¹⁷⁰Re ε decay **2001Ki10,1992Me10**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	$\overline{C. M. Baglin^1}$, E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Parent: ¹⁷⁰Re: E=0.0; $J^{\pi}=(5^+)$; $T_{1/2}=9.2$ s 2; $Q(\varepsilon)=8378$ 27; $\%\varepsilon+\%\beta^+$ decay=100.0

Sources produced by 159 Tb(20 Ne,9n), E \approx 180 MeV (1975St02); 1-GeV protons on Tl (1974Be59); 141 Pr+ 32 S, E(32 S) \approx 178 MeV (1992Me10); granddaughter of 170 Ir produced via 144 Sm(31 P,5n) at 150 MeV (2001Ki10).

2001Ki10: source from decay of ¹⁷⁰Ir produced In ¹⁴⁴Sm(³¹P,5n), E=150 MeV; CAESAR array of six Compton-suppressed Ge detectors, superconducting solenoid electron spectrometer; measured E γ (E γ =30-2000), I γ , Ice, $\gamma\gamma$ coin, $\gamma\gamma(t)$ and $\gamma\gamma(\theta)$ (6 angles); band-mixing model calculations. See also 1998Ki14 for preliminary report of this study.

1992Me10: measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, γ -K x ray coin.

The adopted decay scheme is that of 2001Ki10; it is much more extensive than and consistent with those of 1992Me10 and

1975St02, but differs from that of 1974Be59. The ε branching deduced from intensity imbalance at each level in this decay scheme is clearly an unreliable predictor of level J^{π}, since it varies greatly depending on the number of transitions included in the scheme, and is also somewhat dependent on whether I γ is taken from 1992Me10 or from 2001Ki10. The range of J^{π} values that appear to be fed is inconsistent with the assumption of a unique J^{π} for the parent, but no isomer of ¹⁷⁰Re is known at present. Q(ε) is large (8.4 MeV) but the highest-energy level known to be populated lies at 2650 keV. This, combined with the exclusion of $E\gamma$ >2000 transitions probably results in a very incomplete decay scheme, rendering the deduced log *ft* values meaningless. A remeasurement of this decay including $E\gamma$ >2 MeV appears to be needed.

¹⁷⁰W Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	0+	
156.52 [#] 16	2+	Intensity balance of -6.4 to this level probably results from missing γ -ray intensity feeding this level.
462.11 [#] 19	4+	
875.28 [#] 22	6+	
936.96 ^b 17	(2^{+})	
952.29 ^a 23	(2^{+})	
1073.36 ^b 22	(3 ⁺)	
1152.82 22 1201.96 ^{<i>a</i>} 23	$(2^+,3,4^+)$ 4^+	
1219.77 ^b 21	(4^{+})	
1314.22 ^{&} 22	(3-)	
1327.3 [@] 3	(2^{-})	
1363.1 [#] 3	8+	
1492.33 [@] 24	(4-)	
1517.04 ^{&} 24	5-	
1578.07 ^a 25	6+	
1718.59 24	$(4^+, 5, 6^+)$	
1791.4 ^{&} 3	7-	
1810.9 ^{⁽⁰⁾} 3	(6 ⁻)	
1875.4 3		
1974.3 3 2079 8 3		
2344.6 3		
2442.6 3		
2480.9 3		
2552.6 3		
2030.1 3		

¹⁷⁰W Levels (continued)

[†] From least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

[#] Band(A): $K^{\pi} = 0^{+}$ g.s. band.

^(a) Band(B): $\pi = -$, $\alpha = 0$ octupole band. Probably predominantly ($\pi 9/2[514]$) $\otimes(\pi 5/2[402]$), for which $K^{\pi} = 2^{-}$ is favored, but 2-quasineutron admixtures may also be present (2001Ki10), and Coriolis mixing of different K components of the octupole vibration may render K a poor quantum number.

& Band(b): Possible $\pi = -$, $\alpha = 1$ octupole band. signature partner of $\pi = -$, $\alpha = 0$ band; see comments on that band.

^{*a*} Band(C): $K^{\pi}=0^{+}\beta$ band (2001Ki10). Assignment supported by γ decay pattern, particularly the strong E0 component in the 740 γ and 703 γ to the 4⁺ and 6⁺ states, respectively, of the g.s. band. From systematics, the J=0 member is expected at \approx 750 keV.

^b Band(D): $K^{\pi}=2^+ \gamma$ band. The energies of the J=2 and 4 members differ only by ≈ 20 keV from their counterparts in the β band, so significant $\beta\gamma$ mixing is expected.

E(decay)	E(level)	Iβ ⁺ ‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(5.73 \times 10^3 \ 3)$	2650.1	1.7 4	0.79 19	5.86 11	2.5 6	av E β =2140 13; ϵ K=0.260 3; ϵ L=0.0420 5; ϵ M+=0.01296 15 Additional information 1
$(5.83 \times 10^3 \ 3)$	2552.6	1.2 6	0.51 24	6.06 21	1.7 8	av $E\beta$ =2186 <i>13</i> ; ε K=0.249 <i>3</i> ; ε L=0.0403 <i>5</i> ; ε M+=0.01244 <i>15</i> Additional information 2
$(5.90 \times 10^3 \ 3)$	2480.9	1.6 5	0.67 21	5.96 14	2.3 7	av $E\beta$ =2219 <i>13</i> ; ε K=0.242 <i>3</i> ; ε L=0.0392 <i>5</i> ; ε M+=0.01207 <i>14</i>
$(5.94 \times 10^3 \ 3)$	2442.6	3.0 7	1.2 3	5.71 11	4.2 10	Additional information 5. av $E\beta$ =2237 13; ε K=0.238 3; ε L=0.0385 5; ε M+=0.01188 14 Additional information 4
$(6.03 \times 10^3 \ 3)$	2344.6	5.0 7	1.9 <i>3</i>	5.52 7	6.9 10	Additional information 4. av E β =2283 13; ε K=0.229 3; ε L=0.0370 5; ε M+=0.01140 13 Additional information 5
(6.30×10 ³ [#] 3)	2079.8	1.3 2	0.42 7	6.22 8	1.7 3	av E β =2407 13; ε K=0.2054 23; ε L=0.0332 4; ε M+=0.01023 12
(6.40×10 ^{3#} 3)	1974.5	1.2 4	0.38 12	6.27 14	1.6 5	av Eβ=2456 13; εK=0.1968 22; εL=0.0318 4; εM+=0.00980 11
(6.50×10 ^{3#} 3)	1875.4	0.8 3	0.25 9	6.47 16	1.1 4	av Eβ=2502 13; εK=0.1891 21; εL=0.0305 4; εM+=0.00941 11
(6.57×10 ^{3#} 3)	1810.9	1.4 3	0.40 9	6.27 10	1.8 4	av Eβ=2533 13; εK=0.1843 20; εL=0.0298 4; εM+=0.00917 10
$(6.59 \times 10^3 \ 3)$	1791.4	5.8 10	1.7 3	5.66 8	7.5 13	av Eβ=2542 13; εK=0.1829 20; εL=0.0295 4; εM+=0.00910 10 Additional information 6
$(6.66 \times 10^3 \ 3)$	1718.59	4.4 5	1.2 1	5.81 5	5.6 6	av $E\beta$ =2576 13; ε K=0.1777 19; ε L=0.0287 3; ε M+=0.00884 10
$(6.80 \times 10^3 \ 3)$	1578.07	7.9 8	2.0 2	5.60 5	9.9 10	Additional information 7. av $E\beta$ =2642 13; ε K=0.1682 18; ε L=0.0271 3; ε M+=0.00836 9
$(6.86 \times 10^3 \ 3)$	1517.04	3.4 6	0.84 16	5.99 9	4.2 8	Additional information 8. av $E\beta$ =2671 13; ε K=0.1642 18; ε L=0.0265 3; ε M+=0.00816 9 Additional information 0.
$(6.89 \times 10^3 \ 3)$	1492.33	3.6 4	0.89 10	5.97 5	4.5 5	av E β =2683 13; ε K=0.1627 18; ε L=0.0262 3; ε M+=0.00808 9

 ε, β^+ radiations

Continued on next page (footnotes at end of table)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ+ ‡	$I\varepsilon^{\dagger\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
						Additional information 10.
$(7.01 \times 10^3 \ 3)$	1363.1	8.1 12	1.9 <i>3</i>	5.66 7	10.0 15	av Eβ=2743 13; εK=0.1547 17; εL=0.0250 3;
						$\varepsilon M + = 0.00769 8$
2						Additional information 11.
$(7.05 \times 10^{3} 3)$	1327.3	1.9 4	0.43 9	6.31 10	2.3 5	av E β =2760 13; ε K=0.1526 16; ε L=0.0246 3; ε M+=0.00758 8
						Additional information 12.
$(7.06 \times 10^3 \ 3)$	1314.22	1.9 4	0.42 9	6.32 10	2.3 5	av E β =2767 13; ε K=0.1519 16; ε L=0.0245 3;
						<i>ε</i> M+=0.00754 8
						Additional information 13.
$(7.16 \times 10^3 \ 3)$	1219.77	2.5 4	0.53 9	6.23 8	3.0 5	av E β =2811 13; ε K=0.1465 16; ε L=0.02362 25; ε M+=0.00728 8
						Additional information 14.
$(7.18 \times 10^3 \ 3)$	1201.96	5.4 8	1.1 2	5.90 7	6.5 10	av Eβ=2820 13; εK=0.1455 15; εL=0.02346 25; εM+=0.00723 8
						Additional information 15.
$(7.23 \times 10^3 \ 3)$	1152.82	3.5 7	0.73 14	6.10 9	4.2 8	av Eβ=2843 13; εK=0.1428 15; εL=0.02303 24; εM+=0.00709 8
						Additional information 16.
$(7.30 \times 10^3 \ 3)$	1073.36	4.7 6	0.96 12	5.99 6	5.7 7	av Eβ=2880 13; εK=0.1386 15; εL=0.02235 23; εM+=0.00688 7
						Additional information 17.
$(7.43 \times 10^{3\#} 3)$	952.29	1.0 4	0.19 8	6.70 <i>19</i>	1.2 5	av E β =2938 <i>13</i> ; ε K=0.1325 <i>14</i> ; ε L=0.02135 <i>22</i> ; ε M+=0.00658 7
$(7.44 \times 10^3 3)$	936.96	6.1.5	1.2 /	5.92 4	7.3 6	av E β =2945 13; ε K=0.1318 14; ε L=0.02123 22;
						$\varepsilon M + = 0.00654 7$
						Additional information 18.
$(7.50 \times 10^3 \ 3)$	875.28	8 <i>3</i>	1	5.85 15	93	av E β =2974 13; ε K=0.1288 13; ε L=0.02075 21; ε M+=0.00639 7
						Additional information 19.

[†] I ε values deduced from intensity imbalance at each level are given for completeness only; they do not lead to meaningful log ft values, possibly due to an incomplete decay scheme (see general comment on decay scheme), so log ft values are not considered to provide useful arguments for J^{π} assignments. The completeness of the scheme can significantly affect conclusions concerning which levels are fed in this decay. For example, based on all transitions reported in 2001Ki10, significant feeding occurs from the (5⁺) parent to levels with J^{π} from 2⁺ to 8⁺, but the 157 (2⁺) and 462 (4⁺) levels do not appear to be fed at all. However, if one were to consider only the 8 transitions reported in 1992Me10, the I γ data from 1992Me10 and 2001Ki10 would imply non-zero ε branches to both levels, viz., 15% 4 and 9% 4, respectively, to the 2⁺ 157 level, and 23% 5 and 14.7% 24, respectively, to the (4)⁺ 462 level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

Iγ normalization: from Σ (I(γ+ce) to g.s.)=100; no $ε+β^+$ branch to g.s. is expected because $\Delta J=(5)$.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{\&}$	α #	Comments
156.67 <i>19</i>	100 3	156.52	2+	0.0	0+	E2		0.718	$\begin{aligned} &\alpha(\mathrm{K}){=}0.322\ 5;\ \alpha(\mathrm{L}){=}0.301\ 5;\ \alpha(\mathrm{M}){=}0.0754\ 12;\ \alpha(\mathrm{N}{+}){=}0.0203\ 3\\ &\alpha(\mathrm{N}){=}0.0178\ 3;\ \alpha(\mathrm{O}){=}0.00248\ 4;\ \alpha(\mathrm{P}){=}2.44{\times}10^{-5}\ 4\\ &\mathrm{E}_{\gamma}{:}\ \text{weighted average of }156.0\ 4\ (1975\mathrm{St}02),\ 156.9\ 2\ (1992\mathrm{Me10}),\ 156.6\ 2\\ &(2001\mathrm{Ki}10). \end{aligned}$
249.9 2	1.4 5	1201.96	4+	952.29	(2 ⁺)	[E2]		0.1491	Iγ=54.1% 7 assuming adopted decay scheme normalization. α (K)=0.0926 <i>14</i> ; α (L)=0.0430 7; α (M)=0.01059 <i>16</i> ; α (N+)=0.00288 5 α (N)=0.00251 <i>4</i> ; α (Q)=0.000360 6; α (P)=7.67×10 ⁻⁶ <i>11</i>
305.7 2	144.3 26	462.11	4+	156.52	2+	E2		0.0804	$\begin{aligned} \alpha(N) = 0.002314, \ \alpha(O) = 0.0003060, \ \alpha(P) = 1.07\times10^{-1} P_{1}^{-1} = 0.00132619 \\ \alpha(N) = 0.00115317; \ \alpha(O) = 0.000168024; \ \alpha(P) = 4.66\times10^{-6}7 \\ I_{\gamma}: \ other: \ 1355(1992Me10). \\ \Delta_{T} = 10.093\Delta_{T} = 10.0232(2001K;10) \end{aligned}$
344.6 2	0.9 3	1219.77	(4+)	875.28	6+	[E2]		0.0567	$\alpha(K) = 0.0398 \ 6; \ \alpha(L) = 0.01292 \ 19; \ \alpha(M) = 0.00313 \ 5; \ \alpha(N+) = 0.000857 \ 13$
376.3 2	3.1 5	1578.07	6+	1201.96	4+	[E2]		0.0443	$\alpha(N) = 0.00144 \ 11, \ \alpha(O) = 0.0001095 \ 10, \ \alpha(N) = 0.49 \times 10^{-5} \ 32.49 \times 10$
413.1 2	113.5 25	875.28	6+	462.11	4+	E2		0.0344	$\alpha(N)=0.000345 \ 8; \ \alpha(O)=8.09\times10^{-1} 12; \ \alpha(P)=2.83\times10^{-6} 4^{-4}$ $\alpha(K)=0.0253 \ 4; \ \alpha(L)=0.00695 \ 10; \ \alpha(M)=0.001667 \ 24; \ \alpha(N+)=0.000458 \ 7$ $\alpha(N)=0.000397 \ 6; \ \alpha(O)=5.94\times10^{-5} \ 9; \ \alpha(P)=2.27\times10^{-6} \ 4$ $I_{\gamma}: \ other: \ 88 \ 5 \ (1992Me10).$ $A_2=+0.13 \ 4, \ A_4=+0.02 \ 4 \ (2001Ki10).$ $E_{\gamma}: \ other: \ 412 \ 5 \ 4 \ (1975St02)$
418 9 2	173	1492.33	(4^{-})	1073 36	(3^{+})				L_{γ} . Olici. $+12.5 + (17755102)$.
428.4 2	9.9 21	1791.4	7-	1363.1	(5 ⁻) 8 ⁺	(E1)		0.00998 14	α =0.00998 <i>14</i> ; α (K)=0.00836 <i>12</i> ; α (L)=0.001253 <i>18</i> ; α (M)=0.000283 <i>4</i> ; α (N+)=7.93×10 ⁻⁵ <i>12</i>
487.9 2	27.8 17	1363.1	8+	875.28	6+	E2		0.0223	$ \begin{array}{l} \alpha(\mathrm{N}) = 6.77 \times 10^{-5} \ 10; \ \alpha(\mathrm{O}) = 1.084 \times 10^{-5} \ 16; \ \alpha(\mathrm{P}) = 7.08 \times 10^{-7} \ 10 \\ \alpha(\mathrm{K}) = 0.01698 \ 24; \ \alpha(\mathrm{L}) = 0.00409 \ 6; \ \alpha(\mathrm{M}) = 0.000972 \ 14; \ \alpha(\mathrm{N}+) = 0.000269 \\ 4 \end{array} $
									α (N)=0.000232 4; α (O)=3.52×10 ⁻⁵ 5; α (P)=1.548×10 ⁻⁶ 22 I _y : other: 17.6 <i>I</i> 3 (1992Me10). A ₂ =+0.11 <i>I</i> 0. A ₄ =+0.07 <i>I</i> 0 (2001Ki10).
611.3 2	2.3 6	1073.36	(3^{+})	462.11	4+				12 · 011 10, 14 · 0.0, 10 (20011110).
641.7 2	6.7 13	1517.04	5-	875.28	6+				

4

$\gamma(^{170}W)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{\&}$	α [#]	Comments
690.7 2 702.6 2	2.3 6 13.9 <i>14</i>	1152.82 1578.07	$(2^+,3,4^+)$ 6 ⁺	$\begin{array}{rrr} 462.11 & 4^+ \\ 875.28 & 6^+ \end{array}$	E0+E2+M1	-1.7 +8-25	≈0.089	E_{γ} : weighted average of 702.4 2 (1992Me10), 702.8 2 (2001Ki10)
739.8 2	12.9 14	1201.96	4+	462.11 4+	E0+E2(+M1)	≤-1.7	≈0.061	$I_{\gamma}: \text{ other: } 14.2 \ 10 \ (1992\text{Me10}).$ Mult.,δ: from α(K)exp=0.067 15, A ₂ =+0.04 6, A ₄ =+0.12 7, q ² (E0/E2)=10 3, X(E0/E2)=0.23 7 (2001Ki10). α: based on α(K)exp. E _γ : other: 15.6 12 (1992Me10). Mult.,δ: from α(K)exp=0.046 11, A ₂ =-0.01 13, A ₄ =+0.23 24, δ(D,Q)=-3.3 +1.6-∞, q ² (E0/E2)=6.1 18, X(E0/E2)=0.16 5 (2001Ki10). α: based on α(K)exp.
757.6 2 780 6 2	2.97 103	1219.77 936.96	(4^+) (2^+)	$462.11 4^+ 156 52 2^+$				
796.0 2	3.9 7	952.29	(2^+)	$156.52 \ 2^+$ $156.52 \ 2^+$				
843.4 2	3.0 7	1718.59	$(4^+, 5, 6^+)$	875.28 6+				
852.3 2 916 0 2	1.9 0	1314.22 1791 4	(3) 7^{-}	462.11 4 ⁺ 875.28 6 ⁺	E1		0.00210.3	$\alpha = 0.00210.3$; $\alpha(K) = 0.001776.25$; $\alpha(L) = 0.000253.4$;
910.0 2	5.5 10	1771.1	,	010.20			0.00210.5	$\alpha(M)=5.68\times10^{-5} \ 8; \ \alpha(N+)=1.600\times10^{-5} \ 23$ $\alpha(N)=1.363\times10^{-5} \ 19; \ \alpha(O)=2.21\times10^{-6} \ 4;$ $\alpha(P)=1.556\times10^{-7} \ 22$
916.7 2	10.0 9	1073.36	(3 ⁺)	156.52 2+	(M1+E2)	≤+15	0.009 4	$\alpha = 0.009 \ 4; \ \alpha(K) = 0.007 \ 3; \ \alpha(L) = 0.0011 \ 4; \alpha(M) = 0.00026 \ 9; \ \alpha(N+) = 7.3 \times 10^{-5} \ 24 \alpha(N) = 6.2 \times 10^{-5} \ 21; \ \alpha(O) = 1.0 \times 10^{-5} \ 4; \ \alpha(P) = 7.E - 7 \ 3 Mult., \delta: \ from \ A_2 = -0.13 \ 23, \ A_4 = -0.04 \ 24, \ \delta(D,Q) = +10 +5 -\infty \ (2001 \text{Ki}10); \ \Delta\pi = (\text{no}) \ from \ \text{level scheme. Pure} $
935.6 2	3.4 7	1810.9	(6 ⁻)	875.28 6+				D of pure Q not fuled out.
936.8 2	12.5 9	936.96	(2^+)	$0.0 0^+$				
996.3 2 1030.3 2	5.4 <i>12</i> 6.7 <i>8</i>	1152.82 1492.33	$(2^+,3,4^+)$ (4^-)	156.52 2 ⁺ 462.11 4 ⁺	(E1+M2)	-1.7 +11-39	0.017 10	α (K)=0.014 8; α (L)=0.0023 14; α (M)=0.0005 3; α (N+)=0.00015 9 α (N)=0.00013 8; α (O)=2.1×10 ⁻⁵ 13; α (P)=1.5×10 ⁻⁶ 9
								Mult., δ : D+Q from A ₂ =+0.09 21, A ₄ =+0.12 22
1055.0.2	1.1.4	1517.04	5-	462.11 4+				(2001K110), $\Delta \pi$ =yes from level scheme.
1063.2 2	1.7 5	1219.77	(4 ⁺)	156.52 2+				
1099.2 2	3.0 8	1974.5	. /	875.28 6+				
1157.5 2	2.3 6	1314.22	(3 ⁻)	156.52 2+				
1170.8 2	4.2 8	1327.3	(2^{-})	$156.52 \ 2^+$				
1204.5 2	5.2 S	2079.8	$(4^+ 5 6^+)$	8/5.28 6+				
1413.3 2	2.0 7	1875.4	(4 ,3,0)	462.11 4				

S

 $^{170}_{74}W_{96}\text{--}5$

 $^{170}_{74}\rm{W}_{96}\text{-}5$

$\gamma(^{170}W)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
1469.3 2	12.7 18	2344.6		875.28	6+	I_{γ} : other: 8.9 9 (1992Me10). E_{γ} : other: 1469.9 4 (1992Me10).
1567.3 2	7.7 17	2442.6		875.28	6+	I_{γ} : other: 11.3 <i>13</i> (1992Me10). E_{γ} : other: 1568.2 <i>4</i> (1992Me10).
1605.6 2	4.2 13	2480.9		875.28	6+	
1677.3 2 1774.8 2	3.2 <i>14</i> 4.6 <i>11</i>	2552.6 2650.1		875.28 875.28	$6^+ 6^+$	

[†] From 2001Ki10, except as noted. Uncertainties are reported to be ≤ 0.2 keV for most lines; the evaluator has assigned $\Delta E_{\gamma}=0.2$ to all E γ . Data from 1992Me10 are in excellent agreement except for the two highest energy lines reported in 1992Me10. Note that the experiment of 2001Ki10 was unable to observe E γ >2000.

[‡] Photon intensities from 2001Ki10 relative to I(157 γ)=100 3; from $\gamma\gamma$ coin total projection spectrum measured between beam bursts, E γ >2000 excluded (singles spectrum I γ not reported). Note that singles spectrum data from 1992Me10 are in some cases significantly different from those in 2001Ki10; consequently, I γ data from 1992Me10 are also indicated (in comments on the relevant transitions).

[#] For transitions with E0 admixture, $\alpha = 1.25(\alpha(K)\exp)$ has been assumed.

[@] From Adopted Gammas, except as noted.

[&] From $\gamma(\theta)$ and/or $\alpha(K) \exp(2001 \text{Ki} 10)$.

^{*a*} For absolute intensity per 100 decays, multiply by 0.541 17.

¹⁷⁰**Re** ε decay 2001Ki10,1992Me10

 $^{170}_{~74}W_{96}$

7

 $^{170}_{74}W_{96}$