¹⁶⁹Tm(n,γ) E=2, 24 keV 1996Ho12

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018		

Target $J^{\pi} = 1/2^+$.

1996Ho12: three-crystal pair spectrometer, FWHM=5.5 keV at 6.5 MeV; oxide target; measured $E\gamma$, $I\gamma$ for average resonance capture primary transitions; deduced S(n)=6591.8 *12* (cf. 6591.96 *17* in 2017Wa10). Supersedes 1994HoZZ.

¹⁷⁰Tm Levels

E(level) [†]	J π ‡#	Comments
1.2 4	(≤2 ⁻)	
39.6 1	(≤2 [−])	
150.0 2	$(\leq 2^{-})$	
205.8 2	$(\leq 2^{-})$	
237.3 1	$(\leq 2^{-})$	
589.7 <i>1</i>	(≤2 ⁻)	
605.0 4	$(\leq 2^+)$	
638.0 3	(≤ 2)	F(level), composite peak dominated by the 1- 648.7 level
660.9 <i>6</i>	$(\leq 2^{+})$	E(rever). composite peak dominated by the 1 048.7 rever.
683.0 2	$(\leq 2^{-})$	
692.2 5	(≤2 ⁻)	
705.3 10	(
718.6 7	$(\leq 2^{-})$	
732.9 2	(≤ 2) $(<2^+)$	
756.4 10	()	
774.0 10	(≤2 ⁺)	
781.7 2	$(\le 2^{-})$	F(laval): for doublet
841 3 8	$(<2^+)$	E(level): for doublet.
854.6 4	$(\leq 2^{-})$	
863.0 2	(≤2 ⁻)	E(level): composite peak dominated by the 1^- 863.4 level.
908.0 3	$(\leq 2^{-})$	
101/.5 8	$(\leq 2^{-})$	
1071.8 2	$(\leq 2^{+})$	
1101.2 7	$(\leq 2^+)$	
1139.5 3	$(\le 2^{-})$	
1147.4 3	$(\leq 2^{-})$	
1159.8 5	(≤ 2) $(< 2^{-})$	
1179.2 5	(≤ 2)	
1192.0 2	(≤2 [−])	
1210.9 8	(≤2)	
1224.0 3	(≤ 2)	
1264.6 5	$(\leq 2^{-})$	
1279.5 3	(≤2 [−])	
1298.3 4	(≤2 [−])	
1314.3 5	$(\leq 2^{-})$	
1354.6 2	$(\geq 2^{-})$	
1375.1 2	(≤2 ⁻)	
1395.0 2	$(\le 2^{-})$	

¹⁶⁹Tm(n,γ) E=2, 24 keV 1996Ho12 (continued)

¹⁷⁰Tm Levels (continued)

E(level) [†]	J ^{π‡#}	Comments
1433.2 3	$(\leq 2^{-})$	
1443.1 4	(≤2 ⁻)	
1453.1 6	(≤2 ⁻)	
1466.3 2	(≤2 [−])	
1481.3 5	$(\le 2^{-})$	
1501.1 4	$(\le 2^{-})$	
1515.4 <i>3</i>	$(\le 2^{-})$	
1526.0 <i>13</i>	$(\le 2^{-})$	
1532.1 <i>16</i>	$(\le 2^{-})$	
1537.2 9	$(\le 2^{-})$	
(6593 [@] 2)		E(level): resonance capture state(s) for average n energy of 2 keV;
$(6616^{\textcircled{0}}2)$		E(level): resonance capture state(s) for average n energy of 24 keV.

[†] Authors' best values based on both 2-keV and 24-keV data, except as noted. $E\gamma$ data for primary transitions are based on a chlorine calibration, and ΔE ranges between 0.1 keV and 1.6 keV for these. E(level) values from these data deviate by at most 1.2 keV from adopted values for E<1160. The evaluator, therefore, assigns $\Delta E=1.5$ keV to those E(level) values which have been adopted from this data set. Note that the level indicated at 1.2 keV is, in reality, the ground state.

[‡] J \leq 2 is expected for all levels fed by primary γ -rays in this reaction. π is based on reduced intensity of primary γ -rays feeding level (π =+ states are less strongly fed).

[#] Reduced $I\gamma(E(n)=2 \text{ keV})$ for primary γ to this level favors $\pi=+$, but $\Delta I\gamma$ is unstated. Configuration assignments are from 1996Ho12.

^(a) Based on E γ for 14 strong primary transitions in the 2-keV measurements and the knowledge that the effective neutron energy would be ≈ 1.2 keV (presumably as a result of moderation of the neutrons in the target assembly), 1996Ho12 deduce S(n)=6591.8 9 (cf. 6591.96 17 in 2017Wa10). The evaluator, therefore, estimates E=(6591.8+1.2) for the capture state in the 2-keV measurement and assigns an uncertainty of 2 keV. Since the effective neutron energy for the 24-keV measurement in not known, the evaluator estimates the capture state(s) energy from E γ for the primary to the g.s. and again assigns an uncertainty of 2 keV.

 $\gamma(^{170}\text{Tm})$

Eγ	$I\gamma/(E\gamma^5)^{\dagger}$	E_i (level)	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	$I\gamma(2)/I\gamma(24)^{\ddagger}$
5055.8 9	0.211 23	(6593)	1537.2 (≤2 ⁻)	
5060.9 16	0.193 21	(6593)	1532.1 (≤2 ⁻)	
5067.0 13	0.107 15	(6593)	1526.0 (≤2 ⁻)	
5077.6 <i>3</i>	0.208 21	(6593)	1515.4 (≤2 ⁻)	
5079.1 <i>3</i>		(6616)	1537.2 (≤2 ⁻)	0.46 7
5084.8 5		(6616)	1532.1 (≤2 ⁻)	0.61 9
5091.5 6		(6616)	1526.0 (≤2 ⁻)	0.42 7
5091.9 4	0.115 12	(6593)	1501.1 (≤2 ⁻)	
5098.3 5		(6616)	1515.4 (≤2 ⁻)	0.46 7
5111.7 5	0.089 10	(6593)	1481.3 (≤2 ⁻)	
5113.4 4		(6616)	1501.1 (≤2 ⁻)	0.51 8
5126.7 2	0.217 22	(6593)	1466.3 (≤2 ⁻)	
5133.0 5		(6616)	1481.3 (≤2 ⁻)	0.39 6
5139.9 6	0.097 10	(6593)	1453.1 (≤2 ⁻)	
5149.9 4	0.175 18	(6593)	1443.1 (≤2 ⁻)	
5150.0 2		(6616)	1466.3 (≤2 ⁻)	0.56 8
5159.8 <i>3</i>	0.224 22	(6593)	1433.2 (≤2 ⁻)	
5165.2 7		(6616)	1453.1 (≤2 ⁻)	0.75 12
5176.0 4		(6616)	1443.1 (≤2 ⁻)	0.87 12

¹⁶⁹Tm(n,γ) E=2, 24 keV 1996Ho12 (continued)

$\gamma(^{170}\text{Tm})$ (continued)

Eγ	$I\gamma/(E\gamma^5)^{\dagger}$	E _i (level)	E_f	\mathbf{J}_f^{π}	$I\gamma(2)/I\gamma(24)^{\ddagger}$
5183.7 2		(6616)	1433.2 (≤	≤2−)	0.60 8
5198.0 2	0.205 21	(6593)	1395.0 (<	<2-)	
5217.9 2	0.253 25	(6593)	1375.1 (<	<2-)	
5220.8 2		(6616)	1395.0 (<	<2 ⁻)	0.50 7
5238.4.2	0.221.22	(6593)	1354.6 (<	(2^{-1})	
5240.5.2	0.221 22	(6616)	1375.1 (<	<2 ⁻)	0.59.8
5261 7 2		(6616)	1354.6 (<	<2-)	0.50.7
5268.8.3	0 124 13	(6593)	1324.2 (<	<2 ⁻)	0.20 /
5278 7 5	0.082.9	(6593)	1314.3 (<	(2^{-})	
5290.3.3	0.002 >	(6616)	1324.2 (<	(2^{-})	0 43 6
5294 7 4	0.097.10	(6593)	1298.3 (<	(2^{-})	0.15 0
5301.6.3	0.097 10	(6616)	1314.3 (<	(2^{-})	0 166 24
5313 5 3	0 132 13	(6593)	1279.5 (<	(2^{-})	0.100 24
5316.0.3	0.132 13	(6616)	1279.3 (2)	(2^{-})	0 33 5
5328 4 5	0.091.70	(6593)	1264.6 (<	(2^{-})	0.55 5
5338 3 3	0.071 10	(6616)	1204.0 (2	(2^{-})	0 40 7
535173		(6616)	1279.5 (2)	≤2) <2 ⁻)	0.497
5356.6.3	0 146 15	(0010) (6503)	1204.0 (2	≤∠) <2 ⁻)	0.37 5
5360.0.3	0.140 13	(0393) (6503)	1230.4 (≤∠) <2-)	
5292.1.9	0.129 13	(0393)	1224.0 (2)	≤2) <2)	
5201 7 4	0.042 8	(0.393)	1210.9 (≥∠) <2=)	0.01.12
5401.0.2	0 101 70	(0010)	1224.0 (≤	≤2) <2=)	0.91 15
5401.0 2	0.181 18	(0393)	1192.0 (≤	≤2) <2)	
5415.8 5	0.0679	(6393)	11/9.2 (≤	≤Z) <2=)	0.55.0
5424.8 2	0 100 12	(6616)	1192.0 (≤	≤2) <2=)	0.55 8
5425.1 4	0.128 13	(6593)	1167.9 (≤	≤2) 12=)	
5433.2 3	0.165 1/	(6593)	1159.8 (≤	≤2) <2=)	
5445.0 3	0.183 18	(6593)	1147.4 (≦	≤2) <2=)	0.40
5448.2 2	0.000.01	(6616)	1167.9 (≤	≤2) 12=)	0.42 6
5453.5 3	0.208 21	(6593)	1139.5 (≤	≤2) 12=)	0.44.6
5455.2 4		(6616)	1159.8 (≤	≤2) 12=)	0.44 6
5468.8 4		(6616)	1147.4 (≤	≤2) ×2=)	0.6/9
54/5.5 2	0.040.7	(6616)	1139.5 (≤	≤2)	0.54 8
5491.8 7	0.040 7	(6593)	1101.2 (≤	≤2°)	
5501.6 11	0.024 9	(6593)	1091.4 (≤	≤2 ⁺)	0.16.2
5516.3 2		(6616)	1101.2 (≤	≤2⁺)	0.16 3
5521.2 2	0.165 17	(6593)	10/1.8 (≤	≤2 ⁻)	
5525.4 3		(6616)	1091.4 (≤	≤2+)	0.07 3
5544.2 3		(6616)	10/1.8 (≤	≤2 ⁻)	0.62 9
5575.5 8	0.030 6	(6593)	1017.5 (≤	≤2⁺)	
5601.0 9		(6616)	1017.5 (≤	≤2+)	0.60 14
5685.0 3	0.130 13	(6593)	908.0 (≤	≤2 ⁻)	
5708.6 2		(6616)	908.0 (≤	≤2 ⁻)	0.39 6
5730.0 2	0.175 17	(6593)	863.0 (≤	≤2-)	
5738.4 4	0.081 8	(6593)	854.6 (≤	≤2 ⁻)	
5751.7 8	0.025 4	(6593)	841.3 (≤	≤2 ⁺)	
5754.9 1		(6616)	863.0 (≤	≤2 ⁻)	0.32 5
5762.2 4		(6616)	854.6 (≤	≤2-)	0.66 9
5773.8 [#] 4	0.046 5	(6593)	819.2		
5775.0 <i>3</i>		(6616)	841.3 (≤	≤2 ⁺)	0.13 3
5796.4 [#] 1		(6616)	819.2	-	0.11.2
5811 3 2	0 146 15	(6593)	781 7 (<	<2-)	<i></i>
5819 0 10	0.030.5	(6593)	774.0 (<	-2) <2+)	
5834 5 1	0.050 5	(6616)	781 7 (<	(2^{-1})	0.40.6
5836 6 10	0.015.7	(6593)	756.4		0.10 0
5841 8 2	0.013 /	(6616)	774.0 (<	<2+)	0 14 3
5071.0 2		(0010)	(17.0 (2		0.17 5

Continued on next page (footnotes at end of table)

169 Tm(n, γ) E=2, 24 keV 1996Ho12 (continued)

$\gamma(^{170}\text{Tm})$ (continued)

Eγ	$I\gamma/(E\gamma^5)^{\dagger}$	E _i (level)	E _f J	$\frac{\pi}{f}$ I $\gamma(2)$ /I $\gamma(24)$)‡
5850.6 9	0.026 4	(6593)	742.4 (≤	2 ⁺)	
5859.5 5		(6616)	756.4	0.14 7	
5860.1 2	0.144 14	(6593)	732.9 (≤2	2-)	
5873.2 5		(6616)	742.4 (≤	2 ⁺) 0.37 7	
5874.4 7	0.023 5	(6593)	718.6 (≤2	2+)	
5883.0 2		(6616)	732.9 (≤2	2-) 0.56 8	
5887.7 10	0.020 6	(6593)	705.3		
5896.8 2		(6616)	718.6 (≤2	2 ⁺) 0.09 2	
5900.8 5	0.119 12	(6593)	692.2 (≤2	2-)	
5910.0 2	0.159 16	(6593)	683.0 (≤2	2-)	
5913.0 2		(6616)	705.3	0.06 2	
5923.0 2		(6616)	692.2 (≤2	2 ⁻) 0.42 6	
5932.1 6	0.032 4	(6593)	660.9 (≤2	2+)	
5932.7 2		(6616)	683.0 (≤2	2 ⁻) 0.86 <i>12</i>	
5944.2 2	0.176 18	(6593)	648.8 (≤2	2-)	
5955.1 <i>3</i>	0.086 9	(6593)	638.0 (≤2	2-)	
5955.5 <i>3</i>		(6616)	660.9 (≤2	2 ⁺) 0.15 2	
5967.2 <i>1</i>		(6616)	648.8 (≤2	2 ⁻) 0.41 6	
5979.3 2		(6616)	638.0 (≤2	2 ⁻) 0.34 5	
5988.0 4	0.042 4	(6593)	605.0 (≤2	2+)	
6003.3 <i>1</i>	0.161 16	(6593)	589.7 (≤2	2-)	
6012.4 <i>3</i>		(6616)	605.0 (≤2	2 ⁺) 0.17 2	
6026.8 <i>1</i>		(6616)	589.7 (≤2	2 ⁻) 0.46 7	
6355.7 <i>1</i>	0.153 15	(6593)	237.3 (≤2	2-)	
6373.1 2	0.134 13	(6593)	219.9 (≤2	2-)	
6379.2 <i>1</i>		(6616)	237.3 (≤2	2 ⁻) 0.39 6	
6389.2 2	0.095 10	(6593)	203.8 (≤2	2-)	
6397.1 <i>1</i>		(6616)	219.9 (≤2	2 ⁻) 0.25 4	
6412.7 <i>1</i>		(6616)	203.8 (≤2	2 ⁻) 0.41 6	
6443.0 2	0.082 8	(6593)	$150.0 (\le 2)$	2-)	
6466.8 <i>1</i>		(6616)	150.0 (≤2	2 ⁻) 0.39 6	
6553.5 1	0.105 11	(6593)	39.6 (≤2	2-)	
6577.8 1		(6616)	39.6 (≤2	2 ⁻) 0.45 6	
6591.8 <i>4</i>	0.107 11	(6593)	1.2 (≤2	2-)	
6616.3 <i>1</i>		(6616)	1.2 (≤2	2 ⁻) 0.30 4	

[†] Reduced photon intensity (i.e., $I\gamma/(E\gamma^5)$) for E(n)=2 keV. [‡] γ intensity for E(n)=2 keV divided by γ intensity for E(n)=24 keV. [#] Doublet.

¹⁶⁹Tm(n,γ) E=2, 24 keV 1996Ho12

Level Scheme

Intensities: Reduced intensity, $I\gamma/E\gamma^5$ for E(n)=2 keV

 $^{170}_{69} \mathrm{Tm}_{101}$

 $^{170}_{69} \mathrm{Tm}_{101}$

 $^{170}_{69}\text{Tm}_{101}$