.2 ^{<i>a</i>} 100 <i>4</i>	2966.42 2680.75	14 ⁻ 13 ⁻	E2 ^{&}	0.01736	E _{γ} : unweighted average of 505.1 <i>l</i> in (α ,2n γ) and 505.7 <i>2</i> in (α ,4n α)					
3186.66	(1-)	750.95 ^e 20 757.60 15 1060.58 20 1674.2 3 1761.4 ^e 3 3102.1 6	<15.6 ^e 46.4 18 100 9 63.6 18 <19.1 ^e 60 6	2436.01 2429.05 2126.14 1512.37 1425.24 84.25468	$(2,3)^{-}$ $1^{+},2^{+}$ 1^{-} $(2)^{-}$ 2^{+}	[M1,E2] M1 M1,E2	0.011 4	Mult.: M1 from $\alpha(K)$ exp In ε decay is inconsistent with placement.					
3195.1 3195.58	16 ⁺ 1 ⁻	614.8 ^{<i>a</i>} 2 427.20 20 447.65 10 534.65 15 658.20 20 1068.8 4 1155.3 ^{<i>e</i>} 3 1682.7 3 1770.4 4	$ \begin{array}{c} 100 \\ 4.9 \\ 40.3 \\ 13 \\ 5.64 \\ 26 \\ 5.6 \\ 3.08 \\ 26 \\ <20.5^{e} \\ 31 \\ 10 \\ 6.4 \\ 6 \end{array} $	2580.35 2768.34 2748.08 2661.02 2536.97 2126.14 2039.85 1512.37 1425.24	-14^+ $0^-, 1^-$ 1^- 1^+ 1^- 1^+ 1^- 1^+ 1^- $(2)^-$	E2 ^{&} M1(+E2+E0) M1	0.01075 ≈0.114 0.0546	α : adopted value estimated from $\alpha({\rm K}){\rm exp}$ in $^{170}{\rm Lu}~\varepsilon$ decay.					

24

$^{170}_{70}$ Yb $_{100}$ -24

From ENSDF

 $^{170}_{70} \mathrm{Yb}_{100}$ -24

I

Adopted Levels, Gammas (continued)									
$\gamma(^{170}$ Yb) (continued)									
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α ^{<i>c</i>}	Comments	
3195.58	1-	1888.7 ^e 5	<21.5 ^e	1306.39	2+				
		1966.8 5	16.7 13	1228.84	0^{+}			Mult.: E2,M1 from $\alpha(K)$ exp In ε decay; inconsistent with adopted level scheme.	
		2057.1 ^e 4	<22.7 ^e	1138.55	2+				
		3111.5 <i>3</i>	100 5	84.25468	2^{+}	(E1)			
		3195.3 4	51 5	0.0	0^{+}	(E1)		Mult.: Possible doublet; $\alpha(K)$ exp lies midway between $\alpha(K)(E1)$ and $\alpha(K)(E2)$; adopted $\Delta\pi$ =yes.	
3202.1	(12^{-})	242.5 ^a 2	100 ^a 13	2959.4	(11^{-})				
		469.9 ^a 2	60 ^a 13	2732.3	(10 ⁻)				
3202.94	1^{+}	535.95 15	12.7 6	2667.19	$1^{(+)}$				
		678.8 ^d 3		2523.07	1+				
		706.5 5	100 9	2496.20	1-	E1			
		802.40 ^e 20	<47 ^e	2400.10	1-				
		1086.9 ^e 3	<47 ^e	2115.90	1-				
		1162.4 <i>3</i>	55 <i>3</i>	2039.85	1^{+}	M1,E2			
		1217.30 ^e 20	<273 ^e	1985.64	$1^{-}, 2^{-}$				
		1636.9 ^e 3	<75 ^e	1566.38	0^{+}				
		1838.2 ^e 5	<59 ^e	1364.53	1-				
		1896.5 ^e 3	<78 ^e	1306.39	2+				
		1977.4 ^e 5	<52 ^e	1225.35	$(3)^{+}$				
		2057.1 ^e 4	<54 ^e	1145.72	2+				
		3119.2 6	27 9	84.25468	2+				
		3202.4 5	91 9	0.0	0^{+}	M1			
3213.27	1-	170.80 ^e 20	<5.0 ^e	3042.46	1^{+}				
		238.25 ^e 15	<26 ^e	2975.32	1-	[M1,E2]	0.22 8		
		465.50 15	15.0 <i>13</i>	2748.08	1-	M1+E0			
		861.8 ^d 4		2351.71	$0^{-}, 1^{-}, 2^{-}$				
		1012.3 ^e 3	<20.0 ^e	2200.91	$1^{-}, 2^{-}$				
		1086.9 ^e 3	<49 ^e	2126.14	1-				
		1173.2 ^e 4	<63 ^e	2039.85	1^{+}				
		1700.90 ^e 20	<194 ^e	1512.37	1-				
		1847.7 7		1364.53	1-				
		1983.9 5	35.6 19	1228.84	0^{+}				
		2143.5 3	100 4	1069.35	0^{+}	E1			
		3128.1 5	56 6	84.25468	2+	E1			
0050 10		3212.2 8	9.4 9	0.0	0^+		0.10.11		
3258.18	1+	142.50 15	8.6 8	3115.58	1-	[E1]	0.1344		
		292.55° 20	<4.9°	2965.66	1 ⁺	[M1,E2]	0.12 5		
		301.85 20	5.3 6	2956.55	1	[M1]	0.1548		
		590.85° 15	<34 ^e	2667.19	$1^{(+)}$				
		822.30 15	100 4	2436.01	$(2,3)^{-}$			Mult.: M1 from $\alpha(K)$ exp In ε decay; E1 required by placement.	

 $^{170}_{70} \mathrm{Yb}_{100}$ -25

 $^{170}_{70} \mathrm{Yb}_{100}$ -25

From ENSDF

Adopted Levels, Gammas (continued)										
$\gamma(^{170}\text{Yb})$ (continued)										
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$	Mult. [‡]	α ^{<i>c</i>}	Comments		
3258.18	1+	858.1 3 969.05 ^e 20 1204.8 3 1692.0 4 1832.4 ^e 4 1893.7 5 3173.4 7 3258 2 8	<56 ^e 16.3 8 <22.5 ^e 38.8 20 12.2 12 10 2 10	2400.10 2289.37 2052.59 1566.38 1425.24 1364.53 84.25468 0.0	$ \begin{array}{c} 1^{-} \\ 1^{+} \\ 0^{-}, 1^{-}, 2^{-} \\ 0^{+} \\ (2)^{-} \\ 1^{-} \\ 2^{+} \\ 0^{+} \end{array} $	M1 M1 E2				
3268.91	1 ⁽⁺⁾	$\begin{array}{c} 449.25 \ 20 \\ 1633.3^{e} \ 3 \\ 1734.4 \ 5 \\ 1904.6^{e} \ 5 \\ 1962.5 \ 3 \\ 3183.6 \ 5 \end{array}$	7.47 $<63^{e}$ $<21^{e}$ 1003 657	2819.77 1634.84 1534.57 1364.53 1306.39 84.25468	$0^{-}, 1^{-}$ (1 ⁺) 2^{+} 1^{-} 2^{+} 2^{+}	[E1] E2(+M1) M1		Mult.: M1 from $\alpha(K)$ exp In ε decay; level scheme requires E1.		
3274.17	1-	490.95 <i>15</i> 750.95 ^{<i>e</i>} 20 873.85 ^{<i>e</i>} 25 1158.5 ^{<i>e</i>} 3 1234.5 3 1761.4 ^{<i>e</i>} 3 1909.7 5 3190.3 5	$\begin{array}{c} 40.0 \ 12 \\ < 69^{e} \\ < 26^{e} \\ < 39^{e} \\ 40.0 \ 20 \\ < 84^{e} \\ 36.0 \ 20 \\ 100 \ 10 \\ \end{array}$	2783.12 2523.07 2400.10 2115.90 2039.85 1512.37 1364.53 84.25468	$ \begin{array}{c} 1^+ \\ 1^- \\ 1^- \\ 1^+ \\ 1^- \\ 1^- \\ 2^+ \\ 0^+ \end{array} $	[E1] E1 M1,E2 E1		Mult.: M1(+E2) from α (K)exp In ε decay; level scheme requires E1.		
3291.82	1+	5274.25 $199.65^{e} 15$ $861.8^{d} 4$ $1252.1 4$ $1633.3^{e} 3$ $1778.8^{e} 4$ $1985.5^{e} 3$ $2063.2 3$	<14 ^e <85 ^e <37 ^e <111 ^e 100 3	0.0 3091.93 2429.05 2039.85 1658.06 1512.37 1306.39 1228.84	$ \begin{array}{c} 0^{+} \\ 1 \\ 1^{+}, 2^{+} \\ 1^{+} \\ (2)^{+} \\ 1^{-} \\ 2^{+} \\ 0^{+} \\ \end{array} $	E1 [E1] (M1)	0.0557	Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; pure $\Delta J=1$ required by adopted level scheme.		
3296.5 3301.95	(14 ⁻) 1 ⁺	2152.9 5 3206.8 8 3291.4 7 246.7 ^{<i>a</i>} 2 480.7 ^{<i>a</i>} 2 209.90 20 518.90 15 805.85 25 901.40 ^{<i>e</i>} 20 1034.2 3	$27.2 \ 13$ $19.0 \ 19$ $6.3 \ 6$ $23^{a} \ 5$ $100^{a} \ 9$ $5.1 \ 5$ $6.8 \ 3$ $12 \ 3$ $<48^{e}$ $18 \ 6$	1138.55 84.25468 0.0 3049.95 2815.73 3091.93 2783.12 2496.20 2400.10 2268.08	$2^+ 2^+ 0^+ (13^-) (12^-) 1 1^+ 1^- $	M1,E2 M1	0.0372	Mult.: E1 from $\alpha(K)$ exp In ε decay; level scheme requires M1. Mult.: $\alpha(K)$ exp In ε decay favors M1; decay scheme requires E1.		
		1667.1 ^e 4	<22 ^e	1634.84	(1^+)					

26

Adopted Levels, Gammas (continued)										
$\gamma(^{170}$ Yb) (continued)										
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	α ^{C}	Comments		
3301.95	1+	1767.2 <i>3</i> 1876.2 <i>3</i> 2232.7 <i>5</i> 3218.4 <i>9</i>	55 3 100 6 10.8 5 1.5 3	1534.57 1425.24 1069.35 84.25468	2^+ (2) ⁻ 0 ⁺ 2 ⁺	M1,E2 E1 M1				
		3302.4 7	8.0 8	0.0	0^{+}	(M1)				
3307.3 3314.42	(14 ⁺) 1	480.5 ^{<i>a</i>} 2 222.40 ^{<i>e</i>} 15 339.45 ^{<i>e</i>} 20 366.35 ^{<i>e</i>} 15 374.55 20	$100 < 207^{e} < 18^{e} < 124^{e} $ 22.2 22	2826.8 3091.93 2975.32 2947.84 2939.73	(12 ⁺) 1 1 ⁻ 1 ⁻ 1 ⁻	Q ^b [M1]	0.355			
		384.85 <i>15</i> 539.05 ^{<i>e</i>} <i>15</i> 565.80 ^{<i>e</i>} <i>15</i>	71 3 <131 ^e <66 ^e	2929.60 2775.66 2748.08	1- 1- 1- 1-	M1(+E2+E0)				
		962.85 25 1046.60 ^e 25	38 4 <456 ^e	2351.71	0, 1, 2 1^{-}	M1+E2+E0				
		1747.8 <i>4</i> 1888.7 ^{<i>e</i>} 5 2086 4 5	56 6 <187 ^e 100 4	1566.38 1425.24 1228.84	0^+ (2) ⁻ 0^+	(M1)				
		3229.5 8 3314.1 7	33 <i>3</i> 62 7	84.25468 0.0	$2^+_{0^+}$	E1 (M1)		Mult.: M1,E2 from $\alpha(K)$ exp In ε decay; E2 not consistent with ε feeding of parent level.		
3333.2? 3366.40	(14 ⁺) 1	474 ^{<i>a</i>f} 1 300.60 20 390.40 ^{<i>e</i>} 15 590.85 ^{<i>e</i>} 15	100 13.9 <i>14</i> <181 ^e <116 ^e	2859.2 3065.36 2975.32 2775.66	(12 ⁺) 1 ⁺ 1 ⁻ 1 ⁻	M1	0.1565			
		598.15 <i>15</i> 965.52 <i>d</i> 26 1240.7 <i>3</i> 1648.7 <i>e 3</i> 1731.3 <i>e 4</i> 1799.3 <i>5</i> 1832.4 <i>e 4</i> 1887.1 <i>e 5</i> 2219.4 <i>6</i> 2228.6 <i>3</i> 2292.1 8	$ \begin{array}{c} 100 \ 4 \\ 51 \ 3 \\ <49^{e} \\ <32^{e} \\ 40 \ 3 \\ <76^{e} \\ <118^{e} \end{array} $	2768.34 2400.10 2126.14 1717.95 1634.84 1566.38 1534.57 1479.91 1145.72 1138.55 84 25468	$0^{-}, 1^{-}$ 1^{-} $(2)^{-}$ (1^{+}) 0^{+} 2^{+} 0^{+} 2^{+} 2^{+} 2^{+} 2^{+} 2^{+}	E2	0.01147			
3384.87	1-	636.80 20 861.8 ^d 4 955.22 ^d 24 1021.5 ^d 3	63 <i>10</i>	2748.08 2523.07 2429.05 2364.06	2 1- 1+ 1+,2+ 1-	M1,E2	0.016 6			

I

	Adopted Levels, Gammas (continued)									
$\gamma(^{170}\text{Yb})$ (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α ^C	Comments		
3384.87	1-	$ \begin{array}{r} 1667.1^{e} \ 4 \\ 1904.6^{e} \ 5 \\ 2246.8 \ 5 \\ 2315.1 \ 4 \\ 3385 \ 0 \ 8 \end{array} $	<91 ^e <58 ^e 31.3 19 100 5	1717.95 1479.91 1138.55 1069.35	$ \begin{array}{c} (2)^{-} \\ 0^{+} \\ 2^{+} \\ 0^{+} \\ 0^{+} \end{array} $	E1				
3401.7	(15 ⁻)	546.1^a 5 821.4 ^a 2	$53^{a} 26$ $100^{a} 16$	2855.61 2580.35	(13 ⁻) 14 ⁺	D ^b		E_{γ} : other: 543.1 5 in (α ,2n γ).		
3423.2?	(0 ⁻)	1155.3 ^{ef} 3 1585.8 ^{ef} 4	71 ^e 5 19.1 ^e 19	2268.08 1838.2	1^{-} (2) ⁺			Mult.: (M1) for doubly-placed line.		
		$ \begin{array}{r} 1706.0^{ef} \ 3 \\ 1998.4^{ef} \ 5 \\ 3338.9^{f} \ 8 \\ \end{array} $	100 ^e 14 38 ^e 10 3.8 10	1717.95 1425.24 84.25468	$(2)^{-}$ $(2)^{-}$ 2^{+}	(M2)		Mult.: (M1) for multiply-placed line. Mult.: (M1,E2) for doubly-placed line. Mult.: M1+E2+E0 or M2 from α (K)exp In ε decay; ε feeding of parent		
3137 8	(14^{-})	510.6^{a} 5		2027.2	(12^{-})			level favors the latter.		
3466.8?	(14^{-}) (13^{-})	265^{af} 1 507^{af} 1	50 ^a 20 100 ^a 20	3202.1 2959.4	(12^{-}) (12^{-}) (11^{-})					
3533.8 3547.3	16 ⁻ (16 ⁺)	567.4 ^a 2 560.6 ^a 5 966.9 ^a 2	100 56 ^a 31 100 ^a 13	2966.42 2986.67 2580.35	14 ⁻ (14 ⁺) 14 ⁺	E2 ^b	0.01302	E_{γ} : other: 565.1 5 for weak γ in $(\alpha, 2n\gamma)$.		
3558.1 3567.4	(15 ⁺) (15 ⁻)	491.1 ^{<i>a</i>} 2 270.8 ^{<i>a</i>} 2 517.4 ^{<i>a</i>} 2	100 36 ^a 9 100 ^a 18	3067.0 3296.5 3049.95	(13 ⁺) (14 ⁻) (13 ⁻)					
3742.1	(14-)	540.0 ^a 2	100	3202.1	(12 ⁻)	b				
3756.5	(17^{-})	570.3^{a} 2	100	3186.2	15-	E2 ^D	0.01286			
3806.8 3833.3 3842.3	(16^+) (16^-)	526.0^{a} 2 545.8^{a} 5	100 100 100	3195.1 3307.3 3296.5	(14^+) (14^-)	E2	0.01087			
3844.2? 4011.8 4017.6	(16 ⁺) (16 ⁻) (17 ⁻)	511 ^{af} 1 574 ^a 1 616.0 ^a 5 822 ^a 1	$100 \\ 100 \\ 100^{a} 50 \\ < 50^{a}$	3333.2? 3437.8 3401.7 3195.1	(14 ⁺) (14 ⁻) (15 ⁻) 16 ⁺					
4065.1? 4174.0 4207.1	(17 ⁺) 18 ⁻ (18 ⁺)	507.0^{af} 10 640.2^{a} 2 659.4^{a} 5 1012.4^{a} 5	100 100 50 ^a 33 100 ^a 33	3558.1 3533.8 3547.3 3195.1	(15 ⁺) 16 ⁻ (16 ⁺) 16 ⁺					
4390.3	19-	633.8 ^a 2	100	3756.5	(17-)	P _				
4436.5 4885.9 5084.8	20 ⁺ 20 ⁻ 21 ⁻	629.7 ^{<i>a</i>} 5 711.9 ^{<i>a</i>} 5 694.5 ^{<i>a</i>} 2	100 100 100	3806.8 4174.0 4390.3	18 ⁺ 18 ⁻ 19 ⁻	(E2) ^{&}	0.01016			

L

$\gamma(^{170}$ Yb) (continued)

- [†] From ¹⁷⁰Lu ε decay, unless noted otherwise. [‡] From α (K)exp in ¹⁷⁰Lu ε decay, except as noted.
- [#] From $(\alpha, 2n\gamma)$, except as noted.
- [@] From ¹⁶⁸Er(α ,2n γ).
- & From $\alpha(K)\exp$ and/or $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. RUL has been used to eliminate M2 for some stretched Q transitions, assuming $T_{1/2} \le 5$ ns (1981Wa14) (based on observation of prompt $\gamma\gamma$ coin).
- ^{*a*} From ¹⁶⁸Er(α ,4n γ).
- ^b From (α ,4n γ). Based on $\gamma(\theta)$ for transitions detected in prompt coin in 1981Wa14 ($T_{1/2} \le 5$ ns) and/or measured DCO ratios.
- ^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^d Multiply placed.
- ^e Multiply placed with undivided intensity.
- ^f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{170}_{70} Yb_{100}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{170}_{70} \rm{Yb}_{100}$

Level Scheme (continued)

 $^{170}_{70} \rm{Yb}_{100}$

 $^{170}_{70} \rm{Yb}_{100}$

 $^{170}_{70} Yb_{100}$

Level Scheme (continued)

 $^{170}_{70} \rm{Yb}_{100}$

Level Scheme (continued)

 $^{170}_{70} Yb_{100}$

Level Scheme (continued) Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{170}_{70} \rm{Yb}_{100}$

 $^{170}_{70} \rm{Yb}_{100}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{170}_{70} \rm{Yb}_{100}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{170}_{70} Yb_{100}$

Level Scheme (continued)

 $^{170}_{70} \rm{Yb}_{100}$

From ENSDF

 $^{170}_{70}{
m Yb}_{100}$

44

 $^{170}_{70}$ Yb $_{100}$ -44

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{170}_{70} Yb_{100}$

 $^{170}_{70} Yb_{100}$

 $^{170}_{70} \rm{Yb}_{100}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

48

 $^{170}_{70} Yb_{100} \\$

 $^{170}_{70} \mathrm{Yb}_{100}$

Band(i): $K^{\pi}=1^{-}$, $\alpha=1$ octupole band **Band**(I): $K^{\pi} = (1)^{-}$, α =0 octupole band (17^{-}) 4017.6 (16^{-}) 4011.8 Band(H): $K^{\pi}=(3)^+$ band, **α=0** (16^+) 3844.2 574 616 511 (14^{-}) 3437.8 (15⁻) 3401.7 (14+) 3333.2 ¥ 511 546 474 (12^{-}) 2927.2 (12+) 2859.2 (13^{-}) 2855.61 449 447 468 (10-) 2477.8 (10)+ 2412.39 (11)-2388.06 381 403 383 (8-) 2096.81 **8**⁺ 2009.35 (9)-2005.43 Band(h): $K^{\pi}=(3)^+$, $\alpha=1$ (1998Ar08) 303 **7**⁽⁺⁾ 1835.06 293 340 (6^) 1793.37 (7⁻) 1712.41 6^+ 1669.03 220 306 (4-) 1573.10 **5**⁺ 1528.74 (5-) 1510.2 260 $(2)^{-}$ 1425.24 (4)+ (3) 1397.05 1408.73 1364.53 1-

Adopted Levels, Gammas (continued)

