¹⁷⁰W ε decay **1990Me12,1997MeZZ**

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018	

Parent: ¹⁷⁰W: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.42 \text{ min } 4$; $Q(\varepsilon)=2847 \ 31$; $\%\varepsilon+\%\beta^+$ decay=100.0

1990Me12: measured $E\gamma$, γ -K x ray(Ta) coin, $\gamma\gamma$ coin, $\gamma(t)$, γ excit.

1997MeZZ: revised assignment of four unplaced lines attributed to 170 W ε decay in 1990Me12. Other: 1987Es08.

¹⁷⁰Ta Levels

E(level)	$J^{\pi \dagger \ddagger}$
0.0	(3^+)
316.2	(1^+)

[†] From Adopted Levels.

[‡] See comment on $J^{\pi}(316 \text{ level})$ in Adopted Levels.

$\gamma(^{170}\text{Ta})$

Lines with $E\gamma=59.6$, 61.3, 117.6, 144.0, thought by 1990Me12 to arise from ${}^{170}W \varepsilon$ decay, have the appropriate energy and $T_{1/2}$ to be associated with ${}^{181}Os \varepsilon$ decay, and 1997MeZZ have reassigned them to the latter decay. The first two are now believed to be the K α x ray lines of Re and the other two are transitions from the first two excited states of ${}^{181}Re$. They may arise from beam interactions with Ta in beam-line components during source production using the ${}^{138}Ba({}^{36}Ar, xn\gamma)$ reaction.

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α #	Comments
316.2 [‡]	100.0	316.2	(1 ⁺)	0.0 (3+)	[E2]	0.0702	$\alpha(K)=0.0487 \ 7; \ \alpha(L)=0.01644 \ 23; \ \alpha(M)=0.00398 \ 6; \ \alpha(N+)=0.001073 \ 15 \ \alpha(N)=0.000937 \ 14; \ \alpha(O)=0.0001326 \ 19; \ \alpha(P)=3.88\times10^{-6} \ 6 \ Other \ E\gamma: \ 316.4 \ (1987Es08).$

[†] Uncertainty not stated by authors; however, $\Delta E \le 0.4$ keV for transitions of similar energy in other isotopes observed in same study. $\Delta E=0.4$ is, therefore, assigned by the evaluator in Adopted Gammas to $E\gamma$ adopted from this data set.

 \ddagger Coincident with Ta K x ray.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

$^{170}{ m W}\, arepsilon\,$ decay 1990Me12,1997MeZZ

Decay Scheme

Intensities: Relative I_{γ}

