	Τ	_				History	C'4+4-1-1-1	Literature Cateff Date
			M	. <u>1</u> . 1	E A	$\frac{1}{2} \frac{1}{2} \frac{1}$	VIDE 152 1 (2019)	
$Q(\beta^-)=968.1 \ 8;$ S(2n)=14625.6	Full Eval S(n)=65 15; S(2p)	91.96 <i>17</i> ; S)=14313 <i>30</i>	(p)=6 (2017	161.7 1 Walo)	, E. A. 11; Q(a	x)=850.6 <i>11</i> 2017Wa10	NDS 153, 1 (2018)	1-Oct-2018
						¹⁷⁰ Tm Levels		
For neutron re For nuclear ba	esonance and confi	parameters gurations se	and the e 198	nermal 1De29	cross s and 19	ections see 2006MuZX. 996Ho12.		
						Cross Reference (XREF)	Flags	
			A B C D E	169 169 169 169 169	Tm(n,) Tm(n,) Tm(n,) Tm(n,) Tm(d,]	(γ) E=0-136 eVF (γ) E=thermal: γ coinG (γ) E=resH (γ) E=2, 24 keVI (γ) E=2, 24 keVI	170 Tm(d,d') 170 Er(³ He,t) Coulomb excitation 171 Yb(t, α)	
E(level) [†]	J^{π}	T _{1/2}		XR	EF		Comments	
0.0 ^b	1-c	128.6 d <i>3</i>		AB DE	F HI	%ε=0.131 10; %β ⁻ =99.8 μ=+0.2468 12 Q=+0.74 2 J ^π : J=1 from atomic bear T _{1/2} : from 1968Re04. Or 128 d 1 (1967Ke13), 1 %ε,%β ⁻ : see ¹⁷⁰ Tm ε de μ: weighted average of 0. pumping) and +0.2458 fluorescence). Q: from resonance ioniza Others: 0.72 5 (1988D)	 n magnetic resonance thers: 125 d 2 (1962Bc 27.1 d 9 (1969La34). 227.1 d 9 (1969La34). 2476 16 (1990Sh18, β 17 (1988Dy02, atomic tion mass spectroscopy y02, atomic beam reso 	 (1976Fu06); L(d,p)=1. (192), 134.2 d 8 (1965Fl02), Pradiation detected optical c beam resonance (1988Al04, 1987Mi31). nance fluorescence).
38.7139 ⁰ 5	2 ^{-c}	1.71 ns	17	AB DE	FHI	J^{π} : L(d,p)=1; g.s. band m T _{1/2} : from B(E2)=3.2 3 i	nember. in Coulomb excitation	(1968Fr01)
114.5440 ⁰ 6	3 ^{-c}	0.60 ns	3	AB E	FHI	J^{π} : E2 γ to 1 ⁻ ; L(d,p)=3 T _{1/2} : from B(E2)=2.38 <i>I</i> branching.	; band assignment. 0 in Coulomb excitation	on (1968Fr01) and adopted
149.7180 ^d 6	0 ^{-e}			AB DE	I	J^{π} : M1 149 γ to 1 ⁻ ; J=0 t band assignment.	from $\sigma(\theta)$ and expected	d band structure in (t,α) ;
183.1897 ^b 14	4 ⁻ <i>c</i>			A E	F HI	J^{π} : L(d,p)=3; J=4 from <i>o</i> assignment.	$r(\theta)$ and expected band	structure in (t,α) ; band
183.197 ^{<i>x</i>} 4	(3)+	4.12 μs	13	AB		J ^π : E1 69γ to 3 ⁻ ; E1 144 $T_{1/2}$: from γ(t) and pulse	4γ to 2 ⁻ ; band assignment between the beam technique in (1)	ent in (n,γ) E=0-136 eV. n,γ), (d,pγ).
204.4486 ^h 7	2-	<1 ns		AB DE	I	XREF: I(194). J ^{π} : M1 gammas to 1 ⁻ an T _{1/2} : from γ (t) measurem	d 3^{-} . thent in (n,γ) E=0-136	eV.
219.7060 ^d 6	2 ^{-e}	0.25 ns	3	AB DE	FHI	J ^{π} : 220 γ to 1 ⁻ and 105 γ T _{1/2} : from B(E2)=0.085 δ and branching.	to 3 ⁻ are M1+E2. 10 in Coulomb excitat	ion (1968Fr01) and adopted
237.2396 ^d 6	1- <i>e</i>			AB DE	I	J^{π} : M1 88 γ to 0^- ; band a	assignment.	
$247.147^{x} 6$	$(4)^+$			A E	-	J ^{π} : M1+E2 64 γ to (3) ⁺ ; I	E1 γ to (4) ⁻ ; band assist	ignment.
2/0.5466" 8	(3)			AB E	T	$J^{*}: MI 231\gamma$ to (2); MI	+E2 156 γ to (3); J=2	From $\sigma(\theta)$ and expected

Adopted Levels, Gammas (continued)

¹⁷⁰Tm Levels (continued)

E(level) [†]	J^{π}		XREF	7	Comments
					band structure in (t, α) .
319.3260 ^b 12	5 ^{-C}	A	EF	HI	J^{π} : E2 205 γ to (3) ⁻ 115; J=5 from $\sigma(\theta)$ and expected band structure in (t, α).
327.1" /	(5)		E	T	J [*] : band assignment in (d,p).
349.7330 ^{<i>a</i>} 8	3-6	AB	E	I	J^{π} : M1 235 γ to 3 ⁻ ; M1(+E2) 311 γ to (2) ⁻ ; J=3 from $\sigma(\theta)$ and expected band structure in (t, α); 0 ⁻ band member.
355.047 ^z 6	(4) ⁺	A			J^{π} : M1+E2 108 γ to (4) ⁺ ; M1(+E2) 172 γ to (3) ⁺ ; possible configuration=(π 1/2[411])+(ν 7/2[633]) bandhead from (n, γ) E=0-136 eV.
358.1163 ^{<i>h</i>} 9	$(4)^{-}$	A	Е		J^{π} : M1+E2 γ 's to (4) ⁻ and (3) ⁻ ; band assignment.
381.4258 ^d 8	4 ⁻ <i>e</i>	Α	EF	Ι	J ^{π} : E2 γ to (2) ⁻ ; M1+E2 γ to (4) ⁻ ; $\sigma(\theta)$ and expected band structure in (t, α).
402.7281 19	$(3,4)^{-}$	A			J^{π} : M1+E2 γ to (3) ⁻ ; not fed by primary in (n, γ) E=2, 24 keV.
409.4 ^b 8	6- <i>c</i>		EF		J^{π} : $\sigma(\theta)$ in (d,d') and E(level) are consistent with expectations for J=6 member of g.s. band.
419.2 5			E	I	
426.5 ^x 3	(6^{+})		E		J^{π} : band assignment in (d,p).
439.8 ^z 4	(5^{+})		E		J^{π} : band assignment in (d,p).
447.0707 ^k 8 456.8 8	(3)-	AB	E E	I	J^{π} : M1(+E2) 242 γ to (2) ⁻ ; M1 89 γ to (4) ⁻ .
467.8607 ^{<i>h</i>} 12	(5)-	A	E F		J^{π} : E2 197 γ to (3) ⁻ ; band assignment.
520 7222k 17	$(4)^{-}$		-		\overline{M} , M1 E2 or to (2), bond assignment
544 050 8	(4) (3^+)	Δ	F		$J : M1+E2 \ \gamma (0 \ (5) \ , \)$ data assignment.
5-1-1050 0	(3)	л	L		J^{π} : absence of state in (n,γ) E=2, 24 keV suggests J>2; $\Delta \pi$ =no 667 γ from level for which (n,γ) E=2, 24 keV implies π =+. However, placement of M1+E2 544 γ to 1 ⁻ is inconsistent with this.
550.7473 ^d 17	5- <i>e</i>	A	E	I	J^{π} : M1 193 γ to (4) ⁻ ; $\sigma(\theta)$ and expected band structure in (t, α); 0 ⁻ band member.
590.2286 ^{<i>f</i>} 17 594.2 <i>4</i>	1-	AB B	D		J^{π} : M1 441 γ to 0 ⁻ .
598.8 ^h 8	(6^{-})		Е		\mathbf{J}^{π} : band assignment in (d.p.)
603.9897 ^r 14	1+	AB	D	i	J^{π} : E1 454 γ to 0 ⁻ .
607.8862 ^r 16	3+	A		i	J^{π} : E1 425 γ to 2 ⁻ ; E1 569 γ to 4 ⁻ .
616.6 ^b 4 626.8 8	7- <i>c</i>		EF E	I	J^{π} : $\sigma(\theta)$ in (d,d') and E(level) are consistent with expectations for J=7 member of g.s. band.
637.9062f 21	2-	AR	л		I^{π} : M1+F2 523 γ to 3 ⁻ : M1(+F2) 401 γ to 1 ⁻
644 5	(4 ⁻)	112	F	I	J^{π} : $\sigma(\theta)$ and possible $K^{\pi}=4^-$, configuration= $(\pi 7/2[404])+(\nu 1/2[521])$ bandhead assignment in (t,α) . However, E is also consistent with that for 2 ⁻ member of configuration= $(\pi 3/2[411])-(\nu 1/2[521])$ band.
648.7467 ^t 14	1-	AB	De		XREF: $e(649.7)$.
650.3735 ^r 14	2+	A	e		XREF: $e(649.7)$. J ^{π} : E1 535 γ to 3 ⁻ ; E1 650 γ to 1 ⁻ .
655.598 ^k 20	(5^{-})	Α	Е		J^{π} : 541 γ to 3 ⁻ ; band assignment.
661.8564 ^y 12	1+	Α	D		J^{π} : E1 512 γ to 0 ⁻ .
677.6 6			Е		
683.569 ^v 3	$(0)^{-}$	Α	D		J^{π} : M1 446 γ to 1 ⁻ ; band assignment.
687 [‡] 5				I	
693.2864 ^t 13	2-	AB	DE		J^{π} : M1+E2 456 γ to 1 ⁻ : M1(+E2) 344 γ to 3 ⁻ .
703.6284 ^y 13		AB	D		XREF: D(705.3). J^{π} : E1 704 γ to 1 ⁻ ; E1 589 γ to 3 ⁻ .
708.370 ^{<i>f</i>} 4	3-#	AB		i	XREF: i(716). J^{π} : M1+E2 670 γ to 2 ⁻ ; M1+E2 525 γ 4 ⁻ .

¹⁷⁰Tm Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF		Comments			
709.474 4	(1,2,3) ^{-#}	A	i	XREF: $i(716)$. J ^{π} : M1+E2 505 γ to (2) ⁻ .			
715.6207 ^g 18	(3) ^{-#}	A	i	XREF: i(716). J^{π} : M1+E2 269 γ to (3) ⁻ ; band assignment.			
719.2627 ^s 23	1+	A D f		XREF: f(726). J^{π} : E1 570 γ to 0 ⁻ .			
733.8128 ^v 21	$(2)^{-}$	AB D f		XREF: $f(726)$. J ^{π} : M1+E2 γ 's to (1) ⁻ and (3) ⁻ .			
742.4 ^{&} 9 743.6 23	(≤2 ⁺) 1 [−] ,2 [−] ,3 [−]	D	I	J ^{π} : based on primary I γ in (n, γ) E=2, 24 keV. J ^{π} : L(t, α)=2. Assigned as J=2 member of configuration=(π 3/2[411])-(ν 1/2[521]) in (t, α) but, in (n, γ), the 637.9 level is so assigned. J=3 is favored based on absence of this level in (n, γ) E=2, 24 keV.			
749.8482 ^t 16	3-	A E		J^{π} : M1 368 γ to 4 ⁻ ; M1+E2 711 γ to 2 ⁻ .			
756.215 ⁸ 6	(4)-	Α		J^{π} : E1 573 γ to (3) ⁺ ; possible band assignment in (n, γ) E=0-136 eV.			
758.3294 17	(2)+	A D		XREF: D(756.4). J^{π} : M1 108 γ to 2 ⁺ ; possible K ^{π} =2 ⁺ configuration=(π 1/2[541])-(ν 5/2[512]) bandhead from (n, γ) E=0-136 eV.			
760.4 8		В					
774 ¹ 4	$(3)^{-a}$		Ι				
775.2299 ⁱ 14	$(0)^{+}$	A D		J^{π} : E1 538 γ to 1 ⁻ ; band assignment (1996Ho12).			
782.1520 ^v 22	$(1)^{-}$	AB D		J^{π} : M1 99 γ to (0) ⁻ ; band assignment.			
790.1 ^k 8	(6 ⁻)	E		J^{π} : band assignment.			
801 ^{<i>f</i>} 6	(4 ⁻)		Ι	J^{π} : band assignment in (t,α) . However, J=3 favored in (t,α) based on $\sigma(\theta)$.			
806.4274 24	(4) ⁻	A E		J^{π} : E2 448 γ to (4) ⁻ ; 602 γ to 2 ⁻ ; absence of level in (n, γ) E=2, 24 keV disfavors J=2; assignment by 1996Ho12 as configuration=(π 3/2[411])+(ν 5/2[512]) bandhead supports J=4.			
818.5072 ⁱ 15	$(2)^{+}$	A d		J^{π} : E1 581 γ to 1 ⁻ ; 469 γ to 3 ⁻ ; band assignment.			
822.3935 ^{\$} 15	2+	AB d		XREF: B(821.3). J^{π} : E1 585 γ to 1 ⁻ ; E1 473 γ to 3 ⁻ ; M1(+E2) 218 γ to 1 ⁺ .			
829 <i>9</i> 7 832.6 5	(5 ⁺)	В	Ι	J^{π} : $\sigma(\theta)$ and possible assignment to configuration= $(\pi 7/2[523])+(\nu 1/2[521])$ in (t, α).			
835.4 ^t 9 839.131 4	(4 ⁻) (3) ⁻	E A		J^{π} : band assignment in (d,p). J^{π} : M1+E2 725 γ to 3 ⁻ ; M1+E2 619 γ to 2 ⁻ ; J≠2 based on absence of level in (n, γ) F=2,24 keV			
041 28 0	(-2^{+})	D		E=2, 24 KeV.			
850.2 19	(52)	B		J . based on primary ry in (n, γ) E=2, 24 keV.			
854.335 ^{‡u} 4	2-	AB DEf	Ι	J^{π} : M1+E2 854 γ to 1 ⁻ ; M1+E2 740 γ to 3 ⁻ .			
860.484 ⁱ 3	1^{+}	AB f		J^{π} : E1 711 γ to 0 ⁻ .			
862.7765 ^v 21	(3)-	AB f		J^{π} : M1 481 γ to 4 ⁻ ; band assignment.			
863.364 ^{<i>p</i>} 5	$(1)^{-}$	AB DEf	_	J^{π} : M1+E2 659 γ to 2 ⁻ ; band assignment.			
86777 6	(3 ⁻)		Ι	J^{α} : $\sigma(\theta)$ and possible $K^{\alpha}=3^{-1}$ ((π 5/2[402])+(ν 1/2[521])) bandhead in (t, α). However, see comment on 868.0 level.			
868.0 8		В		J ^{π} : fed by primary γ in (n, γ) E=thermal: γ coin, so J ^{π} \leq 2 or 3 ⁺ . Level differs from E=867 6 level in (t, α) only if configuration suggested for latter level is correct. J ^{π} not adopted			
891 ⁿ 4	(5) ^{+<i>a</i>}		Ι	E(level): also consistent with that expected for 3^+ member of $(\pi \ 1/2[541]) \cdot (\nu \ 1/2[521])$ band, but J=3 is inconsistent with L(t, α)=5.			
908.448 ^p 3	(2 ⁻)	AB DE		J^{π} : 704 γ to 2 ⁻ ; 638 γ to (3) ⁻ ; band assignment.			
921 ^{<i>f</i>} 2	(5 ⁻)	f	I	J^{π} : band assignment in (t,α) . However, $L(t,\alpha)=2$.			
925.2722 ^{<i>u</i>} 22	(3)-	A Ef		J ^{π} : M1+E2 887 γ to 2 ⁻ ; M1+E2 812 γ to 3 ⁻ ; possible γ to (5) ⁻ ; not excited in (n, γ) E=2, 24 keV.			
948 ^{<i>q</i>} 4	$(6)^{+a}$		Ι				

¹⁷⁰Tm Levels (continued)

E(level) [†]	\mathbf{J}^{π}	2	XREF		Comments
955.8 ^k 13 959.218 8	(7 ⁻) (3) ⁻	A	E F	i	J^{π} : band assignment in (t,α) . J^{π} : E2(+M1) 921 γ to 2 ⁻ ; γ to (3) ⁻ ; possible γ to 1 ⁻ ; 1 ⁻ ,2 ⁻ inconsistent with absence of state in (n,γ) E=2, 24 keV. J=2 suggested in (d,d') , based on a tentative γ vibrational band assignment in that reaction but bandhead not established
964.474 7 964.8 10	(3,4) ⁻	A B		i	J^{π} : M1+E2 781 γ to (4) ⁻ ; γ to (2) ⁻ . However, (2 ⁻) suggested In (d,d').
979.929 ^{<i>p</i>} 4	(3)-	AB	E		XREF: E(977.4). J ^{π} : E2 622 γ to (4) ⁻ ; 709 γ to (3) ⁻ ; band assignment in (d,p).
984.981 7 1011 ⁿ 1	$(3,4,5)^{-}$ $(6)^{+a}$	A		I	J^{π} : E2(+M1) 714 γ to (3) ⁻ ; γ to (4) ⁻ ; not fed by primary γ in (n, γ) E=2, 24 keV, so J>2.
1014.0 ^{<i>u</i>} 10	(4 ⁻)		Е		J^{π} : from band assignment in (d,p).
1017.5 ^{&} 8 1025.0 <i>10</i> 1046.5 <i>9</i>	(≤2 ⁺)		D E EF		J ^{π} : based on primary I γ in (n, γ) E=2, 24 keV. XREF: F(1052).
1057.3 9		В			J 3 ⁻ suggested in (d,d'), based on a tentative γ vibrational band assignment in that reaction, but bandhead not established. J ^{π} : 788 γ to (3) ⁻ ; 873 γ to (3) ⁺ . J ^{π} not adopted.
1061 ^{<i>f</i>} 9	(6 ⁻)			Ι	J^{π} : band assignment in (t, α) .
1064.4579 14	$(1)^{+}$	A	E		XREF: E(1066.8). J^{π} : M1 289 γ to (0) ⁺ .
1070.975 6	(2)-	A	DE	i	XREF: i(1081). J ^π : M1+E2 867γ to 2 ⁻ ; M1+E2 1071γ to 1 ⁻ ; J<3 from (n,γ) E=2, 24 keV; γ-rays to (3) ⁺ and (3) ⁻ .
1072.7 4		В			
1078.8484 <i>15</i> 1087.8 <i>10</i>	$(1)^{+}$	A B			J^{π} : M1 304 γ to (0) ⁺ ; E1 1040 to 2 ⁻ .
1091.583 <i>3</i>	(1,2)	A	Df	i	XREF: i(1081). J^{π} : $\leq 2^+$ based on primary I γ in (n, γ) E=2, 24 keV; E2 942 γ to 0 ⁻ . However, multipolarities of deexciting gammas are mutually inconsistent: M1+E2 231 γ to 1 ⁺ , but E2 1092 γ to 1 ⁻ and E2 942 γ to 0 ⁻ .
1101.999 <i>4</i> 1111.1 <i>4</i>	(2 ⁺)	AB	D f E	I	J^{π} : $\leq 2^+$ based on primary I γ in (n,γ) E=2, 24 keV; gammas to 1^- and 1^+ and 3^- and 3^+ .
1131.1 ^u 8	(5 ⁻)		Ε		J^{π} : band assignment in (d,p).
1139.951 4	(2)-	AB	DE		J^{π} : M1+E2 790 γ to 3 ⁻ ; M1+E2 231 γ to (2) ⁻ ; fed by primary γ from 0 ⁺ and/or 1 ⁺ resonances in (n, γ); J^{π} <2 ⁻ from (n, γ) E=2, 24 keV. However, mult(782 γ) to (4) ⁻ may include an M1 component.
1141.9 5	(1,2,3)	В			J^{π} : 1142 γ to 1 ⁻ ; 1027 γ to 3 ⁻ .
1147.974 <i>4</i>	$(1,2)^{-}$	AB	DE		XREF: E(1149.2). J^{π} : M1+E2 558 γ to 1 ⁻ ; M1+E2 929 γ to 2 ⁻ .
1160.597 <i>3</i>	(1)-	Α	DE		J^{π} : M1+E2 427 γ to (2) ⁻ ; M1 477 γ to (0) ⁻ .
1168.779 5	(2) ⁻	AB	D		J^{π} : $\leq 2^{-}$ from primary I γ in (n, γ) E=2, 24 keV; (0 ⁻ ,2 ⁻) from absence of primary γ from 0 ⁺ resonances in (n, γ) to (0) ⁻ .
1178.910 <i>3</i>	(2) ⁻	AB	DE		XREF: E(1176.0). I^{π} : M1+E2 961y to 2 ⁻ : 1179y to 1 ⁻ : 517y to 1 ⁺ : E2(+M1) 996y to 4 ⁻ rules out I=1
1182.3 15	(≤3)	В			J^{π} : 944 γ to 1 ⁻ ; 980 γ to 2 ⁻ .
1192.828 10	2-	AB	DE	I	J^{π} : E2 1043 γ to 0 ⁻ .
1200.7 15	(≤2)	В			J^{π} : 595 γ to 1 ⁺ ; 611 γ to 1 ⁻ .
1210.679 11	(2+)	AB	D		J^{π} : $\leq 2^+$ from primary I γ in (n,γ) E=2, 24 keV; M1+E2 667 γ to (3^+) ; 1201 γ to 1 ⁻ ; 1095 γ to 3 ⁻ . However, 1 ⁻ favored based on primary γ feeding from a 0 ⁺ and a 1 ⁺ resonance in (n,γ) .
1213.1 ⁰ 8 1219.8 4	(3) ^{-<i>a</i>}		E E	Ι	
1224.0 ^{&} 3	(≤2 [−])		D		J^{π} : based on primary I γ in (n, γ) E=2, 24 keV.
1230 ^{<i>f</i>} 5	(7 ⁻)			I	J^{π} : band assignment in (t, α) .

Adopted Levels, Gammas (continued)

¹⁷⁰Tm Levels (continued)

E(level) [†]	J^{π}	XREF		Comments
1232.4 <i>4</i> 1238.144 <i>10</i>	(≤ 3) $(0,1,2)^{-}$	B AB D		J^{π} : 1194 γ to 2 ⁻ ; 1233 γ to 1 ⁻ . J^{π} : M1+E2 1001 γ to 1 ⁻ ; E2 1018 γ to 2 ⁻ . 1 ⁻ favored based on primary γ feeding intensities from 0 ⁺ and 1 ⁺ resonances in (n, γ); however, possible 694 γ to (3 ⁺) does not favor 0 ⁻ or 1 ⁻ .
1245.1 4		E		
1238.2 4 1265.075 <i>12</i>	(0,1,2) ⁻	AB D		J ^{π} : E2(+M1) 1045 γ to 2 ⁻ ; J≤2 based on primary I γ in (n, γ) E=2, 24 keV. Possible 1081 γ to (3) ⁺ and 996 γ to (3) ⁻ render 0 ⁻ and 1 ⁻ unlikely.
1269.2 4		Е		
1279.5 ^{&} 3	(1 ⁻ ,2 ⁻)	B DE		XREF: E(1277.0). $I^{\pi} < 2^{-}$ based on primary Ly in (n y) E=2. 24 keV 1131y to 0 ⁻ inconsistent with I=0.
1291 ⁰ 6 1295.3 4	(4 ⁻)	E	Ι	J^{π} : $\sigma(\theta)$ and possible band assignment in (t,α) .
1299.107 13	(2)-	AB D		J ^π : 1062γ to 1 [−] ; 695γ to 1 ⁺ ; 941γ to (4) [−] ; J≤2 based on primary Iγ in (n,γ) E=2, 24 keV
1309.3 17	(≤2)	В		J^{π} : 663 γ to 1 ⁻ ; 705 γ to 1 ⁺ .
1315.9 ^{&w} 13	$(1)^{-a}$	ΒD	Ι	XREF: B(1317.0)D(1314.3).
Q				E(level): weighted average of 1314.3 5 and 1317.0 4 (unweighted average is 1315.7 14). J^{π} : 1167 γ to 0 ⁻ ; 867 γ to (3) ⁻ .
1324.2 ^{&} 3	$(\le 2^{-})$	DE		XREF: $E(1326.0)$.
1334.9 5	(1 ⁻ ,2,3 ⁻)	В		J^{π} : 1335 γ to 1 ⁻ ; 1220 γ to 3 ⁻ .
1354.6 ^{&} 2	(1,2) ^{-<i>a</i>}	AB DE	Ι	E(level): 1354.73 7 if 1355 γ is correctly placed in (n, γ) E=0-136 eV. J ^{π} : 1134 γ to 2 ⁻ : 1203 γ to 0 ⁻ .
1363.5 5	(1+,2-)	ΒE		XREF: B(1360.4). E(level): from (d,p); 1360 3 from (n, γ) E=thermal: γ coin. J ^{π} : 1208 γ to 0 ⁻ ; 1179 γ to (3) ⁺ .
1375.1 ^{&} 2	(1 ⁻) [@]	AB D		XREF: A(1381). E(level): 1381 3 in (n,γ) E=0-136 eV. I^{π_1} ($<2^{-1}$) based on primary Ly in (n,γ) E=2, 24 keV: 1227 γ to 0^{-1} 150.
1382.2 ^j 9	(2) ^{-<i>a</i>}	В	I	J^{π} : band assignment in (t, α) . If $J^{\pi} \le 2^-$, level should have been seen in $(n, \gamma) \to 2$, 24 keV; it was not. 1178 γ to 2 ⁻ implies J \le (4).
1395.0 ^{&} 2	(2 ⁻)	B DE		XREF: E(1394.1). J^{π} : ($\leq 2^{-}$) based on primary I γ in (n, γ) E=2, 24 keV; 1211 γ to (3) ⁺ ; 1394 γ to 1 ⁻ ; 1281 γ to 3 ⁻ .
1413.1 19	(1 ⁻ ,2,3 ⁻)	В		J^{π} : 1178 γ to 1 ⁻ ; 1238 γ to 3 ⁻ .
1433.2 ^{&} 3	$(1^{-})^{(a)}$	AB D		Additional information 1.
1437.2 11	(≤2)	B		J^{π} : 1199 γ to 1 ⁻ ; 835 γ to 1 ⁺ .
1442.0 4	(≤ 4)	AD DE		J ⁺ : 12387 10 2 .
1443.1×4 1/1/8 / 1	$(1)^{-a}$	AB DE	т	Additional information 2.
1453 1 6	(5)	DF	1	I^{π} : based on primary I_{α} in $(n_{\alpha}) = 7.24$ keV
1460.5 5	(22)	E		J . Oused on primary I_f in $(I,f) = 2, 2 + k + 1$
1466.3 ^{&} 2	(1-,2-)	B DE		XREF: B(1468.1). J ^{π} : (\leq 2 ⁻) based on primary I γ in (n, γ) E=2, 24 keV; 1318 γ to 0 ⁻ ; 1117 γ to 3 ⁻ ; 867 γ to 1 ⁺ .
1472 <i>3</i> 1478.0 <i>10</i>	$(1^{-})^{@}$ (1,2^{-})	A B		E(level): possibly THE 1466.3 LEVEL, BUT ENERGY DOES NOT OVERLAP. J^{π} : 1328 γ to 0 ⁻ ; 1259 γ to 2 ⁻ .
1481.3 ^{&} 5	(≤2)	DE		XREF: E(1483.6).
1491.4 2		E	I	J ^{π} : based on primary I γ in (n, γ) E=2, 24 keV. XREF: I(1488).
1501.1 ^{&} 4	$(\le 2^{-})$	B DE		J^{π} : based on primary I γ in (n,γ) E=2, 24 keV.

¹⁷⁰Tm Levels (continued)

E(level) [†]	J^{π}	XREF		Comments			
15154& 3	$(0^{-}2^{-})$	AR DF		$F(level): 1517.3 \text{ from } (n \gamma) F=0.136 \text{ eV}$			
1010.1 0	(0,2)			J^{π} : 910y to 1 ⁺ ; 1397y to 3 ⁻ ; 929y to 1 ⁻ ; (0 ⁻ ,2 ⁻) from (n,y) E=res primary-transition			
				intensities to level from various 1 ⁺ and/or 0 ⁺ resonances, assuming E1 primaries.			
1518.1 10	$(1^{-},2,3^{-})$	В		J^{π} : 1280 γ to 1 ⁻ ; 1168 γ to 3 ⁻ .			
1526.0 ^{&} 13	(≤2 [−])	D		J^{π} : based on primary I γ in (n,γ) E=2, 24 keV.			
1532.1 <mark>&</mark> 16	(≤2 [−])	D		J^{π} : based on primary Iy in (n, γ) E=2, 24 keV.			
1537.2 ^{&} 9	$(1^{-})^{@}$	AB D		E(level): 1543 5 in (n,γ) E=0-136 eV.			
				J^{π} : ($\leq 2^{-}$) based on primary I γ in (n, γ) E=2, 24 keV; 932 γ to 1 ⁺ ; 1317 γ to 2 ⁻ .			
1539 <i>j 13</i>	(4 ⁻)		Ι	J^{π} : $\sigma(\theta)$ and possible band assignment in (t, α) .			
1549.1 <i>13</i>	(≤3)	В		J^{π} : 1550 γ to 1 ⁻ ; 1509 γ to 2 ⁻ .			
1566 8			Ι				
1586.7 25	$(1^{-},2,3^{-})$	B	I	J^{π} : 1471 γ to 3 ⁻ ; 998 γ to 1 ⁻ .			
1590.3 5	(≤ 3)	В		J^{*} : 1590y to 1 ; 1552y to 2 . I^{π} : 1012e to 1^{-1} : 1563e to 2^{-1}			
1605.5 14	(≤ 3)	Б		$J : 1015\gamma 10 1 ; 1505\gamma 10 2 .$			
1609.3 11	$(0, 1, 2)^{\circ}$	AB		Additional information 3			
1639 2 5	(1 to 4)	aB	i	XREF: a(1644)i(1640)			
1037.2 3	(1 to 1)	uD	-	Additional information 4.			
				J^{π} : 1525 γ to 3 ⁻ ; 1601 γ to 2 ⁻ .			
1646.3 11	$(2^{-},3^{+})$	aB	i	XREF: a(1644)i(1640).			
				J^{π} : 1043 γ to 1 ⁺ ; 1001 γ to (4 ⁻).			
1658.7 12	(≤3)	В		J^{π} : 1659y to 1 ⁻ ; 1619y to 2 ⁻ .			
1669.2 4	(≤2)	В	1	J^{n} : 1521 γ to 0; 1465 γ to 2.			
1676 3	(1-)	A	1	Additional information 5. T_{π}^{π} and $T_$			
1690 8	(<2)	r D	1	J ^{**} : postulated in (d,d [*]) to be bandnead of a K [*] =3 γ -vibrational band. J ^{**} not adopted.			
1726 7 15	(≤ 3) (1 to 4)	B	1	J^{π} : 1279v to (3) ⁻ : 1688v to 2 ⁻			
1733.7 4	(<3)	B		J^{π} : 1734 γ to 1 ⁻ : 1695 γ to 2 ⁻ .			
1747.7 11	(≤3)	В	Ι	XREF: I(1742).			
				J^{π} : 1748 γ to 1 ⁻ ; 1710 γ to 2 ⁻ .			
1758.4 4	(≤3)	В		J^{π} : 1758 γ to 1 ⁻ ; 1720 γ to 2 ⁻ .			
1768.7 12	(1 to 3)	В		J^{n} : 1179 γ to 1 ⁻ ; 1318 γ to (3) ⁻ .			
1793 3	(1 ⁻) ^w	A					
1818.1 14	(≤3)	В		$J^{*}: 1612\gamma$ to 2 ; 1582 γ to 1 .			
1823.2 6	$(1^-, 2^-)^{\bullet}$	AB	I	XREF: I(1829).			
				Additional information 0. I^{π_1} , 1674 α , to 0^{-} , eliminates I=0.			
1946 2	$(1-)^{(0)}$	٨		VDEE. :(1947)			
1640 3	(1)	A	1	Additional information 7			
1855.0.5	(1 to 3)	В	i	XREF: j(1847).			
	()			J^{π} : 1211 γ to 1 ⁻ ; 1672 γ to (3) ⁺ .			
1859.3 15	$(1^{-})^{@}$	AB		J^{π} : 1708 γ to 0 ⁻ ; 1413 γ to (3) ⁻ .			
1870.6 8	(≤2)	В	Ι	J^{π} : 1666 γ to 2 ⁻ ; 1633 γ to 1 ⁻ ; 1266 γ to 1 ⁺ .			
1909.8 5	(≤3)	В		J^{π} : 1910 γ to 1 ⁻ ; 1871 γ to 2 ⁻ .			
1921.3 14	$(1^{-},2)$	В		J^{π} : 1806 γ to 3 ⁻ ; 1315 γ to 1 ⁺ ; 1271 γ to 1 ⁻ .			
1932.7 12	(1,2,3 ⁻)	В		J^{*} : 1933 γ to 1; 1583 γ to 3.			
1944 3	$(0^{-},2^{-})^{\textcircled{0}}$	A					
1951.0 8	(2,3)	AB		XKEF: A(1955). I_{π} , 1051a, to I_{π}^{-1} , 1670a, to $(2)^{-1}$, 1767a, to $(2)^{+1}$			
1979 0 <i>14</i>	$(1^{-}2,3^{-})$	В		J. 1951 γ to 1; 10/9 γ to (5); 1/0/ γ to (5). I^{π} · 1978 γ to 1 ⁻ · 1711 γ to (3) ⁻			
2013.4 17	$(2,3^{-})$	B		J^{π} : 2012 γ to 1 ⁻ : 1830 γ to (3) ⁺ : 1900 γ to 3 ⁻ .			
2039.5 13	(≤3)	В		J^{π} : 2041 γ to 1 ⁻ ; 1819 γ to 2 ⁻ .			
2072.8 9	(1 ⁻ ,2,3 ⁻)	В		J^{π} : 2073 γ to 1 ⁻ ; 1722 γ to 3 ⁻ .			

¹⁷⁰Tm Levels (continued)

E(level) [†]	Jπ	XREF	Comments
2084.1 14	(<3)	В	J^{π} : 2082 γ to 1 ⁻ .
2098 0 12	(12)	B	I^{π} : 1950y to 0^{-1} : 1748y to 3^{-1}
2101.0 17	(1,2) (1-2,3-)	B	J^{π} : 2098 γ to 1 ⁻ : 1831 γ to (3) ⁻ .
2116.3 10	(<2)	B	I^{π} : 1965 γ to 0 ⁻ : 1912 γ to 2 ⁻ .
2134.6.15	(23^{-})	R	I^{π} : 1899y to 1^{-1} : 2019y to 3^{-1} : 1534y to 3^{+1}
2131.013	(<3)	R	I^{π} : 2145 γ to 1^{-}
2161 1 21	$(1^{-}23^{-})$	R	I^{π} : 2158y to 1 ⁻ : 1893y to (3) ⁻
2168 1 7	$(1^{-},2,3^{-})$	R	I^{π} : 2167 ν to 1 ⁻ : 1898 ν to (3) ⁻
2192.0.23	$(1^+, 2^-, 3^-)$	R	I^{π} : 2189y to 1 ⁻ : 1591y to 3 ⁺
2258 2 20	$(1^{-},2,3^{-})$ $(0^{-},1,2^{-})$	B	I^{π} : 2111 γ to 0 ⁻ : 2039 γ to 2 ⁻
2264.9.7	$(2^{-}3^{+})$	R	I^{π} : 1664 γ to 1 ⁺ : 1619 γ to (4 ⁻)
2272.4.5	(≤ 3)	B	I^{π} : 2068y to 2 ⁻ 1669y to 1 ⁺
2281 5 5	(≤ 3)	R	I^{π} : 2000 y to 2^{-} , 100 y to 1^{-}
2283 1 11	$(1^{-}2)$	R	I^{π} : 1033y to 3^{-1} : 2201y to 1^{-1} : 1681y to 1^{+1}
2289.8.12	(1,2)	B	I^{π} : 2289v to 1 ⁻
2207.0 12	$(1^{-}23^{-})$	R	I^{π} : 2072 y to I^{-1} : 1858 y to $(3)^{-1}$
2340.8.7	$(1^{-},2,3^{-})$	R	$J^{\pi}: 2103\nu$ to $1^{-}: 1892\nu$ to $(3)^{-}$
2347 1 15	(1,2,3)	B	J^{π} : 17/2 γ to 1 ⁺
2364.8.13	(≤ 3) $(2^{-} 3 4^{-})$	R	J^{π} : 2327 $_{27}$ to 2 ⁻ : 1719 $_{27}$ to (4 ⁻)
2304.0 15	$(2^{,3,7})$	B	I^{π} : 2328y to 1^{-1}
2/30 1 10	(≤ 3) $(1=2^{-})$	B	$J = 23007 \text{ to } 1^{-1}$. $I^{\pi} = 22807 \text{ to } 0^{-1} = 20807 \text{ to } 3^{-1}$
2459.1 19	(1,2)	B	$J^{\pi}: 2458\gamma$ to 0^{-} ; 2659 to 5^{-} .
2430.3 4	(≤ 2)	D	$J = 24367 \text{ to } 1^{-1}$, $10557 \text{ to } 1^{-1}$. $I^{\pi} = 2478\alpha$ to $1^{-1} = 2204\alpha$ to $(3)^{+1}$
2478.07	(≤ 2)	B	$J = 24787 \text{ to } 1^{-1}$, $22947 \text{ to } (5)^{-1}$.
2482.0 5	(≤ 3)	D	$J = 2462 \gamma = 0.1$. $I^{\pi} = 2415 \gamma = t_0 = 2^{-1} \cdot 2324 \gamma = 0.2^{-1}$
2526.5 0	$(1 \ 10 \ 4)$ $(1^{-} 2 \ 3^{-})$	D	J . 24157 10 5 , 25247 10 2 . I^{π} : 2534 μ to 1^{-1} : 2065 μ to $(3)^{-1}$
2530.5 20	(1, 2, 3) $(1^{-}, 2, 3^{-})$	D	$J = 25347$ to 1^{-1} ; 20037 to $(3)^{-1}$
2540.5 0	(1,2,3)	D	J = 23417 to 1 , 22707 to (3) .
2555.9 20	(≤ 3)	D	J^{-} . 1903 y to 1 . I^{-} . 2226 y to 1 ⁻
2313.27	(≤ 3)	D D	J^{-1} , 2550 γ to 1 = I^{-1}
2502.2.19	(≤ 3)	D D	J^{-1} : 236/ γ to 1 . I^{-1} : 236/ γ to 0 = . 22224. to (2) =
2592.5 10	(1,2)	D	J. 24437 10 0 , 23227 10 (3) .
2398.9 21	(2)	D D	J^{-1} : 2397 γ to 1 ; 1953 γ to (4); 1990 γ to 1 .
2000.8 17	(1,2)	D	J^{*} . 24367 10 0 , 24927 10 3 . I^{π} . 2617. to J^{\pm} . 1072. to (J^{\pm})
2010.5 15	(2, 3)	D	$J = 20177 \text{ to } 1^+$, $19727 \text{ to } (4^-)$.
2023.17	(≤ 3)	D	J^{π} . 2022 y to 1 . I^{π} : 2522 y to 2 ⁻ : 2206 y to 1 ⁻ : 2020 y to 1 ⁺
2034.0 10	(1,2) (1-2,2-)	D D	J^{-1} : 25227 10 5 ; 25907 10 1 ; 20207 10 1 . $I\pi$: 20284 to 1^{-1} : 240164 to $(2)^{-1}$
2071.97	(1,2,3)	D	$J = 20207 \text{ to } 1^{-1}$, 24017 to (3).
2702.3 19	(≤ 3)	D	$J = 2480 y = 10^{-1}$
2721.5 15	(\23)	D	J. 2402γ to 1. I^{π} : 2613 γ to 2 ⁻ so I-(1 to 5)
2727.4 5	$(1+22^{-})$	D	J . 2015 γ to 5 so J=(1 to 5). I^{π} : 2177 α to 1 ⁻ : 2585 α to (2) ⁺
2101.9 5	(1, 2, 3) (1-2, 2-)	D	$J = 2177$ to 1^{-1} , 2565 y to $(5)^{-1}$.
2778.0 15	(1,2,3)	D	$J = 27777 \text{ to } 1^{-}$, 2000 y to $J = 1^{-}$
2802.4 5	(≤ 3)	D	J. $20037 \text{ to } 1^{-1}$, 2162α to (4^{-1})
2007.0 14	(2, 5) (1-2-)	D	J. 2000 (0 1, 2103) (0 (4). I^{π} , 2542a to (2) ⁻ ; 2664a to () ⁻
2015.0 15	(1,2)	D	J . 23427 10 (3) , 20047 10 0 . I^{π} . 28462 to 1 ⁻
2040.2 J 2867 0 13	(≤ 3) (1=2,3=)	D	J . 20407 10 1 . I^{π} : 2222 $_{22}$ to 1^{-1} : 2505 $_{22}$ to $(3)^{-1}$
2807.0 15	(1, 2, 3) (1-2, 2-)	D	$J = 22237 \text{ to } 1^{-1}, 23337 \text{ to } (3)^{-1}$
2874.5 5	(1,2,3)	B	$J = 28747$ to 1^{-}
2001.0 3	(≥ 3)	B	$I^{\pi} \cdot 201/\alpha$ to 1^{-1}
2711.7 21	(≥ 3) (1=22=)	B	$J = 2917 \times 10^{-1}$. $I^{\pi} = 2281 \times 10^{-1} \times 2655 \times 10^{-1}$
2923.40	(1, 2, 3) (1-2, 2-)	B	$J = 22017 \text{ to } 1^{-}, 20007 \text{ to } (0)^{-}$. $I^{\pi} = 2603\alpha$ to $2^{-} \cdot 2716\alpha$ to 1^{-}
2952.15	(1, 2, 3)	B	$I^{\pi} \cdot 2005 \times 10^{-1} \cdot 2646 \times 10^{-2}$
2995.90 3030 8 13	(1,2,3)	B	$J = 2700 \text{ to } 1^{-1} + 2040 \text{ to } 3^{-1}$. $I^{\pi} = 24260 \text{ to } 1^{-1} + 24410 \text{ to } 1^{+1}$
3030.0 13	(≥ 2)	B	J = 2720 (0.1), 2771 (0.1), 1772
3077.4 9	(≥ 4)	B	J. $2+307$ to 1, $20+77$ to 1. $I^{\pi} \cdot 30020$ to $2^{-1} \cdot 31600$ to 2^{-1}
5200.7 /	(1104)	D	$\mathbf{J} \cdot \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J}$

¹⁷⁰Tm Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XRE	EF	Comments
3215.9 9	(≤3)		В		J^{π} : 2626 γ to 1 ⁻ .
3272.7 6	(≤3)		В		J^{π} : 2682 γ to 1 ⁻ .
3470.8 5	(≤4)		В		J^{π} : 3432 γ to 2 ⁻ .
3491.5 11	(≤3)		В		J^{π} : 3253 γ to 1 ⁻ .
3557.3 7	(≤4)		В		J^{π} : 3519 γ to 2 ⁻ .
3623.7 6			В		J^{π} : 3419 γ to 2 ⁻ and 3274 γ to 3 ⁻ so $J^{\pi} = (1^{-}, 2, 3, 4^{-}) J^{\pi}$ not adopted.
3630.0 6	(≤3)		В		J^{π} : 3393 γ to 1 ⁻ .
3760.5 11	(≤3)		В		J^{π} : 3541 γ to 1 ⁻ .
3806.2 6	(≤3)		В		J^{π} : 3806 γ to 1 ⁻ .
3864.1 20	(≤3)		В		J^{π} : 3624 γ to 1 ⁻ .
6591.97	$0^+, 1^+$		Α		E(level): cf. S(n)=6591.96 17 (2017Wa10).
					J ^{π} : L=0 neutron capture by J ^{π} =1/2 ⁺ target.
15492 7	0^{+}	104 keV 8		G	J^{π} : IAS of ¹⁷⁰ Er g.s.

[†] From least-squares fit to $E\gamma$ from (n,γ) E=0-136 eV whenever γ deexcitation of level has been observed in that reaction. For levels reported only in (n,γ) E=thermal: γ coin, authors' E(level) values are adopted.

[‡] Configuration=(π 3/2[411])+(ν 1/2[521]) was suggested in (t, α) (1981De29).

[#] L(t, α)=2 for E=716 4 level, with J=2 favored by $\sigma(\theta)$ and possible configuration=((π 5/2[402])-(ν 1/2[521])). However, if J≤2, level should have been populated in (n, γ) E=2, 24 keV and it was not, so J=3 seems more likely. 1996Ho12 suggest that this level is the J=3 member of the (π 3/2[411])-(ν 1/2[521]) band; however, its energy is a little high for that.

^(a) Based on (n,γ) E=res primary-transition intensities to state from various 1⁺ and/or 0⁺ resonances for which E(n) ≤ 136 eV, assuming mult=E1 for primary γ .

[&] From (n,γ) E=2, 24 keV.

^{*a*} π from L transfer; J from L and/or $\sigma(\theta)$ in (t, α) and plausible band structure.

^b Band(A): $K^{\pi}=1^{-}$ g.s. band. Configuration= $(\pi 1/2[411])+(\nu 1/2[521])$. Rotational parameters: $\alpha=11.4$ (for J odd), 10.3 (for J even).

^{*c*} Definite J^{π} assigned to members of g.s. band based on smooth progression of level energies and independently established $J^{\pi}(g.s.)=1^{-}$ and mult=M1+E2 for J=2 to 1 intraband 38 γ .

^d Band(B): $K^{\pi}=0^{-}$ band. Configuration=(π 1/2[411])-(ν 1/2[521]). Rotational parameters: α =11.67 (for J even), 11.25 (for J odd); Newby shift is +32 keV (1996Ho12).

^{*e*} Definite J^{π} assigned to members of 0⁻ band based on smooth progression of level energies and independently established $J^{\pi}(220)=2^{-}$ and mult=E2 for J=3 to 1 intraband 112 γ .

^{*f*} Band(C): $K^{\pi}=1^{-}$ band. Configuration=(π 3/2[411])-(ν 1/2[521]) plus (π 7/2[404])-(ν 5/2[512]). Rotational parameter: α =11.8 (for J odd).

^g Band(D): $K^{\pi}=(3)^{-}$ band. Configuration= $(\pi 1/2[541])-(\nu 7/2[633])$ from (n,γ) ; rotational parameter: $\alpha=5.1$.

^{*h*} Band(E): $K^{\pi}=2^{-}$ band. Configuration=(π 1/2[411])-(ν 5/2[512]). Rotational parameter: α =11.0. Band is anomalously populated in (t, α).

^{*i*} Band(F): $K^{\pi}=(0)^+$ band. Configuration=(π 7/2[404])-(ν 7/2[633]). Rotational parameter: α =7.2 (J=even); +36 keV Newby shift.

^{*j*} Band(G): $K^{\pi}=(2)^{-}$ band. Configuration= $(\pi 5/2[413])-(\nu 1/2[521])$. Rotational parameter: $\alpha=11.0$.

^{*k*} Band(H): $K^{\pi} = (3)^{-}$ band. Configuration= $(\pi \ 1/2[411]) + (\nu \ 5/2[512])$. Band is anomalously populated in (t,α) . Rotational parameter: $\alpha = 11.58$.

^{*l*} Band(I): $K^{\pi} = (3)^{-}$ band. Configuration= $(\pi 7/2[404])-(\nu 1/2[521])$.

^{*m*} Band(J): $K^{\pi}=(3^{-})$ band. Configuration= $(\pi 5/2[402])+(\nu 1/2[521])$ suggested in (t,α) , but level's excitation is stronger than expected for this configuration.

^{*n*} Band(K): $K^{\pi}=(3)^+$ band. Configuration= $(\pi 7/2[523])-(\nu 1/2[521])$. Rotational parameter: $\alpha=10.0$.

^o Band(L): $K^{\pi} = (3)^{-}$ band. Configuration= $(\pi 5/2[413]) + (\nu 1/2[521])$. Rotational parameter: $\alpha = 9.75$.

^{*p*} Band(M): $K^{\pi}=(1)^{-}$ band. Configuration= $(\pi 3/2[411]) \cdot (\nu 5/2[512])$ plus $(\pi 1/2[411]) + (\nu 1/2[510])$ plus $((\pi 1/2[411]) \cdot (\nu 5/2[512]) \cdot \gamma vibration$. Rotational parameter: $\alpha = 11.3$.

¹⁷⁰Tm Levels (continued)

- ^{*q*} Band(N): $K^{\pi}=(4)^+$ band. Configuration= $(\pi 7/2[523])+(\nu 1/2[521])$. Rotational parameter: $\alpha=9.9$.
- ^r Band(O): $K^{\pi}=1^+$ band. Configuration= $(\pi 1/2[541])+(\nu 1/2[521])$. Coriolis-mixed band.
- ^s Band(P): $K^{\pi}=(0)^+$ band. Configuration= $(\pi 1/2[541])-(\nu 1/2[521])$. Coriolis-mixed band. -44 keV Newby shift.
- ^t Band(Q): $K^{\pi} = 1^{-}$ band. Configuration= $(\pi \ 1/2[411]) (\nu \ 3/2[521])$ plus $(\pi \ 7/2[404]) (\nu \ 5/2[512])$ plus $(\pi \ 3/2[411]) (\nu \ 1/2[521])$. Rotational parameter: $\alpha = 10.1$ (for J=odd).
- ^{*u*} Band(R): $K^{\pi}=2^{-}$ band. Configuration= $(\pi \ 1/2[411]) + (\nu \ 3/2[521])$ plus $(\pi \ 3/2[411]) + (\nu \ 1/2[521])$ plus $((\pi \ 1/2[411]) + (\nu \ 1/2[521]) + (\nu \ 1/2[521]))$ plus $((\pi \ 1/2[411]) + (\nu \ 1/2[521]) + (\nu \ 1/2[521]))$ plus $((\pi \ 1/2[411]) + (\nu \ 1/2[521]))$ plus $((\pi \ 1/2[521]) + (\nu \ 1/2[521]))$ plu
- ^{*v*} Band(S): $K^{\pi}=(0)^{-}$ band. Configuration=(π 7/2[523])-(*v* 7/2[633]). Rotational parameter: α =8.4 (even J), 8.2 (odd J); band exhibits Newby shift of +41 keV (1996Ho12).
- ^{*w*} Band(T): $K^{\pi}=(1)^{-}$ band. γ -vibration built on $K^{\pi}=1^{-}$ g.s. band. Rotational parameter: $\alpha=10.1$.
- ^x Band(U): $K^{\pi}=(3)^+$ band. Configuration=(π 1/2[411])-(ν 7/2[633]). Rotational parameter: $\alpha=8.0$.
- ^y Band(b): $K^{\pi}=1^+$ band. Configuration=(π 7/2[523])-(ν 5/2[512]). Rotational parameter: α =10.4.
- ^{*z*} Band(a): $K^{\pi} = (4)^+$ band. Configuration = $(\pi \ 1/2[411]) + (\nu \ 7/2[633])$. Rotational parameter: $\alpha = 8.5$.

					Adopted Leve	els, Gammas (con	tinued)	
						$\gamma(^{170}\text{Tm})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments
38.7139	2-	38.714 <i>I</i>	100	0.0 1-	E2+M1	1.43 6	132 4	$B(M1)(W.u.)=0.00055\ 7;\ B(E2)(W.u.)=3.4\times10^2\ 4$
114.5440	3-	75.831 <i>1</i>	20.2 17	38.7139 2-	M1+E2	0.85 4	7.82 13	B(M1)(W.u.)=0.00214 24; B(E2)(W.u.)=123 15
140 7190	0-	114.544 1	100.0 4	$0.0 1^{-}$	E2 E2		1.84	B(E2)(W.u.) = 182.8
149./180	0	111.005 1 149 718 1	5.48 <i>25</i> 100 <i>8</i>	$38.7139 \ 2$ 0.0 1 ⁻	E2 M1		2.07	
183 1897	4-	68 6491 ^{&}	$0.9^{\&} 4$	11454403^{-}	F2		13 73	
105.1077	т	144 480	$100^{\&} 12$	38 7139 2-	E2 F2		0.795	E : 144.480 I for doublet
183 197	$(3)^{+}$	68 6491 ^{&} 4	$41.6^{\&} 20$	11454403^{-}	E2 F1		0.795	$B(F1)(W_{11}) = 3.6 \times 10^{-8} 3$
105.177	(3)	144 4797 & 5	$100^{\&} 6$	38 7139 2-	E1 F1		0.1260	$B(E1)(W_{11}) = 0.03 \times 10^{-8} 8$
		1++.+/)/ 5	100 0	56.7157 2	LI		0.1200	E_{γ} : 144.4797 5 for doublet.
204.4486	2^{-}	89.906 <i>3</i>	0.85 9	114.5440 3-	M1		4.21	7
		165.735 <i>1</i>	43.6 24	38.7139 2-	M1(+E2)	≤0.7	0.70 5	
210 7060	2-	204.448 1	100.0 6	0.0 1	MI E2		0.412	$P(E2)(W_{H}) = 240.50$
219.7000	Z	105 162 1	28.6.3	$149.7180 \ 0$ $114 \ 5440 \ 3^{-}$	E2 M1+E2	043	2.66.5	B(E2)(W.u.)=240.50 B(M1)(W.u.)=0.0045.11; $B(E2)(W.u.)<70$
		180.994 1	100 9	38.7139 2-	M1+E2	0.27 3	0.562 9	B(M1)(W.u.)=0.0033 6; B(E2)(W.u.)=3.4 9
		219.705 <i>1</i>	77.2 6	0.0 1-	M1+E2	1.18 +17-14	0.246 7	B(M1)(W.u.)=0.00065 14; B(E2)(W.u.)=9.1 11
237.2396	1-	17.554 8	0.294 25	219.7060 2-	(M1(+E2))	≤0.23	$3.3 \times 10^2 25$	
		87.521 1	31.6 7	149.7180 0	MI M1		4.55	
		237.241 1	100.0 20	$0.0 1^{-1}$	M1		0.274	
247.147	$(4)^{+}$	63.959 ^{&} 4	$100^{\&}$ 13	183.197 (3) ⁺	M1+E2	0.65	13.38	
	(.)	$63.960^{\&} 4$	15.3 ^{&} 23	183,1897 4	E1	0.00	1.063	
270.5466	(3)-	66.098 1	99 10	204.4486 2-	M1(+E2)	0.305 22	10.71 17	
		87.5		183.1897 4-				
		156.003 1	29.6 23	114.5440 3-	M1+E2	0.32 7	0.850 16	
310 3260	5-	231.834 2	100 0	$38./139 \ 2$ 114 5440 3 ⁻	MI F2		0.291	
349.7330	3-	112.494 2	1.64 15	237.2396 1	E2 E2		1.97	
		130.027 1	50.7 15	219.7060 2-	M1+E2	0.55 9	1.39 3	
		145		204.4486 2-				
		235.193 2	46.9 12	$114.5440 \ 3^{-}$	M1	0.20 + 14 - 20	0.280	
355 047	$(4)^{+}$	107 901 2	14 1 11	$247 147 (4)^+$	E2+M1	13 + 3 - 4	2 37 5	
5551017	(1)	171 855 4	21& 3	$183\ 1897\ 4^{-}$	E1	1.5 1.5 1	0.0798	
		171.855& 1	100 & 11	183.197 (3) ⁺	M1(+E2)	0.20	0.658	
358.1163	$(4)^{-}$	87.571 2	100 3	270.5466 (3)	M1+E2	0.27 5	4.58	
		153.667 1	46 4	204.4486 2-	E2		0.640	Mult.: E2 from α (K)exp in (n, γ) E=0-136 eV;
								possible M1 component implied by $\alpha(L1)$ exp
		174.927 2	12.8 14	183.1897 4-	M1+E2		0.52.12	would be inconsistent with placement.

 $^{170}_{69}\mathrm{Tm}_{101}$ -10

From ENSDF

 $^{170}_{69}\mathrm{Tm}_{101}\text{--}10$

Т

					$\gamma(1)$	¹⁷⁰ Tm) (continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{\#}$	Comments
358.1163	$(4)^{-}$	243.573 <i>3</i>	16.4 23	114.5440 3-	M1+E2	0.9 +4-3	0.202 22	
381.4258	4-	31.713 9	5.7 4	349.7330 3-	(M1(+E2))	≤0.82	1.2×10^2 10	
		161.721 <i>1</i>	100 5	219.7060 2-	E2		0.536	Mult., δ : E2(+M1), $\delta \ge 2.2$ from (n, γ) consistent with pure E2 as required by placement.
		198.237 2	31.1 18	183.1897 4-	E2+M1	1.18 +13-12	0.340 16	
		266.881 <i>1</i>	57 6	114.5440 3-	M1+E2	0.87 +30-24	0.157 15	
		342.711 4	46.5 22	38.7139 2-	E2		0.0481	
402.7281	$(3,4)^{-}$	288.185 2	100 8	114.5440 3-	M1+E2	0.60 20	0.140 11	
		364.012 4	14.7 11	38.7139 2-				
447.0707	$(3)^{-}$	88.954 1	3.8 8	358.1163 (4)-	M1	0 (0 10	4.34	
		176.525 1	32.3 10	$270.5466 (3)^{-1}$	M1+E2	0.60 12	0.560 19	
		242.623 1	100.0 18	204.4486 2	M1(+E2)	0.23 + 17 - 23	0.251 11	
		263.877.5	1./6 11	183.1897 4	M1(+E2)	<0.55	0 102 9	
		332.322 3	5.85 <i>11</i> 15 71 22	114.3440 3	$M1(\pm E2)$	≤ 0.33	0.103 8	
167 8607	$(5)^{-}$	408.348 3	13.71 22	$36./139 \ 2$ $358 \ 1163 \ (4)^{-1}$	MIT+E2	0.41 + 15 - 15	0.039 3	
407.0007	(3)	107.314 1	100 11	$2705466(3)^{-1}$	F2		0.272	
530 7223	$(4)^{-}$	92 654 3	100 7	$270.3400 (3)^{-1}$	$M1\pm F2$	0 22 16	3.87	
557.1225	(-)	269 173 2	86 11	$2705466(3)^{-1}$	M1+E2	$0.22 \ 10$ $0.9 \ +4 - 3$	0.152.18	
		335.274 8	16.4 27	204.4486 2-			01102 10	
544.050	(3^{+})	505.344 15	100 7	38.7139 2-				
		544.043 11	57 3	0.0 1-				Mult., δ : E2+M1 (δ =0.95 +33-15) from α (K)exp is inconsistent with this Δ J=2 placement; either γ is complex or misplaced or mult is incorrect (102(L-12))
550 7472	5-	160 221 2	26.4	201 4250 4-	MITEO	0.4.4	0.66.6	(1986H012).
550.7475	5	109.521 2	20 4	301.4230 4 $259.1162 (4)^{-1}$	M1 + E2	0.4 4	0.00 0	
		192.033 J 231 /18 6	19.0 12	$310 3260 5^{-}$	1011		0.460	
		367 556 4	100.5	$183\ 1897\ 4^{-}$	$M1(\pm F2)$	$0.28 \pm 17 - 28$	0.081.5	
590.2286	1-	352,997,9	38.0.25	$237.2396 1^{-1}$	M1+E2	0.59 14	0.081 5	
2,0.2200	-	370.530 4	7.3 3	219.7060 2-	M1(+E2)	0.31 + 17 - 31	0.079 5	I_{γ} : other: 18 4 from (n,γ) E=thermal: γ coin.
		440.516 5	3.97 25	149.7180 0-	M1		0.0525	I_{γ} : other: 21 5 from (n,γ) E=thermal: γ coin.
		476.1 4	8.8 25	114.5440 3-				E_{γ}, I_{γ} : from (n, γ) E=thermal: γ coin.
		551.514 <i>3</i>	80.4 12	38.7139 2-	M1+E2	0.65 11	0.0246 12	
		590.226 6	100.0 25	0.0 1 ⁻	M1(+E2)		0.018 7	I _{γ} : other: I _{γ} (552 γ)=85 5:100 6 in (n, γ) E=thermal: γ coin.
594.2		324.5 [‡] 5	100 [‡] 25	270.5466 (3)-				
		444.3 [‡] 4	94 [‡] 19	149.7180 0-				
		594 0 3	60 13	0.0 1-				
603 9897	1+	384.01 5	9.87 11	$219,7060,2^{-1}$				
003.2071	1	454 276 3	1463	149 7180 0 ⁻	F1			
		565,268,4	100.0 16	38.7139 2-	E1			
		602 070 6	75 4 14	0.0 1-	 E1			

 $^{170}_{69} \mathrm{Tm}_{101}$ -11

L

 $^{170}_{69}\mathrm{Tm}_{101}$ -11

From ENSDF

γ (¹⁷⁰Tm) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	a#	Comments
607.8862	3+	226.468 <i>4</i> 388.177 2 424.692 6 493.344 <i>4</i> 569.177 5	1.7 3 11.47 14 53.3 11 6.9 3 100 3	381.4258 4 ⁻ 219.7060 2 ⁻ 183.1897 4 ⁻ 114.5440 3 ⁻ 38.7139 2 ⁻	E1			
637.9062	2-	400.668 5 418.197 3 523.358 4 599.206 6 637.899 [@] 4	10.9 8 4.19 <i>15</i> 31.2 7 9.4 5 100.0 [@] <i>17</i>	237.2396 1 ⁻ 219.7060 2 ⁻ 114.5440 3 ⁻ 38.7139 2 ⁻ 0.0 1 ⁻	M1(+E2) M1+E2 M1+E2 M1+E2	0.40 +23-40 0.5 3 0.64 12 0.81 +15-14	0.062 6 0.054 7 0.0283 15 0.0187 12	
648.7467	1-	378.203 <i>4</i> 411.506 <i>2</i> 429.037 <i>3</i> 499.040 <i>4</i> 532.6 [‡] 7	$ \begin{array}{r} 1.00 \ 5 \\ 100 \ 3 \\ 11.79 \ 10 \\ 14.93 \ 20 \\ 3.4^{\ddagger} \ 13 \end{array} $	270.5466 (3) ⁻ 237.2396 1 ⁻ 219.7060 2 ⁻ 149.7180 0 ⁻ 114.5440 3 ⁻	M1+E2 M1+E2 M1	0.47 + <i>12</i> - <i>13</i> 0.50 + <i>12</i> - <i>13</i>	0.057 <i>3</i> 0.050 <i>3</i> 0.0380	Mult.: ce data in (n,γ) consistent with pure M1.
650.3735	2+	610.032 6 648.731 6 300.642 2 413.131 3 535.831 3 611.659 5	7.3 3 16.1 3 2.7 3 5.93 15 79.9 14 39.5 13	38.7139 2 ⁻ 0.0 1 ⁻ 349.7330 3 ⁻ 237.2396 1 ⁻ 114.5440 3 ⁻ 38.7139 2 ⁻	M1(+E2) M1+E2 (E1) E1	≤0.45 0.70 + <i>13</i> − <i>12</i>	0.0217 <i>11</i> 0.0160 <i>9</i>	I _{γ} : other: 10.1 <i>13</i> from (n, γ) E=thermal: γ coin. I _{γ} : other: 12.8 <i>13</i> from (n, γ).
655.598 661.8564	(5 ⁻) 1 ⁺	650.366 <i>4</i> 541.053 <i>20</i> 442.148 <i>2</i> 457.410 ^{&} <i>2</i> 512.133 <i>3</i>	100.0 <i>10</i> 100 32.0 <i>5</i> 29.5 ^{&} 25 100.0 25	0.0 1 ⁻ 114.5440 3 ⁻ 219.7060 2 ⁻ 204.4486 2 ⁻ 149.7180 0 ⁻	E1 E1 E1 E1			
683.569 693.2864	(0) ⁻ 2 ⁻	623.144 5 446.333 9 343.553 2 456.045 2 473.605 8 489 510 8 [‡] 4	$ \begin{array}{c} 14.6 \ 4 \\ 100 \\ 17.6 \ 8 \\ 100.0 \ 10 \\ 26.0 \ 19 \\ 80^{\ddagger} \ 18 \\ \end{array} $	38.7139 2 ⁻ 237.2396 1 ⁻ 349.7330 3 ⁻ 237.2396 1 ⁻ 219.7060 2 ⁻ 204.4486 2 ⁻ 183 1897 4 ⁻	(E1) M1 M1(+E2) M1+E2 M1+E2	0.29 +14-29 0.38 +13-16 0.53 +22-24	0.0507 0.097 5 0.0447 22 0.038 4	Mult.: ce data in (n,γ) consistent with pure M1.
703.6284	2+	693.287 5 41.775 9 99.639 2 433.082 3 466.393 4 483.926 4	40 3 3.2 3 7.0 5 8.56 23 4.5 3 6.31 11	$\begin{array}{cccc} 0.0 & 1^- \\ 0.0 & 1^- \\ 661.8564 & 1^+ \\ 603.9897 & 1^+ \\ 270.5466 & (3)^- \\ 237.2396 & 1^- \\ 219.7060 & 2^- \\ 219.$	M1+E2 (M1(+E2)) M1+E2 (E1)	1.06 +19-16 <1.1 0.68 13	0.0119 8 4.×10 ¹ 4 3.13	I _γ : other: 17.5 25 from (n,γ) E=thermal: γ coin.
		499 589.085 7 664.897 5	62.2 <i>10</i> 31.6 <i>6</i>	204.4486 2 114.5440 3 ⁻ 38.7139 2 ⁻	E1 (E1)			I _{γ} : other: 100 23 from (n, γ) E=thermal: γ coin.

From ENSDF

Adopted	Levels,	Gammas	(continued)
---------	---------	--------	-------------

$\gamma(^{170}\text{Tm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{\#}$	Comments
703.6284	2+	703.626 6	100.3	0.0 1-	E1			I_{ν} : other: 15.8 from (n, γ) E=thermal: γ coin.
708.370	3-	525.180 5	19.1 3	183.1897 4-	M1+E2	0.88 + 21 - 18	0.0254 20	
		593.93 7	3.6 3	114.5440 3-				
		669.654 5	100.0 9	38.7139 2-	M1+E2	1.03 +13-12	0.0131 7	
		709.8 [‡] 7	20^{\ddagger} 10	$0.0 1^{-1}$				
709.474	$(1,2,3)^{-}$	505.010 10	100 3	204.4486 2-	M1+E2	0.59 11	0.0316 15	
		670.760 ^a 9	19 <i>10</i>	38.7139 2-				E_{ν} : assignment to ¹⁷⁰ Tm is not certain.
715.6207	$(3)^{-}$	175.894 4	4.2 3	539.7223 (4)-	E2(+M1)	≥1.9	0.43 <i>3</i>	,
		268.551 2	39 5	447.0707 (3)-	M1+E2	0.86 +30-24	0.155 15	
		365.887 6	3.1 6	349.7330 3-				
		468.473 5	20.0 8	$247.147 (4)^+$				
		532.421 4	100 3	183.197 (3) ⁺	E1			
719.2627	1^{+}	499.559 <i>4</i>	42.1 7	219.7060 2-	E1			
		569.549 8	27.2 7	149.7180 0-	E1			
		680.543 <i>4</i>	37.4 10	38.7139 2-	E1			
		719.262 5	100.0 25	0.0 1-	E1			
733.8128	$(2)^{-}$	384.079 <i>3</i>	100 8	349.7330 3-	M1+E2	0.62 17	0.064 5	
		496.572 <i>3</i>	45.6 8	237.2396 1-	M1+E2	0.34 + 14 - 19	0.0363 19	I_{γ} : other: 27 4 from (n,γ) E=thermal: γ coin.
5 40 040 0	2-	733.79 3	2.56 13	0.0 1-	2.61		0.0000	
749.8482	3	368.424 2	14.2.5	381.4258 4	MI	0.54.10	0.0838	
		400.113 2	100 4	349.7330 3	MI+E2	0.54 12	0.059 3	
		512.620 24	10.2 /	237.2396 I	MIED	107 . 22 24	0.0111.77	
756 015	$(A)^{-}$	/11.12/ /	373	$36./139 \ 2$	$\mathbb{N}1+\mathbb{E}2$	1.07 +35-24	0.0111 11	
758 3204	(4) $(2)^+$	373.0174 107.057.1	100 5	103.197 (3) 650.3735 2 ⁺	EI M1		2.40	
130.3294	(2)	107.937 1	100 5	340 7330 3-	1111		2.49	E : see comment on 410 α from 760 level
		487 773 7	24 1 17	$2705466(3)^{-1}$				E_{γ} . see comment on 410 y from 700 level.
		538 622 7	54 3 26	$219,7060,2^{-1}$				
		554	0110 20	$204.4486 2^{-1}$				
		575.115 17	22.4 9	183.197 (3) ⁺				
760.4		410.3 [‡] 6	<120	349 7330 3-				$F_{\rm e}$ I : possibly includes the 409x from xx coin in
700.4		410.5	_120	542.1350 5				(n,γ) E=0-136 eV which deexcites the adopted 758.3 level; the 758.3 and 760.4 levels would not have been resolved in (n,γ) E=thermal: γ coin.
		609.8 [‡] 8	100 [‡] <i>33</i>	149.7180 0-				
		646 8 6	83 33	114 5440 3-				
775 2299	$(0)^{+}$	185,006 3	1.84 23	590.2286 1				
(10.22))	(0)	537.992.3	100.0 16	$237.2396 1^{-1}$	E1			
782.1520	$(1)^{-}$	98.583 2	7.7 9	$683.569 (0)^{-1}$	M1		3.23	Mult.: ce data in (n,γ) consistent with pure M1.
	(-)	562.444 3	100.0 19	219.7060 2-	M1+E2	0.55 12	0.0244 13	I_{γ} : other: 33 11 from (n,γ) E=thermal: γ coin.
		632.430 4	91.3 17	149.7180 0-				Mult., δ : M1+E2, δ =0.55 <i>12</i> from α (K)exp in (n, γ); inconsistent with transition to J=0.

13

$^{170}_{69}\mathrm{Tm}_{101}$ -13

From ENSDF

 $^{170}_{69}\mathrm{Tm}_{101}$ -13

	Adopted Levels, Gammas (continued)												
					$\gamma(^{170}$	m) (continued)							
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	$\alpha^{\#}$	Comments					
806.4274	(4)-	359.359 <i>3</i> 448.308 <i>5</i> 601.974 5	39.3 24 48.8 12 100.0 24	$\begin{array}{c cccc} \hline 447.0707 & \hline (3)^{-} \\ \hline 358.1163 & (4)^{-} \\ 204.4486 & 2^{-} \\ \end{array}$	E2		0.0228						
818.5072	(2)+	214.517 <i>4</i> 468.777 <i>4</i> 581.268 <i>5</i>	2.50 21 32.3 10 41.5 11	603.9897 1 ⁺ 349.7330 3 ⁻ 237.2396 1 ⁻	M1+E2 E1	0.5 +3-4	0.329 25						
822.3935	2+	703.975 [@] 12 779.775 16 818.502 9 218.409 4 472.663 3 552 585.152 4	100 [@] 3 6.5 4 32.8 4 2.3 3 59.4 14 100.0 23	114.5440 3 ⁻ 38.7139 2 ⁻ 0.0 1 ⁻ 603.9897 1 ⁺ 349.7330 3 ⁻ 270.5466 (3) ⁻ 237.2396 1 ⁻	(E1) M1(+E2) E1 E1	0.2 +6-3	0.34 6						
832.6		707.849 <i>5</i> 595.2 [‡] <i>5</i>	66.0 7 50 [‡] 17	114.5440 3 ⁻ 237.2396 1 ⁻	(E1)								
839.131	(3)-	649.9 [‡] 7 619.423 5 634.661 <i>18</i>	100 [‡] 33 23.0 6 4.74 22	183.197 (3) ⁺ 219.7060 2 ⁻ 204.4486 2 ⁻	M1+E2	0.47 +12-13	0.0197 10						
		724.588 <i>5</i> 800.406 [@] <i>18</i>	100.0 20 <11.0 [@]	114.5440 3 ⁻ 38.7139 2 ⁻	M1+E2	0.89 +14-13	0.0113 6						
850.2		$\begin{array}{c} 613.4^{\pm} 5\\ 632.5^{\pm} 5\\ 643.9^{\pm} 7\\ 663.8^{\pm} 7\\ 702.4^{\pm} 5\\ 734.8^{\pm} 6\end{array}$	55 + 9 $100 + 27$ $36 + 18$ $100 + 36$ $91 + 27$ $64 + 18$	237.2396 1 ⁻ 219.7060 2 ⁻ 204.4486 2 ⁻ 183.197 (3) ⁺ 149.7180 0 ⁻									
854.335	2-	144.861 <i>I</i> 617 635 650	1.89 21	709.474 (1,2,3) ⁻ 237.2396 1 ⁻ 219.7060 2 ⁻ 204.4486 2 ⁻	E2+M1	1.6 5	0.87 6						
860 484	1+	739.800 7 815.621 7 854.336 6 640 774 5	11.63 21 57.5 4 100.0 16 100 0 19	114.5440 3 ⁻ 38.7139 2 ⁻ 0.0 1 ⁻ 219.7060 2 ⁻	M1+E2 M1+E2 M1+E2 F1	1.24 +18-15 1.12 +15-13 0.98 +18-15		I _{γ} : other: 41 4 from (n, γ) E=thermal: γ coin. I _{γ} : other: 74 4 from (n, γ) E=thermal: γ coin.					
000.404	1	710.772 <i>6</i> 745	98.7 20	149.7180 0 ⁻ 114.5440 3 ⁻	E1								
862.7765	(3)-	415.703 <i>3</i> 481.349 <i>3</i> 658 679.584 <i>6</i> 748.240 <i>14</i>	9.79 26 28.8 8 31.0 5 20.4 5	447.0707 (3) ⁻ 381.4258 4 ⁻ 204.4486 2 ⁻ 183.197 (3) ⁺ 114.5440 3 ⁻	M1		0.0417						

 $^{170}_{69}\mathrm{Tm}_{101}$ -14

From ENSDF

 $^{170}_{69}\mathrm{Tm}_{101}$ -14

Т

	Adopted Levels, Gammas (continued)												
					$\gamma(^{170}\text{Tm})$	(continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments					
862.7765	(3)-	824.067 7	100.0 16	38.7139 2-				Mult.: E1 from $\alpha(K)$ exp in (n,γ) E=0-136 eV; M1					
863.364	(1)-	416.301 8	0.80 7	447.0707 (3)-				required by placement.					
		626		237.2396 1-									
		644 658.91 <i>4</i>	100 3	219.7060 2 204.4486 2 ⁻	M1+E2	0.69 13	0.0155 9						
868.0		647.5 [‡] 7	100 [‡] 40	219.7060 2-									
		868.8 [‡] 7	40 [‡] 20	0.0 1-									
908.448	(2 ⁻)	637.899 [@] 4	100.0 [@] 17	270.5466 (3)-									
		703.975 ^{^w} 12	70.6 [@] 22	204.4486 2-				I_{γ} : other: 21 9 from (n,γ) E=thermal: γ coin.					
		724.4 ⁺ 8 792	33+ 12	$183.197 (3)^+$ $1145440 3^-$									
		867.3 [‡] 5	9‡ <i>3</i>	38.7139 2-									
925.2722	(3)-	457.410 ^{&} 2	6 ^{&} 5	467.8607 (5)-				Mult.: E1 for doublet.					
		576	100.0.0	349.7330 3-									
		720.803 72	100.0 8	204.4486 2				Mult.: E1 from (n,γ) E=0-136 eV; inconsistent with placement.					
		810.730 8	39.1 6	114.5440 3-	M1+E2	1.27 +18-15		1					
050 010	(2) -	886.583 12	38.4 8	38.7139 2-	M1+E2	1.03 +18-15							
959.218	(3)	844.682 12	48.4 9	$114.5440 \ 3$ 38.7130 2 ⁻	$E^{2}(+M^{1})$	>1.2							
		920.33 3	100.0 15	0.0 1	$E2(\pm W11)$ E2	≥1.2							
964.474	(3,4) ⁻	517.428 16	15.4 14	447.0707 (3)-	E2(+M1)	≥1.5	0.019 3						
		561.753 <i>13</i>	18.9 <i>21</i>	402.7281 (3,4)-									
		606.346 10	41 3	358.1163 (4)	M1+E2	0.76 + 27 - 23	0.0185 19						
		744.747 15	78 0 24 4 <i>14</i>	$219.7060 \ 2$ $204 \ 4486 \ 2^{-}$									
		781.299 25	100.0 14	183.1897 4	E2+M1	1.7 +7-4							
964.8		694.5 [‡] 6	55 [‡] 18	270.5466 (3)-									
		814.3 [‡] 4	100 [‡] 27	149.7180 0-									
979.929	(3)-	532.860 4	100 4	447.0707 (3)-									
		621.805 8	99 5	358.1163 (4)	E2		0.01002						
		709.37714	86.2 <i>21</i>	2/0.5466 (3)									
08/ 081	$(3 4 5)^{-}$	864.0 ⁺ / 582.258.11	63# 25 57 15	$114.5440 \ 3$ $402.7281 \ (3.4)^{-1}$									
904.901	(3,4,3)	626.857 9	73.1.75	$358.1163 (4)^{-1}$									
		714.438 13	100 6	270.5466 (3)-	E2(+M1)		0.011 4						
1057.3		788.0 [‡] 6	21 [‡] 7	270.5466 (3)-									
		873.3 [‡] <i>3</i>	100 [‡] 17	183.197 (3) ⁺									
1064.4579	$(1)^{+}$	203.970 4	45 <i>3</i>	860.484 1 ⁺									

 $^{170}_{69}\mathrm{Tm}_{101}$ -15

Т

					$\gamma(^{170})$	Tm) (continued)				
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments		
1064.4579	$(1)^{+}$	242.064 <i>3</i> 245.947 <i>3</i> 289.229 <i>1</i>	73 <i>11</i> 72 9 47 <i>4</i>	$\begin{array}{c c}\hline & & \\ \hline & & \\ 822.3935 & 2^+ \\ 818.5072 & (2)^+ \\ 775.2299 & (0)^+ \end{array}$	M1+E2 M1(+E2) M1	$0.7 + 4 - 3 \le 0.8$	0.22 <i>3</i> 0.225 <i>23</i> 0.1599	Mult.: M1(+E2) ($\delta \le 0.6$) from α (K)exp; level scheme		
		345.192 9 360.825 3 371.171 3 460.464 3 914.75 6	30.3 5 81.3 <i>13</i> 32.0 5 100 <i>3</i> 48 <i>11</i>	719.2627 1 ⁺ 703.6284 2 ⁺ 693.2864 2 ⁻ 603.9897 1 ⁺ 149.7180 0 ⁻	E2+M1	1.2 +12-5	0.032 7	requires $\Delta J=1$.		
1070.975	(2)-	422.224 <i>10</i> 526.89 <i>3</i> 800.406 [@] <i>18</i>	2.66 20 3.48 20 <20.5 [@]	$\begin{array}{c} 648.7467 & 1^{-} \\ 544.050 & (3^{+}) \\ 270.5466 & (3)^{-} \\ 204.4486 & 2^{-} \end{array}$	E2 · M1	1 41 - 27 - 21				
1072.7		800.331 9 1070.971 <i>16</i> 835.7 [‡] 2	$47.1 \ 14$ $85^{\ddagger} \ 12$	$\begin{array}{ccc} 204.4486 & 2 \\ 0.0 & 1^{-} \\ 237.2396 & 1^{-} \end{array}$	E2+M1 E2+M1	2.0 + 19 - 6				
		854.0^{\ddagger} 3 868.2^{\ddagger} 1	$50^{\ddagger} 8$ $100^{\ddagger} 12$	219.7060 2 ⁻ 204.4486 2 ⁻				E_{γ} : possibly deexcites the known 1070.98 level.		
1078.8484	(1)+	958.3 [‡] 8 256.455 <i>I</i> 260.341 <i>I</i> 303.617 2	19 [‡] 8 22 <i>3</i> 18.7 22 30 <i>3</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1+E2 M1+E2 M1	1.0 +4-3 0.5 3	0.169 <i>19</i> 0.192 <i>20</i> 0.1403	Mult.: M1(+E2) ($\delta \le 0.7$) from $\alpha(K)$ exp; level scheme		
1087.8		$1040.142 \ 19$ $851.8^{\ddagger} \ 8$	$100.0 \ 24$ $100^{\ddagger} \ 50$	38.7139 2 ⁻ 237.2396 1 ⁻	E1			requires $\Delta J = 1$.		
1091.583	(1,2)	867.3* 6 231.099 <i>1</i> 941.85 5	83* 17 32 3 47 5	219.7060 2 860.484 1 ⁺ 149.7180 0 ⁻	M1+E2 E2	1.07 +29-22	0.223 16	Mult.: E2(+M1) from α (K)exp, but level scheme		
1101.999	(2 ⁺)	1091.51 <i>3</i> 382.737 <i>3</i> 494.124 22	100.0 24 5.9 11 2.96 27	$\begin{array}{ccc} 0.0 & 1^- \\ 719.2627 & 1^+ \\ 607.8862 & 3^+ \end{array}$	E2			requires $\Delta J = 2$.		
		655 [‡] 3 867.2 [‡] 5 987.443 11 1101.95 4	67 [‡] 83 67 [‡] 17 100.0 16 41.7 16	447.0707 (3) ⁻ 237.2396 1 ⁻ 114.5440 3 ⁻ 0.0 1 ⁻				E_{γ} : other: 1103.3 6 from (n,γ) .		
1139.951	(2)-	231.499 <i>4</i> 276.592 <i>5</i> 401 205 0	10.9 <i>16</i> 3.7 <i>5</i>	908.448 (2^{-}) 863.364 $(1)^{-}$ 648.7467 1^{-}	E2+M1	1.3 +10-5	0.21 4	I_{γ} : other: 33 17 from (n,γ) E=thermal: γ coin.		
		491.206 9 781.83 <i>3</i>	8.9 5 35.4 <i>21</i>	048.7407 I 358.1163 (4) ⁻	(E2)			Mult., δ : M1+E2 with δ =0.9 +9-4 from α (K)exp; M		

L

	Adopted Levels, Gammas (continued)													
					<u> </u>	¹⁷⁰ Tm) (continue	ed)							
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments						
1139.951	(2)-	790.200 <i>15</i> 869.417 <i>14</i>	100.0 <i>16</i> 96 <i>3</i>	349.7330 3 ⁻ 270.5466 (3) ⁻	M1+E2 (E2)	1.17 +27-20		I _γ : other: 48 12 in (n,γ) E=thermal: γ coin. Mult.: E1,E2 from $\alpha(K)$ exp in (n,γ); level scheme requires $\Delta \pi$ =no.						
1111.0	(1.0.0)	902.5 [‡] 3	27^{+} 7	237.2396 1-										
1141.9	(1,2,3)	1027.1+ 4	100+ 18	114.5440 3										
1147.974	(1,2)-	1142.1 ⁺ / 454.684 6 464 36 5	5.43 <i>19</i> 1 50 <i>19</i>	$0.0 1 693.2864 2^- 683.569 (0)^-$	M1		0.0483							
		557.749 <i>5</i> 876.9 8	17.04 19	590.2286 1 ⁻ 270.5466 (3) ⁻	M1+E2	1.46 +19-16	0.0180 9							
		928.270 <i>18</i> 943.514 <i>14</i> 998.248 <i>14</i>	100.0 <i>15</i> 58.4 9 47.8 7	219.7060 2 ⁻ 204.4486 2 ⁻ 149.7180 0 ⁻	M1+E2 E2	1.26 +18-15								
1160.597	$(1)^{-}$	252.149 5	3.36 22	908.448 (2 ⁻)	M1		0.232							
		297.222 <i>11</i> 426.782 <i>4</i> 467.217 7	1.79 22 33.0 4 3.6 7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1+E2	0.33 +14-20	0.054 3							
		407.030 7	17.3 <i>13</i>	$693.2804 \ 2 \ 683.569 \ (0)^{-}$	M1		0.0427	Mult.: M1(+E2) from α (K)exp in (n, γ); γ feeds J=(0) level so level scheme requires Δ J=1.						
		713.505 23	10.8 7	447.0707 (3)-				1						
		890.02 <i>3</i> 956.144 <i>12</i>	29.6 9 100.0 22	270.5466 (3) ⁻ 204.4486 2 ⁻	(E2)			Mult.: E1,E2 from $\alpha(K)$ exp in (n,γ) ; level scheme requires						
1168.779	(2)-	485.210 4	96 4	683.569 (0) ⁻	(E2)		0.0185	Mult=M1+E2, δ =0.50 +14–15 from α (K)exp; however, level scheme requires Δ J=2.						
		931.2 [‡] <i>1</i>	172 [‡] 21	237.2396 1-										
1178.910	(2)-	964.329 <i>18</i> 396.739 <i>8</i> 463.286 <i>5</i> 517.059 <i>4</i> 908.5 [‡] <i>10</i>	100 <i>3</i> 1.35 <i>11</i> 2.70 <i>11</i> 12.6 <i>4</i> 22 [‡] <i>10</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$										
		939.9 ⁺ 6 960 567 24	8.2* 20	$237.2396 1^{-}$	M1±E2	$10 \pm 4 = 3$								
		975 1 7	$10^{\ddagger} 4$	204 4486 2-	1011 122	1.0 17 5								
		995.71 6	11.3 11	183.1897 4-	(E2)			Mult., δ : E2+M1, δ =1.6 +77-7 from α (K)exp; M1 component inconsistent with other branching information for 1179 level.						
1182.3	(≤3)	1064.3 [‡] <i>3</i> 1140.191 <i>15</i> 1178.887 <i>25</i> 944.4 [‡] 6	$27^{\ddagger} 6$ 53.0 <i>16</i> 100 <i>3</i> 100^{\ddagger} 20	114.5440 3 ⁻ 38.7139 2 ⁻ 0.0 1 ⁻ 237.2396 1 ⁻				I _{γ} : other: 67 6 from (n, γ) E=thermal: γ coin.						

From ENSDF

 $^{170}_{69}\mathrm{Tm}_{101}$ -17

Т

					$\gamma(1)$	⁷⁰ Tm) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	α #	Comments
1182.3	(≤3)	979.9 [‡] 9	60 [‡] 20	204.4486 2-				
1192.828	2-	588.8 ^{‡a} 5	53 [‡] 13	603.9897 1+				E_{γ} : should have been seen in (n, γ) E=0-136 eV, but was not.
		602.598 14	11.9 11	590.2286 1-				
		955.1 ^{‡a} 6	20 [‡] 7	237.2396 1-				E_{γ} : should have been seen in (n,γ) E=0-136 eV, but was not.
		973.087 19	56.1 18	219.7060 2-	E2+M1	1.6 + 9 - 4		
		1043.144 22	100 3	149./180 0 38.7139 2 ⁻	E2			
		$1193.2^{\ddagger}6$	13 [‡] 7	$0.0 1^{-1}$				
1200.7	(<2)	594 8 8	56 22	603 0807 1 ⁺				
1200.7	$(\underline{}\underline{})$	610.6 5	100 33	500 2286 1-				
1210 679	(2^{+})	$618.1 \ddagger 7$	44 [‡] 19	594 2				
1210.079	(2)	666.627 11	10.7 4	544.050 (3 ⁺)	M1+E2	1.3 +6-4	0.0121 18	
		1095.4 [‡] 6	38 [‡] 13	114.5440 3-				
		1171.93 <i>3</i>	35.1 14	38.7139 2-				I_{γ} : other: 56 13 from (n, γ) E=thermal: γ coin.
		1210.687 19	100.0 16	$0.0 1^{-1}$				
1232.4	(≤3)	1193.5+ 4	100+ 20	38.7139 2-				
1220 144	(0, 1, 2)=	1232.5+ 5	60 + 20	$0.0 1^{-}$				
1238.144	(0,1,2)	$504.325\ 24$ 694 100 ^a 21	9.4 3	733.8128 (2) 544.050 (3 ⁺)				
		1000.891 14	100.0 23	237.2396 1-	M1+E2	0.98 +25-20		
		1018.49 <i>3</i>	70 <i>3</i>	219.7060 2-	E2			I_{γ} : other: 93 14 from (n, γ) E=thermal: γ coin.
		1238.05 9	36 6	0.0 1-				
1265.075	$(0,1,2)^{-}$	659.0 [‡] 4	45 [‡] 10	603.9897 1+				
		996.3 [‡] 6	100 [‡] 35	270.5466 (3)-				
		1027.820 13	100 3	$237.2396 1^{-1}$	E2 + M1	17 20 6		
		1043.44 3	29.211	$219.7000 \ 2$	E2+1 v 11	1.7 +29-0		
		$1002.3^{\circ} 2$	65^{\ddagger} 15	$204.4400 \ 2$ 183 107 (3) ⁺				
		1226.30 6	50.1 17	38.7139 2-				E_{γ} : other: 1228.0 3 from (n,γ) E=thermal: γ coin.
			a					I_{γ} : other: 30 5 from (n, γ) E=thermal: γ coin.
		1265.13 10	36 5	0.0 1-				E_{γ} : other: 1266.2 <i>I</i> from (n, γ) E=thermal: γ coin.
1279.5	$(1^{-}, 2^{-})$	1061.7+ 5	83+ 17	219.7060 2-				
1200 107	$(0)^{-}$	1130.5+ 7	100+ 33	$149.7180 \ 0^{-1+}$				
1299.107	(2)	438.02 4 650 5 7	2.3 3	000.484 1 648 7467 1 ⁻				
		695.16 <i>3</i>	17.5 8	603.9897 1+				
		940.94 3	24.2 22	358.1163 (4)-	(E2)			Mult.: M1+E2 from α (K)exp; M1 component inconsistent with level scheme.

 $^{170}_{69}$ Tm $_{101}$ -18

From ENSDF

 $^{170}_{69}\mathrm{Tm}_{101}\text{--}18$

L.

	Adopted Levels, Gammas (continued)												
					γ	(¹⁷⁰ Tm) (continued)							
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	Comments							
1299.107	(2)-	1061.869 19	100 4	237.2396 1-	E2								
		1079.1 [‡] 2	100 [‡] <i>17</i>	219.7060 2-									
		1093.9 [‡] 5	42 [‡] 8	204.4486 2-									
		1184.55 4	80.6	114.5440 3		E_{γ} : other: 1183.2 4 from (n,γ) E=thermal: γ coin.							
1200.2	(-2)	1300.774	1/* 8	0.0 1									
1309.3	(≤ 2)	662.979	$100^{+} 38$	648.7467 I									
		720.3 * 8	75^{\ddagger} 38	500 2286 1 ⁻									
1315.9	$(1)^{-}$	866 9 [‡] 4	$100^{\ddagger} 25$	$447\ 0707\ (3)^{-1}$									
1010.0	(1)	$1167.9^{\ddagger} 6$	56^{\ddagger} 13	$149.7180 \ 0^{-1}$									
		1316.9 [‡] 6	13	0.0 1-									
1334.9	$(1^{-},2,3^{-})$	1220.2 [‡] 8	100 [‡] 50	114.5440 3-									
		1335.0 [‡] 5	50 [‡]	0.0 1-									
1354.6	$(1,2)^{-}$	1134.2 [‡] 5	88 [‡] 25	219.7060 2-									
		1203.4 [‡] 6	100 [‡] 25	149.7180 0-									
		1354.72 ^{<i>a</i>} 7	100	0.0 1 ⁻		E_{γ} : reported in (n,γ) E=0-136 eV only. Possibly the 1354.7 γ that deexcites a 1395 level In (n,γ) E=thermal: γ coin.							
1363.5	(1+,2-)	720.7 [‡] 9	40 [‡] 15	637.9062 2-									
		1138.9 [‡] <i>3</i>	65 [‡] 10	219.7060 2-									
		1179.2 [‡] 4	75 [‡] 15	183.197 $(3)^+$									
		1208.3 [‡] <i>3</i>	100 [‡] 15	149.7180 0-									
		1321.9 8	10 5	38.7139 2-									
1375.1	(1-)	1139.1+ 6	44+ 11	237.2396 1-									
		1227.3+ 5	100+ 22	149.7180 0-									
1382.2	$(2)^{-}$	1178.24 4	$100^{+} 29$	204.4486 2									
1205.0	(2^{-})	1342.3# 9	29^{+} 14	38./139 2									
1393.0	(2)	1137.2* 3	63^{\pm} 13	237.2390 1									
		$1211.4^{\ddagger}.6$	$100^{\ddagger} 25$	$183 197 (3)^+$									
		1280.6^{\ddagger} 7	$63^{\ddagger} 25$	103.197 (3) 114 5440 3 ⁻									
		1354.7 [‡] 5	38 [‡] 13	38.7139 2-		E_{γ} : placement differs In (n,γ) E=0-136 eV.							
		1393.8 [‡] 3	38 [‡] 13	0.0 1-									
1413.1	(1 ⁻ ,2,3 ⁻)	1061.0 [‡] 7	86 [‡] 29	349.7330 3-									
		1178.1 [‡] 5	100 [‡] 29	237.2396 1-									
		1298.1 [‡] 6	71 [‡] 29	114.5440 3-									

 $^{170}_{69}\mathrm{Tm}_{101}\text{--}19$

Т

 $^{170}_{69}\mathrm{Tm}_{101}$ -19

From ENSDF

 γ (¹⁷⁰Tm) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
1433.2	(1 ⁻)	1082.8 [‡] 1	100 [‡] 6	349.7330	3-	1549.1	(≤3)	1509.1 [‡] 5	100 [‡] 33	38.7139	2-
	. ,	1212.7 [‡] 2	19.2 [‡] 26	219.7060	2^{-}		. ,	1550.4 [‡] 3	100 [‡] 33	0.0	1-
1437.2	(≤2)	834.6 [‡] 6	22 [‡] 7	603.9897	1^{+}	1586.7	$(1^{-},2,3^{-})$	998.0 [‡] 5	100 [‡] 20	590.2286	1-
		1198.8 [‡] 2	100 [‡] 11	237.2396	1-			1140.3 [‡] 6	80 [‡] 27	447.0707	(3)-
		1217.8 [‡] <i>10</i>	15 [‡] 4	219.7060	2^{-}			1378.7 [‡] 5	27 [‡] 7	204.4486	2-
1442.0	(≤4)	1237.8 [‡] 4	100	204.4486	2^{-}			1470.6 [‡] 6	40 [‡] 13	114.5440	3-
1443.1	(1 ⁻)	1093.7 [‡] 6	21 [‡] 6	349.7330	3-			1548 [‡] <i>3</i>	77	38.7139	2^{-}
		1208.8 [‡] 9	12 [‡] 6	237.2396	1-	1590.3	(≤3)	1551.7 [‡] 8	100 [‡] 33	38.7139	2-
		1223.2 [‡] 2	100 [‡] 9	219.7060	2-			1590.2 [‡] 5	67 [‡] 33	0.0	1-
		1237.8 [‡] 4	18 [‡] 3	204.4486	2^{-}	1603.5	(≤3)	1013.7 [‡] 8	40 [‡] 15	590.2286	1-
		1291.9 [‡] 6	18 [‡] 6	149.7180	0^{-}			1367.5 [‡] 1	100 [‡] 10	237.2396	1-
		1404.8 [‡] 6	6 [‡] 3	38.7139	2^{-}			1563.0 [‡] 3	20 [‡] 5	38.7139	2-
1466.3	(1-,2-)	866.9 [‡] 7	10 [‡] 4	603.9897	1^{+}	1609.3	$(0^{-}, 1^{-}, 2^{-})$	1019.4 [‡] 7	100 [‡] 38	590.2286	1-
		1020.3 [‡] 2	61 [‡] 8	447.0707	(3)-			1608.3 [‡] 7	13‡	0.0	1-
		1117.2 [‡] 7	12 [‡] 4	349.7330	3-	1639.2	(1 to 4)	1524.7 [‡] 6	100 [‡] 40	114.5440	3-
		1229.9 [‡] 3	16 [‡] 4	237.2396	1-			1600.5 [‡] 7	40 20	38.7139	2-
		1247.3 [‡] 5	11.8 [‡] 20	219.7060	2-	1646.3	$(2^{-},3^{+})$	1000.5 [‡] 11	100 [‡] 57	644	(4-)
		1318.0 [‡] <i>1</i>	100 [‡] <i>10</i>	149.7180	0^{-}			1043.0 [‡] 8	57 [‡] 29	603.9897	1^{+}
1478.0	(1,2 ⁻)	872.6 [‡] 10	75 [‡] 50	603.9897	1^{+}	1658.7	(≤3)	1016.0 [‡] 7	100 [‡] 36	648.7467	1-
		1259.1 [‡] 6	100 [‡] 25	219.7060	2-			1438.7 [‡] 4	64 [‡] 9	219.7060	2-
		1327.6 [‡] 10	100 [‡] 50	149.7180	0^{-}			1618.5 [‡] 6	18‡ 9	38.7139	2-
1501.1	$(\le 2^{-})$	1265.7 [‡] 6	30 [‡] 10	237.2396	1-			1659.3 [‡] 2	55 [‡] 9	0.0	1-
		1282.2 [‡] 5	50 [‡] 10	219.7060	2^{-}	1669.2	(≤2)	1078.9 [‡] 2	100 [#] 16	590.2286	1-
		1297.3 [‡] 2	100 [#] 20	204.4486	2^{-}			1432.0 [‡] 4	16 [‡] 4	237.2396	1-
1515.4	$(0^{-}, 2^{-})$	909.8 [‡] 10	44 [‡] 22	603.9897	1+			1464.9 [‡] 2	72 [‡] 8	204.4486	2-
		923.2 [‡] 8	89 [‡] 33	590.2286	1-			1520.7 [‡] 6	24 [‡] 8	149.7180	0-
		1276.2 7	56 [‡] 22	237.2396	1-			1669.3 [‡] 5	87 4	0.0	1-
		1298.0 [‡] 3	1007 22	219.7060	2-	1704.8	(≤3)	1666.0 [‡] 5	100 [‡] 33	38.7139	2-
		1397.3 [‡] 10	33 [‡] 22	114.5440	3-			1705.0 [‡] 4	100 [#] 33	0.0	1-
		1516.3 [‡] <i>11</i>	11	0.0	1-	1726.7	(1 to 4)	1279.3 5	88 [‡] 19	447.0707	(3)-
1518.1	$(1^{-},2,3^{-})$	928.6 [‡] 7	53 [‡] 16	590.2286	1-			1455.3 [‡] 3	100 [‡] 13	270.5466	(3)-
		1168.3 [‡] 3	79 7 16	349.7330	3-			1520.7 5	25 [∓] 6	204.4486	2^{-}
		1280.1 7 2	100 7 11	237.2396	1-			1688.1 [∓] 8	137 6	38.7139	2^{-}
1537.2	(1 ⁻)	932.1 [‡] 6	100 - 33	603.9897	1^{+}	1733.7	(≤3)	1695.2 [‡] 3	1007 20	38.7139	2^{-}
		1316.8 [‡] 8	507 17	219.7060	2-			1733.5 [‡] 3	100 [‡] 20	0.0	1-

 γ (¹⁷⁰Tm) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
1747.7	(≤3)	1509.2 [‡] 6	57 [‡] 14	237.2396	1-	1921.3	(1 ⁻ ,2)	1806.4 [‡] 4	34 [‡] 7	114.5440	3-
		1710.3 [‡] 3	100 [‡] 14	38.7139	2^{-}	1932.7	(1 ⁻ ,2,3 ⁻)	1285.9 [‡] 16	100 [‡] 60	648.7467	1-
		1747.5 [‡] 4	57 [‡] 14	0.0	1-			1582.8 [‡] 8	100 [‡] 40	349.7330	3-
1758.4	(≤3)	1643.7 [‡] 7	100 [‡] 40	114.5440	3-			1894.3 [‡] 4	100 [‡] 20	38.7139	2-
		1719.8 [‡] 5	80 [‡] 20	38.7139	2^{-}			1933.0 [‡] 5	40 [‡] 20	0.0	1-
		1758.4 [‡] 5	60 [‡] 20	0.0	1-	1951.0	(2,3 ⁻)	1501.5 [‡] 7	100 [‡] 36	447.0707	(3)-
1768.7	(1 to 3)	1178.7 [‡] 8	78 [‡] <i>33</i>	590.2286	1-			1679.0 [‡] <i>11</i>	64 [‡] 27	270.5466	(3)-
		1317.8 [‡] 9	100 [‡] 33	447.0707	(3)-			1731.3 [‡] 5	36 [‡] 9	219.7060	2-
1818.1	(≤3)	1582.0 [‡] 3	100 [‡] 13	237.2396	1-			1767.3 [‡] 9	55 [‡] 18	183.197	(3)+
		1611.9 [‡] 7	38 [‡] 13	204.4486	2^{-}			1951.4 [‡] 5	18 [‡] 9	0.0	1-
1823.2	(1 ⁻ ,2 ⁻)	1602.9 [‡] 4	75 [‡] 13	219.7060	2^{-}	1979.0	(1 ⁻ ,2,3 ⁻)	1710.7 [‡] 8	100 [‡] 33	270.5466	(3)-
		1674.2 [‡] 6	100 [‡] 25	149.7180	0^{-}			1940.5 [‡] 5	67 [‡] 22	38.7139	2-
1855.0	(1 to 3)	1210.9 [‡] 7	100 [‡] 38	648.7467	1-			1977.7 [‡] 6	22 [‡] 11	0.0	1-
		1671.6 [‡] 5	46 [‡] 8	183.197	$(3)^{+}$	2013.4	(2,3 ⁻)	1777.6 [‡] 6	25 [‡] 8	237.2396	1-
1859.3	(1 ⁻)	1214.0 [‡] 5	100 [‡] 26	648.7467	1-			1805.7 [‡] 7	25 [‡] 8	204.4486	2-
		1257.9 [‡] 7	11 [‡] 3	603.9897	1^{+}			1830.1 [‡] 9	50 [‡] 17	183.197	$(3)^{+}$
		1412.6 [‡] 5	43 [‡] 11	447.0707	(3)-			1900.2 [‡] 4	100 [‡] 17	114.5440	3-
		1508.7 [‡] 4	26 [‡] 6	349.7330	3-			1975.2 [‡] 8	17 [‡] 8	38.7139	2-
		1623.3 [‡] 2	43 [‡] 6	237.2396	1-			2011.8 [‡] 9	88	0.0	1-
		1638.5 [‡] 4	14 [‡] 3	219.7060	2-	2039.5	(≤3)	1819.3 [‡] 4	100 [‡] 17	219.7060	2-
		1708.1 [‡] 5	29 [‡] 6	149.7180	0^{-}			2041.3 [‡] <i>12</i>	17 [‡] 17	0.0	1-
		1744.5 [‡] 6	17 [‡] 6	114.5440	3-	2072.8	(1 ⁻ ,2,3 ⁻)	1722.0 [‡] 7	100 33	349.7330	3-
		1819.9 [‡] <i>3</i>	23 [‡] 3	38.7139	2^{-}			2073.4 [‡] 6	33 [‡] 17	0.0	1-
		1859.0 [‡] 3	17 [‡] 3	0.0	1-	2084.1	(≤3)	1847.4 [‡] 7	100 [‡] 33	237.2396	1-
1870.6	(≤2)	1226.8 [‡] 10	100 [‡] 14	648.7467	1-			2082.2 [‡] <i>13</i>	33 <i>33</i>	0.0	1-
		1265.7 [‡] 7	57 [‡] 14	603.9897	1^{+}	2098.0	(1,2)	1747.5 [‡] 6	100 [‡] 29	349.7330	3-
		1281.0 [‡] 8	100 [‡] 43	590.2286	1-			1949.9 [‡] 8	86 [‡] 29	149.7180	0^{-}
		1633.1 [‡] 5	57 [‡] 14	237.2396	1-	2101.0	(1 ⁻ ,2,3 ⁻)	1830.5 [‡] <i>3</i>	100 [‡] 17	270.5466	(3)-
		1666.3 [‡] 6	71 [‡] 14	204.4486	2^{-}			1864.9 [‡] 4	28 [‡] 6	237.2396	1-
1909.8	(≤3)	1871.1 [‡] 7	75 [‡] 25	38.7139	2^{-}			1896.9 [‡] 7	22 [‡] 6	204.4486	2^{-}
		1909.8 [‡] <i>3</i>	100 [‡] 25	0.0	1-			2062.9 [‡] 6	17 6	38.7139	2^{-}
1921.3	(1 ⁻ ,2)	1279.4 [‡] 6	38 [‡] 10	648.7467	1-			2097.5 9	66	0.0	1-
		1315.5 [‡] 4	24 [‡] 3	603.9897	1^{+}	2116.3	(≤2)	1897.8 [‡] 6	57 [‡] 14	219.7060	2^{-}
		1471.5 [‡] 9	31 [‡] 14	447.0707	(3)-			1912.0 [‡] 6	71 [‡] 14	204.4486	2-
		1571.7 [‡] 2	100 [‡] 10	349.7330	3-			1965.3 [‡] 6	100 [‡] 29	149.7180	0^{-}

 $\gamma(^{170}$ Tm) (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2134.6	(2,3 ⁻)	1533.6 [‡] 7	40 [‡] 10	603.9897	1^{+}	2307.4	$(1^{-},2,3^{-})$	1857.7 [‡] 7	100 [‡] 27	447.0707	(3)-
		1863.1 [‡] 6	100 [‡] <i>30</i>	270.5466	(3)-			2071.9 [‡] 8	18 [‡] 9	237.2396	1-
		1899.0 [‡] 9	30 [‡] 10	237.2396	1-			2267.3 [‡] 8	27 [‡] 9	38.7139	2-
		1914.8 [‡] 6	50 [‡] 10	219.7060	2-	2340.8	(1 ⁻ ,2,3 ⁻)	1749.2 [‡] 5	77 [‡] 23	590.2286	1-
		2019.3 [‡] 5	92 [‡] 20	114.5440	3-			1892.1 [‡] 6	100 [‡] <i>31</i>	447.0707	(3)-
		2095.5 [‡] 4	50 [‡] 10	38.7139	2^{-}			2103.2 [‡] 7	23 [‡] 8	237.2396	1-
2145.4	(≤3)	2107.3 [‡] 7	100 [‡] 33	38.7139	2-	2347.1	(≤3)	1741.9 [‡] 8	100 [‡] 40	603.9897	1^{+}
		2144.5 [‡] 8	67 [‡] 33	0.0	1-			2310.1 [‡] 9	40 [‡] 20	38.7139	2-
2161.1	(1-,2,3-)	1892.6 [‡] 5	100 [‡] 23	270.5466	(3)-	2364.8	$(2^{-},3,4^{-})$	1718.9 [‡] 6	100 [‡] 25	648.7467	1-
		1955.9 [‡] 4	46 [‡] 8	204.4486	2^{-}			2016.9 [‡] 9	50 [‡] 17	349.7330	3-
		2158.0 10	15 7	0.0	1-			2326.7 [‡] 6	33 [‡] 8	38.7139	2^{-}
2168.1	$(1^-, 2, 3^-)$	1898.2 [‡] 5	68 [‡] 16	270.5466	(3) ⁻	2388.2	(≤3)	2168.4 [‡] 5	100 [‡] 29	219.7060	2^{-}
		1964.1‡ 2	100 [‡] 11	204.4486	2-			2388.4 [‡] 9	14	0.0	1-
		2167.1 [‡] 5	16 [‡] 5	0.0	1-	2439.1	$(1^-, 2^-)$	1796.1 [‡] <i>11</i>	64‡ 27	648.7467	1-
2192.0	$(1^+, 2, 3^-)$	1547.5 [‡] 5	100 [‡] 25	648.7467	1-			1833.9 [‡] <i>3</i>	91 [‡] 27	603.9897	1+
		1590.8 [#] 4	58 [‡] 8	603.9897	1+			2089.4 [‡] 8	64 18	349.7330	3-
		2189.1 5	17 [‡] 8	0.0	1-			2289.3 [‡] 4	100 [‡] 18	149.7180	0-
2258.2	$(0^{-}, 1, 2^{-})$	1610.4 [‡] 8	70 [‡] <i>30</i>	648.7467	1-			2442.9 [‡] 13	9	0.0	1-
		2019.9 [‡] 8	207 10	237.2396	1-	2458.3	(≤2)	1854.8 [‡] 11	43 [‡] 29	603.9897	1^{+}
		2039.27 7	307 10	219.7060	2-			2419.6 [‡] 3	100 [‡] 14	38.7139	2-
		2110.5 [‡] 6	100 20	149.7180	0-			2458.1 ⁴ 3	71# 14	0.0	1-
2264.9	$(2^{-},3^{+})$	1619.4 [‡] 7	100 ⁴ 33	648.7467	1-	2478.0	(≤2)	2208.6 ⁴ 7	90 [‡] <i>30</i>	270.5466	(3)-
		1664.4 5	67+ 11	603.9897	1+			2294.4+ 7	100+ 30	183.197	$(3)^{+}$
2272.4	(≤3)	1668.5 5	100+ 17	603.9897	1+			2477.6+ 6	40+ 10	0.0	1-
		2067.9+ 7	67+ 17	204.4486	2-	2482.0	(≤3)	2443.4+ 5	100+ 25	38.7139	2-
2281.5	(≤3)	2044.9+ 6	40+ 20	237.2396	1-			2481.9+ 10	50+ 25	0.0	1-
		2061.4+ 5	100+ 20	219.7060	2-	2528.5	(1 to 4)	2323.7* 5	100+ 20	204.4486	2-
2283.1	$(1^{-},2)$	1680.6+ 5	38+ 6	603.9897	1+		(1	2414.7* 9	80+ <i>40</i>	114.5440	3-
		1833.9+ 5	100+ 25	447.0707	$(3)^{-}$	2536.3	$(1^-, 2, 3^-)$	1932.1* 6	$60^+ 10$	603.9897	1-
		1933.4# 7	44+ <i>13</i>	349.7330	3			1946.6* 8	100 30	590.2286	1
		2244.3* 4	38+ 6	38.7139	2			2084.9* 8	$100^{+} 30$	447.0707	(3)
2200.0	(- 2)	2281.3* 4	25* 6	0.0	1			2302.2^{+} 3	$30^{+} 10$	237.2396	1 1-
2289.8	(≤3)	20/1.777	$100^{+} 25$	219.7060	2 2-	2540.5	(1 - 2, 2 -)	$2535.8^{+}3$	60 ⁺ 10	0.0	$(2)^{-}$
		2230.8^{+} /	157 25	38./139	∠ 1=	2540.5	(1,2,5)	2209.0^{+} /	$100^{+} 30$	2/0.5466	(3)
		2288.37 /	50* 25	0.0	1			2341.27 /	20* 10	0.0	1

$\gamma(^{170}$ Tm) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
2553.9	(≤3)	1965.1 [‡] 7	100 [‡] 33	590.2286 1	1-	2625.7	(≤3)	2420.4 [‡] 7	11 [‡] 3	204.4486	2-
		2331.7 [‡] 6	44 [‡] 11	219.7060 2	2-	2634.6	$(1^{-},2)$	2030.3 [‡] 5	100 [‡] 14	603.9897	1^{+}
		2349.9 [‡] 5	56 [‡] 11	204.4486 2	2-			2395.9 [‡] 10	29 [‡] 14	237.2396	1-
2573.2	(≤3)	2335.9 [‡] 7	60 [‡] 20	237.2396 1	1-			2522.3 [‡] 10	43 [‡] 14	114.5440	3-
		2369.3 [‡] 5	100 [‡] 20	204.4486 2	2-	2671.9	(1 ⁻ ,2,3 ⁻)	2027.5 [‡] 8	100 [‡] 33	648.7467	1-
		2533.4 [‡] 8	40 [‡] 20	38.7139 2	2-			2401.3 [‡] 10	78 [‡] <i>33</i>	270.5466	(3)-
2587.6	(≤3)	1995.8 [‡] 7	100 [‡] 38	590.2286 1	1-	2702.3	(≤3)	2479.8 [‡] 8	75 [‡] 25	219.7060	2^{-}
		2550.2 [‡] 8	25 [‡] 13	38.7139 2	2-			2554.4 [‡] 5	100 [‡] 25	149.7180	0^{-}
		2587.3 [‡] 7	25 [‡] 13	0.0 1	1-			2587.2 [‡] 7	63 [‡] 25	114.5440	3-
2592.3	(1 ⁻ ,2 ⁻)	1948.9 [‡] 9	80 [‡] <i>30</i>	648.7467 1	1-	2721.3	(≤3)	2482.4 [‡] 9	50 [‡] 25	237.2396	1-
		2321.6 [‡] 8	90 [‡] <i>30</i>	270.5466 ((3)-			2518.0 [‡] 7	100 [‡] 25	204.4486	2-
		2375.3 [‡] 8	30 [‡] 10	219.7060 2	2-	2727.4		2456.7 [‡] 6	100 [‡] 27	270.5466	(3)-
		2442.6 [‡] 6	100 [‡] 20	149.7180 (0-			2613.1 [‡] 6	55 [‡] 18	114.5440	3-
		2474.8 [‡] 8	40 [‡] 20	114.5440 3	3-	2767.9	$(1^+, 2, 3^-)$	2176.9 [‡] 6	92 [‡] 25	590.2286	1-
2598.9	(2 ⁻)	1954.6 [‡] 8	47 [‡] 16	648.7467 1	1-			2584.6 [‡] 6	100 [‡] 33	183.197	$(3)^{+}$
		1996.1 [‡] 9	21 [‡] 11	603.9897 1	1+	2778.6	$(1^{-},2,3^{-})$	2509.4 [‡] 10	100 [‡] 38	270.5466	(3)-
		2152.0 [‡] 8	53 [‡] 16	447.0707 ((3)-			2665.5 [‡] 8	75‡ 25	114.5440	3-
		2249.2 [‡] 6	53 [‡] 16	349.7330 3	3-			2776.9 [‡] 7	25 [‡] 13	0.0	1-
		2328.0 [‡] 4	100 [‡] 21	270.5466 ((3)-	2802.4	(≤3)	2763.7 8	100 [‡] 38	38.7139	2-
		2393.3 [‡] 2	63 [‡] 11	204.4486 2	2-			2802.5 [‡] 6	67 7 33	0.0	1-
		2481.9 [‡] 6	32 [‡] 11	114.5440 3	3-	2807.8	(2 ⁻ ,3 ⁻)	2163.4 9	69 [‡] 23	648.7467	1-
		2564.4 [‡] 6	16 [‡] 5	38.7139 2	2-			2219.3 [‡] 9	62 [‡] 23	590.2286	1-
		2596.8 [‡] 4	16 [‡] 5	0.0 1	1-			2355.9 [‡] 7	100 [‡] 31	447.0707	(3)-
2606.8	$(1^{-},2^{-})$	2001.1 [‡] 5	887 25	603.9897 1	1+			2457.6 [‡] 10	46 [‡] 15	349.7330	3-
		2339.7 7 9	100 [‡] 38	270.5466 ((3)-			2588.0 [‡] 6	387 15	219.7060	2-
		2457.9 9	63 25	149.7180 (0-			2808.44 4	31 * 8	0.0	1-
		2491.6+ 7	63 <u>+</u> 25	114.5440 3	3-	2813.6	$(1^{-}, 2^{-})$	2366.2 ⁺ 13	67 + 33	447.0707	$(3)^{-}$
		2607.5+ 7	25 + 13	0.0 1	1-			2542.1+ 9	100+ 33	270.5466	$(3)^{-}$
2618.3	$(2^{-}, 3^{-})$	1972.1+ 7	83+ 25	648.7467 1	1-			2596+ 3	33+ 50	219.7060	2-
		2169.0+ 7	92 + 25	447.0707 ((3)-			2664.3 + 16	33+ 25	149.7180	0^{-}
		2347.6+ 5	100+ 25	270.5466 ((3)-			2773.8+ 4	58+ 17	38.7139	2-
		2413.2+ 5	33+ 8	204.4486 2	2-			2814.5+ 4	25+ 8	0.0	1-
		2506.0+ 5	58+ 8	114.5440 3	3-	2846.2	(≤3)	2254.9 ⁺ 10	100+ 38	590.2286	1-
		2617.1+ 8	17+8	0.0 1	1-	8 075 -	(d - 6 - 1	2846.3+ 3	63+ <i>13</i>	0.0	1-
2625.7	(≤3)	2022.2+ 1	100+ 8	603.9897 1	1+	2867.0	$(1^{-},2,3^{-})$	2223.2+ 6	100+ 23	648.7467	1-

γ (¹⁷⁰Tm) (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
2867.0	$(1^{-},2,3^{-})$	2594.9 [‡] 8	69 [‡] 23	270.5466	(3)-	3806.2	(≤3)	3456.8 [‡] 11	100 [‡] 43	349.7330	3-
2874.5	$(1^{-},2,3^{-})$	2604.6 [‡] 8	100 [‡] 33	270.5466	$(3)^{-}$			3806.1 [‡] 6	29 [‡] 14	0.0	1-
		2874.2 [‡] 5	33 [‡] 11	0.0	1-	3864.1	(≤3)	3272.7 10	38 17	590.2286	1-
2881.0	(≤3)	2676.6 [‡] 8	100 [‡] 40	204.4486	2^{-}			3623.7 [‡] 8	13 [‡] 4	237.2396	1-
		2881.0 [‡] 5	80 [‡] 20	0.0	1-			3646.3 [‡] 10	17 [‡] 8	219.7060	2-
2911.9	(≤3)	2672.3 [‡] 9	100 [‡] 33	237.2396	1-			3682.0 [‡] 4	100 [‡] 21	183.197	$(3)^{+}$
		2913.6 [‡] 7	67 [‡] 33	0.0	1-	6591.97	$0^+, 1^+$	4641.48 25	20.8 21	1951.0	(2,3 ⁻)
2925.4	(1-,2,3-)	2281.0 [‡] 8	100 [‡] 33	648.7467	1-			4732.63 22	38 <i>3</i>	1859.3	(1 ⁻)
		2654.7 [‡] 9	89 [‡] <i>33</i>	270.5466	(3)-			4774.2 5	10.4 21	1818.1	(≤3)
2952.7	(1 ⁻ ,2,3 ⁻)	2603.0 [‡] 6	100 [‡] 33	349.7330	3-			4922.2 <i>3</i>	17.4 21	1676	(1 ⁻)
		2715.5 [‡] 6	44 [‡] 11	237.2396	1-			4987.1 <i>4</i>	10.4 21	1609.3	$(0^{-}, 1^{-}, 2^{-})$
2995.9	(1 ⁻ ,2,3 ⁻)	2645.7 [‡] 9	100 [‡] <i>33</i>	349.7330	3-			5053.7 6	6.8 15	1537.2	(1 ⁻)
		2996.3 [‡] 8	33 [‡] 17	0.0	1-			5061.7 5	6.8 14	1532.1	(≤2 [−])
3030.8	(≤2)	2425.5 [‡] 9	56 [‡] 22	603.9897	1^{+}			5077 <i>3</i>	26 3	1515.4	(0-,2)
		2441.1 [‡] 9	100 [‡] <i>33</i>	590.2286	1-			5124.2 <i>3</i>	19 <i>3</i>	1472	(1 ⁻)
3099.4	(≤2)	2455.7 [‡] 10	82 [‡] 36	648.7467	1-			5149.2 4	21 3	1443.1	(1 ⁻)
		2648.9 [‡] 9	100 [‡] 45	447.0707	(3)-			5158.2 4	31 3	1433.2	(1 ⁻)
3206.9	(1 to 4)	3092.0 [‡] 9	100 [‡] 40	114.5440	3-			5216.9 6	6.1 17	1375.1	(1 ⁻)
		3168.5 [‡] 9	80 [‡] 20	38.7139	2-			5325.7 <i>3</i>	11.8 21	1265.075	$(0,1,2)^{-}$
3215.9	(≤3)	2570.7 [‡] 6	100 [‡] 29	648.7467	1-			5353.5 4	12.5 21	1238.144	$(0,1,2)^{-}$
		2626.0 [‡] 9	64 [‡] 29	590.2286	1-			5381.4 <i>3</i>	11.8 21	1210.679	(2 ⁺)
3272.7	(≤3)	2681.5 [‡] 8	100 [‡] 36	590.2286	1-			5398.0 4	9.4 17	1192.828	2-
		3068.5 [‡] 9	36 [‡] 18	204.4486	2^{-}			5412.47 24	26 3	1178.910	(2) ⁻
3470.8	(≤4)	3266.9 [‡] 6	100 [‡] 20	204.4486	2^{-}			5422.9 <i>3</i>	16.0 21	1168.779	(2) ⁻
		3432.2 [‡] 7	40 [‡] 10	38.7139	2-			5431.9 <i>3</i>	15.3 21	1160.597	(1)-
3491.5	(≤3)	2847.8 [‡] 9	100 [‡] 40	648.7467	1-			5443.5 <i>3</i>	9.9 17	1147.974	$(1,2)^{-}$
		3253.2 [‡] 9	40 [‡] 20	237.2396	1-			5451.4 4	9.8 17	1139.951	(2) ⁻
3557.3	(≤4)	3207.1 [‡] 10	100 [‡] 38	349.7330	3-			5518 6	8.3 11	1070.975	(2) ⁻
		3519.0 [‡] 9	50 [‡] 13	38.7139	2-			5682.6 4	3.4 14	908.448	(2 ⁻)
3623.7		3274.4 [‡] 8	100 [‡] <i>33</i>	349.7330	3-			5728.6 <i>3</i>	17.4 21	860.484	1+
		3419.0 [‡] 8	56 [‡] 22	204.4486	2-			5737.50 20	94 5	854.335	2-
3630.0	(≤3)	3392.9 [‡] 7	100 [‡] 33	237.2396	1-			5809.5 4	9.7 13	782.1520	$(1)^{-}$
		3591.0 [‡] 10	100 [‡] 33	38.7139	2-			5858.3 <i>3</i>	27 3	733.8128	$(2)^{-}$
3760.5	(≤3)	3117.3 [‡] 7	100 [‡] 33	648.7467	1-			5898.3 <i>3</i>	23 3	693.2864	2-
		3541.2 [‡] 8	50 [‡] 17	219.7060	2^{-}			5908.3 <i>3</i>	33 <i>3</i>	683.569	$(0)^{-}$

$\gamma(^{170}\text{Tm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
6591.97	0+,1+	5943.14 20 6001.51 22 6354.5 3 6371 5 4	100 5 65 7 28 3 5 6 13	648.7467 1 ⁻ 590.2286 1 ⁻ 237.2396 1 ⁻ 219.7060 2 ⁻	6591.97	0+,1+	6387.49 22 6442.19 23 6556.4 5 6594 3	98 5 31.3 21 34.0 10 1 5 7	204.4486 149.7180 38.7139 0.0	2^{-} 0^{-} 2^{-} 1^{-}

[†] Data are from (n, γ) E=0-136 eV, unless noted otherwise.

[±] From (n,γ) E=thermal: γ coin. Uncertainty in E γ may be underestimated.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

Level Scheme Intensities: Relative photon branching from each level

¹⁷⁰₆₉Tm₁₀₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{170}_{69} \mathrm{Tm}_{101}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{170}_{69}\mathrm{Tm}_{101}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁷⁰₆₉Tm₁₀₁

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

--- γ Decay (Uncertain)

 $^{170}_{69} \mathrm{Tm}_{101}$

 $^{170}_{69}\mathrm{Tm}_{101}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{170}_{69} \mathrm{Tm}_{101}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{170}_{69}$ Tm $_{101}$ -41

 $^{170}_{69}$ Tm $_{101}$ -41

From ENSDF

 $^{170}_{69}$ Tm $_{101}$ -42

From ENSDF

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{170}_{69}\mathrm{Tm}_{101}$

43

1-

39

0.0

Adopted Levels, Gammas

		Band(C): $K^{\pi}=1^{-}$ band		
		(7 ⁻) 1230		
		(6 ⁻) 1061		
		<u>(5⁻) 921</u>		
		(4 ⁻) 801	Band(D): $K^{\pi} = (3)^{-}$ band (4) ⁻ 756.215	
		3- 708.370	(3)- 715.6207	
Band(A): $\mathbf{K}^{\pi} = 1^{-}$ g.s. band		· · ·		
7- 616.6		2- 637.9062		Band(E): $K^{\pi}=2^{-}$ band
	Band(B): $K^{\pi}=0^{-}$ band	1- 590.2286		(6 ⁻) 598.8
	5- 550.7473			
	169			(5)- 467.8607
6- 409.4				110
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(4)- 197 358.1163
5- 319.3260				88
	162 130 112			(3)- 154 270.5466
205	1 ⁻ 237.2396 2 ⁻ 18 219.7060			66
4- 183.1897	88 70			<u>∠ ¥ ¥ 204.4486</u>
69	0- + 149.7180			
<u>2</u> - 115 38.7139	1			

¹⁷⁰₆₉Tm₁₀₁

	Band(G): K ⁿ	$(2)^{-}$ band							
	<u>(4</u> ⁻)	1539							
	(3)-	1448							
	(2)-	1292.2							
	(2)	1382.2						Band(K): K'	$\tau = (3)^+$ band
			Band(H): K	$x^{\pi} = (3)^{-}$ band 955.8				<u>(6)</u> ⁺	1011
Band(F): $K^{\pi} = (0)^+$ band 1 ⁺ 860.484							Band(J): $K^{\pi} = (3^{-})$ band (3 ⁻) 867	(5)+	891
(2) ⁺ 818.5072									
(0)+ 775.2299			(6-)	790.1	Band(I): $K^{\pi} = (3)^{-1}$	3) ⁻ band 774			
			(5-)	655.598					
			<u>(4)</u> - 93	539.7223					
			(3)-	447.0707					
				¹⁷⁰ 69Tı	m ₁₀₁				

Band(L): $K^{\pi}=(3)^{-}$ band

(4⁻) 1291

(3)- 1213.1	Band(M): K^{π}	=(1) ⁻ band					
	(3)-	979.929					
			Band(N): $K^{\pi} = (4$) ⁺ band			
			(6)+	948			
	(2-)	908.448					
		·					
	(1)-	863.364					Band(O): $K^{\pi}=1^{-}$ band
						Band(P): $\mathbf{K}^{\pi} = (0)^+$ ban	nd (4 ⁻) 835.4
			(5 ⁺)	829		2+ 822.3935	
							3- 749.8482
							`
						<u>1+</u> 719.2627	-
							2- (02.29/4
							2 693.2864
					Band(O): $K^{\pi}=1^+$ band		
					<u>2+ 650.3735</u>		<u>1</u> ⁻ 648.7467
					$\frac{3^+}{1^+}$ <u>607.8862</u> <u>603.9897</u>		

Band(T): K	$\pi^{\pi}=(1)^{-}$ band
(1)-	1315.9

Band(R): $K^{\pi}=2^{-}$ band

(5⁻) 1131.1

(4⁻) 1014.0

Band(S):	$\mathbf{K}^{\pi} = (0)^{-}$	band

a -	954 225	(3)-	862.7765		
2	854.335		•		
-					

(1)-	782.1520
(2)-	99 <u>733.8128</u>
(0)-	683.569

Band(a): $K^{\pi}=(4)^+$ band

439.8

(5⁺)

Band(U):	$K^{\pi}=(3)^{+}$	band
(6 ⁺)		

(6⁺) 426.5

(4)+ 355.047

(5⁺) 327.1

¹⁷⁰₆₉Tm₁₀₁