Adopted Levels

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Jul-2022

 $Q(\beta^{-})=7000 SY; S(n)=4300 SY; S(p)=10110 SY; Q(\alpha)=-2390 SY$ 2021Wa16

2012Ku26: ¹⁷⁰Gd produced in ${}^{9}Be({}^{238}U,F)$ reaction with $E({}^{238}U)=1$ GeV/nucleon and identified using FRS with tof- ΔE -B ρ measurements. Time of flight measured with two plastic scintillators, energy loss or deposit with the MUSIC detector consisting of ionization chambers, and magnetic rigidity using four time-projection chambers. Measured production cross section.

2017Wu04: ¹⁷⁰Gd produced in ⁹Be(²³⁸U,F) reaction with E(²³⁸U)=345 GeV/nucleon and identified using BigRIPS separator and the tof-B ρ - Δ E method. Reaction products transported through the ZeroDegree Spectrometer and implanted into the WAS3ABi detector. Meausured implanted ion- β (t); deduced T_{1/2}.

¹⁷⁰Tb Levels

E(level)	T _{1/2}	Comments
0.0	0.96 s 8	$\%\beta^{-}=100; \ \%\beta^{-}n=?$
		$\%\beta^-$: only β^- decay is expected.
		$T_{1/2}$: from 2017Wu04, fitting the implanted ion- β^- -t spectrum and using least-squares and
		maximum-likelihood methods. The analysis included the contributions from the parent, daughter and
		ground-daughter decays, as well as a constant background.
		$T_{1/2}$: other: 0.91 s 18-13 (2016So13).

 J^{π} : 2⁻ is possible based on systematics of well-deformed nuclei in this mass region resulting from the $\pi 3/2[411]$ and $\nu 7/2[514]$ Nilsson orbitals Then the Gallagher-Moszkowski rule, gives the $K^{\pi}=2^-$, $\pi 3/2[411] \otimes \nu 7/2[514]$ configuration for the ground state. A a high-spin, $K^{\pi}=5^-$ isomer, arising from the same configuration, is also possible.