	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Additional information 1.

2010Ag06: E=228 MeV; Gammasphere detector array (100 Compton-suppressed Ge detectors) at the ATLAS facility at Argonne National Laboratory; measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$.

1985Ba48: E=230 MeV; Compton suppressed Ge(Li) detectors; measured E γ , $\gamma\gamma$ -coin and $\gamma(\theta)$; rotational band, cranked shell-model and semiclassical vector-coupling scheme analysis.

1985Ba48 reported an additional $\Delta J=2$ band, with tentative configuration= $((\pi 1/2[541])+(\nu i_{13/2})), \alpha=1$, but it is not adopted here. Instead, its transitions have been reassigned to ¹⁷⁰Hf, based on γ excit and (K x ray)-(100 γ +221 γ) coin data from a subsequent ¹⁵⁹Tb(¹⁶O,ypxn γ) study by 1998Zh08. The (E2) γ cascade reported by 1985Ba48 (viz., 707 γ -655 γ -615 γ -583.3 γ -549.7 γ -509.5 γ -461.8 γ -399.5 γ -320.5 γ -221 γ) closely resembles that known for the ¹⁷⁰Hf g.s. band.

¹⁷⁰Ta Levels

Nomenclature for quasiparticle orbitals: A_p: $\pi 5/2[402], \alpha = +1/2$ from d_{5/2} orbital. B_p: $\pi 5/2[402], \alpha = -1/2$ from d_{5/2} orbital. C_p: $\pi 7/2[404], \alpha = +1/2$ from $g_{7/2}$ orbital. D_p: $\pi 7/2[404], \alpha = -1/2$ from $g_{7/2}$ orbital. E_p: $\pi 9/2[514], \alpha = +1/2$ from h_{11/2} orbital. F_p: $\pi 9/2[514], \alpha = -1/2$ from h_{11/2} orbital. G_p: $\pi 1/2[541], \alpha = +1/2$ from $h_{9/2}$ orbital. H_p: $\pi 1/2[541], \alpha = -1/2$ from h_{9/2} orbital. I_p: $\pi 1/2[411], \alpha = +1/2$ from d_{3/2} orbital. J_p: $\pi 1/2[411], \alpha = -1/2$ from d_{3/2} orbital. A: $v5/2[642], \alpha = +1/2$ from $i_{13/2}$ orbital. B: $v5/2[642], \alpha = -1/2$ from $i_{13/2}$ orbital. C: $\alpha = +1/2$ from $i_{13/2}$ orbital. D: $\alpha = -1/2$ from $i_{13/2}$ orbital. E: $v5/2[523], \alpha = +1/2$ from $h_{9/2}$ orbital.

F: $v5/2[523], \alpha = -1/2$ from $h_{9/2}$ orbital.

Band assignments are based on alignments, band crossings, B(M1)/B(E2) ratios and additivity of Routhians.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0+x ^g	7+	268.3+x [@] 5	9-	473.17+x ⁿ 23	9+
32.6+x ⁿ 4	5+	291.31+x ⁱ 17	9+	496.6+x [@] 5	11-
46.1+x ^{&} 6	6-	312.04+x ^o 13	8+	536.37+x ^g 16	11^{+}
56.7+x [@] 6	7-	322.4+x ^a 6	9-	584.62+x ⁰ 15	10^{+}
89.23+x ^f 12	8^{+}	323.95+x 14		595.6+x ^{<i>a</i>} 5	11-
110.8+x ^m 4	6+	328.2+x ^m 3	8+	614.51+x ⁱ 16	11^{+}
131.8+x ^a 6	7-	339.66+x 19		626.21+x ^m 20	10^{+}
145.6+x [#] 6	8-	362.59+x ^f 14	10^{+}	626.59+x 24	
170.86+x ^p 16	7^{+}	365.7+x [#] 5	10^{-}	637.55+x 20	
180.84+x ^h 21	8^+	394.0+x ^{&} 5	10^{-}	663.5+x [#] 5	12-
182.6+x ^{&} 6	8-	395.02+x ^p 14	9+	698.7+x ^{&} 5	12-
206.7+x ^b 6	6(-)	434.8+x ^b 6	8(-)	719.2+x ^b 6	$10^{(-)}$
210.83+x ^g 13	9+	436.67+x ^h 17	10^{+}	723.74+x ^p 16	11^{+}
211.2+x ⁿ 3	7+	462.59+x 20		739.48+x ^f 16	12+

¹²⁴Sn(⁵¹V,5nγ) **2010Ag06,1985Ba48** (continued)

¹⁷⁰Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
810.06+x ⁿ 18 816.99+x 21	11+	
818.76+x ^h 17	12^{+}	
855.0+x [@] 5	13-	
954.88+x ^g 18	13+	
954.9+x ^a 5	13-	
962.56+x ⁰ 18	12+	
1010.67+x ^m 25	12+	a 174.9 γ from this level with 1γ =2.4 listed in table 1 of 2010Ag06 is non-existent according to e-mail reply of Aug 10, 2010 from one of the authors (D. Hartley) to B. Singh.
$1047.50 + x^{i}$ 18	13+	
1068.5+x ^b 6	$12^{(-)}$	
1078.5+x [#] 5	14^{-}	
1102.0+x ^{&} 5	14^{-}	
1145.43+x ^p 18	13+	
1201.66+x ^f 20	14^{+}	
1223.36+x ⁿ 21 1286.5+x 6	13+	
1297.07+x ^h 19	14+	
$1320.6 + x^{@} 5$	15^{-}	
1395.3+x ^{<i>a</i>} 5	15^{-}	
1430.30+x ^o 24	14^{+}	
1450.41+x ^g 22	15+	
$1461.9 + x^{m} 3$	14+	
1491.0+x ⁰ .6	$14^{(-)}$	
1562.97+x ¹ 21	15^{+}	
$1587.6 + x^{\#} 5$	16-	
1598.1+x ^{&} 5	16-	
$1645.03 + x^p 22$	15+	
$1696.04 + x^{n} 23$	15+	
$1728.6 + x^{e} 4$	13-	
1/32.17+xJ 23	16+	
$1846.62 + x^{n} 22$	16+	
1872.8+x ^w 5	17^{-}	
$1904.6 + x^{a} 5$	14-	
$1909.8 + x^{a} 5$	17-	
$1956.8 + x^{\circ} 3$ $1081.4 + x^{m} 3$	10 ⁺	
$1981.4 \pm x$ 5 $1087.2 \pm x^{b}$ 6	$10 \\ 1(-)$	
$1987.3 \pm x^{8} 0$ 2005 65 $\pm x^{8} 24$	10	
$2137 \ 30 \pm x^{i} \ 23$	17+	
$2137.50 + x^{2} = 25$ $2144.5 + x^{e} = 5$	15^{-}	
2170.4+x [#] 5	18-	
2175.1+x ^{&} 5	18^{-}	
2203.01+x ^p 23	17^{+}	
2220.04+x ⁿ 23	17^{+}	
2312.56+x ^f 25	18^{+}	
2426.1+x ^d 5	16-	
2444.34+x ^h 24	18^{+}	

24 Sn(51 V,5n γ)	2010Ag06,1985Ba48	(continued)
-------------------------------------	-------------------	-------------

Jπ‡ Jπ‡ Jπ‡ E(level) E(level)[†] E(level)[†] E(level) Jπ‡ 2482.4+x^a 5 4231.0+x^f 3 24+ 6105.5+x^{*a*} 6 29-8623.2+x^j 12 19^{-} (34^{+}) 2494.8+x[@] 5 4280.8+x[&] 6 8753.2+x[&] 10 19- 24^{-} 6142.9+x^g 4 29^{+} 34-4324.6+x^{*h*} 3 8807.6+x^l 12 2517.0+x° 3 18^{+} 24^{+} 6233.1+x¹ 4 29^{+} (34^{+}) 4434.7+x^j 4 2551.0+x^b 6 $18^{(-)}$ 6320.4+xⁿ 5 29^{+} 8844.4+x⁰ 10 34^{+} (24^{+}) 2566.3+x^m 4 4469.7+x^m 4 8901.7+x^{*a*} 9 18^{+} 24+ 6405.6+x^p 10 35- 29^{+} 2600.85+x^g 25 19^{+} $4475.9 + x^d$ 7 22^{-} $6417.5 + x^{r} 7$ 8904.2+x^g 5 35^{+} 4493.6+x^o 4 6430.6+x^k 8 8976.2+x[@] 9 2737.1+x^e 5 17^{-} 24^{+} (29^{+}) 35-4495.3+x[@] 6 6467.9+x[#] 6 2747.94+x^{*i*} 23 19^{+} 25^{-} 30-8996.3+x^{*i*} 8 35^{+} 4510.5+x^b 7 $24^{(-)}$ $6595.5 + x^{f} 4$ 2782.82+xⁿ 24 19^{+} 30^{+} 9070.8+x^p 13 35^{+} $2801.8 + x^{\#} 5$ $4520.9 + x^{a} 6$ 25^{-} $6681.1 + x^{h} 6$ 9097.2+xⁿ 10 20^{-} 30^{+} 35^{+} 2810.2+x^p 3 $6767.3 + x^{c}$ 10 19^{+} 4525.9+x^c 7 9258.5+x^r 11 (24^{-}) (30^{-}) 2821.7+x[&] 6 9370.9+x[#] 11 20^{-} 4559.7+x⁸ 3 25^{+} 6814.0+x^J 10 (30^{+}) 36-6814.9+x[&] 7 2924.6+x^f 3 4564.0+x^q 7 20^{+} 30^{-} $9459.4 + x^{f} 5$ 36^{+} 3068.94+x^h 24 20^{+} 4578.9+x^t 5 9513.1+x^c 13 6863.7+x^{\$} 9 (36^{-}) 9587.7+x^h 11 $3069.6 + x^d 6$ 18^{-} 4673.9+x^{*l*} 3 25^{+} 6906.6+x^b 11 $30^{(-)}$ 36^{+} 4777.5+xⁿ 4 6920.0+x^m 10 9810.9+x[&] 11 $3119.5 + x^{a} 5$ 25^{+} 30^{+} 21^{-} 36- 20^{+} 3122.9+x^o 4 4794.2+x^k 4 6921.1+x^l 10 (30^{+}) (25^{+}) 9864.8+x^o 12 36^{+} 3142.4+x[@] 5 4835.1+x^p 7 25^{+} 6949.5+x⁰ 7 9906.9+x^g 5 21^{-} 30^{+} 37^{+} 4843.0+x[#] 6 6960.4+x[@] 6 9949.6+x^a 10 31- $3144.2 + x^{t} 4$ 26^{-} 37^{-} 10084.3+x[@] 10 3153.6+x?**j** 5 (20^{+}) $4958.1 + x^{f} 4$ 26^{+} 6982.1+x^{*a*} 6 37-31- $3168.8 + x^{b} 6$ $5040.2 + x^{h} 3$ $20^{(-)}$ $7030.1 + x^{g} 4$ 31^{+} 10164.1+xⁿ 11 26^{+} 37^{+} 5081.5+x[&] 6 10430.5+x[#] 12 3181.1+x^m 4 20^{+} 26^{-} $7089.8 + x^{i} 4$ 31^{+} 38- 21^{+} 5188.8+x^j 7 7158.0+xⁿ 7 31^{+} $10500.9 + x^{f} 7$ 38^{+} 3219.4+x⁸ 3 (26^{+}) 5207.4+x^m 7 31^{+} 3376.86+x¹ 24 21^{+} 26^{+} 7258.5+x^p 11 10549.8+x^C 14 (38^{-}) 3394.99+xⁿ 25 5229.1+x^c 7 10882.6+x[&] 12 21^{+} 7311.3+x^r 8 (26^{-}) 38-5243.1+x[@] 6 7331.9+x^k 10 3416.5+x^e 6 19^{-} 27^{-} (31^{+}) 10920.3+x^o 13 38^{+} 3420.0+x^k 3 5256.9+x° 5 7380.4+x[#] 8 (21^{+}) 26^{+} 32-10971.3+x^g 7 39^{+} 21^{+} 5267.1+x^b 9 $26^{(-)}$ 7499.6+x^f 4 32^{+} 11047.1+x^{*a*} 11 3449.5+x^{*p*} 4 39-5287.5+x^{*a*} 6 7602.1+x^h 8 11235.1+x[@] 11 $3457.4 + x^{\#} 6$ 2.2^{-} 27^{-} 32^{+} 39-3526.0+x[&] 6 5314.1+x**9** 11277.5+xⁿ 12 22^{-} 7622.2+x^c 11 (32^{-}) 39^{+} 3559.8+x^f 3 22^{+} 5318.2+x^g 4 7687.9+x^j 11 11519.7+x[#] 13 27^{+} (32^{+}) 40-3682.83+x^h 25 7756.3+x[&] 9 22^{+} 5389.4+x^t 7 $11584.3 + x^{f} 9$ 32^{-} 40^{+} 27^{+} 3742.9+x^j 4 (22^{+}) 5422.0+x^{*i*} 3 7757.2+x^{\$} 10 11648.5+x^C 15 (40^{-}) 3763.4+x^d 6 7796.1+x^b 12 20^{-} 5542.2+xⁿ 4 27^{+} $32^{(-)}$ 12092.2+x^g 9 41^{+} $5578.2 + x^{k} 6$ $7858.4 + x^{l}$ 11 3779.1+x⁰ 4 22^{+} (32^{+}) 12193.6+x^{*a*} 12 (27^{+}) 41^{-} 7870.6+x^o 9 12446.9+xⁿ 13 3799.0+x^{*a*} 6 23^{-} 5599.5+x^p 8 27^{+} 32^{+} 41^{+} 5620.9+x[#] 6 3803.8+x^m 4 22^{+} 12639.7+x[#] 14 7908.2+x^{*a*} 7 28^{-} 33- 42^{-} 3805.9+x[@] 6 5747.3+x^f 4 7938.5+x[@] 7 23^{-} 28^{+} 33-12712.9+x^f 10 42^{+} 5826.2+x^h 4 3824.4+x^b 7 $22^{(-)}$ 28^{+} 7959.3+x⁸ 4 33^{+} 13260.9+x^g 10 43^{+} 5924.6+x[&] 7 28^{-} 33^{+} 13361.3+x?^{*a*} 13 $3834.2 + x^{t} 4$ 7994.7+x¹ 7 (43^{-}) 13793.1+x[#] 15 5973.0+x^c 9 8091.5+xⁿ 9 3865.0+x^g 3 23^{+} (28^{-}) 33^{+} 44-13889.2+x^f 12 5984.3+x^j 8 8150.4+x^{*p*} 12 44^{+} 3879.3+x^q 4 (28^{+}) 33^{+} 3996.62+x^{*i*} 25 23^{+} 6026.4+x^m 8 28^{+} 8260.7+x^r 10 14458.2+x^g 11 45^{+} 8280.2+x^k 11 14977.2+x[#] 16 $4056.0 + x^{n} 3$ 23^{+} $6027.3 + x^{l} 8$ (28^{+}) (33^{+}) 46^{-} 4072.5+x^{*k*} 3 8351.5+x[#] 10 6052.4+x^{\$} 7 15106.1+x?^f 13 (23^{+}) 34- (46^{+}) 6064.9+x[@] 6 4110.3+x^e 6 29^{-} $8456.7 + x^{f} 5$ 34^{+} 15688.9+x^g 13 47^{+} 21^{-} 6068.3+x^b 10 4118.9+x^{*p*} 4 23^{+} $28^{(-)}$ 8537.5+x^c 13 16196.2+x?[#] 17 (34^{-}) (48^{-}) 4129.4+x[#] 6 28^{+} 8583.6+x^h 10 16955.9+x?⁸ 14 6080.7+x^o 5 34^{+} (49^+) 24^{-} Continued on next page (footnotes at end of table)

¹⁷⁰Ta Levels (continued)

¹⁷⁰Ta Levels (continued)

[†] From least-squares fit to $E\gamma$.

- [‡] Values proposed by 2010Ag06.
- [#] Band(A): $K^{\pi}=7^{-}$ F_pA, $\alpha=0$ band. Spherical orbitals= $\pi h_{11/2} \otimes v_{13/2}$. First band crossing at $\hbar \omega \approx 0.31$ MeV due to BC. At higher frequencies near $\hbar \omega \approx 0.52$ MeV; various scenarios are discussed by 2010AG06. Lower portion of band also reported by 1985Ba48, but several transitions shown As intraband transitions there have been placed differently by 2010Ag06.
- ^(a) Band(a): $K^{\pi}=7^{-} E_pA$, $\alpha=1$ band. Spherical orbitals= $\pi h_{11/2} \otimes v i_{13/2}$. Band crossing at $\hbar \omega \approx 0.31$ MeV due to BC. Lower portion of band also reported by 1985Ba48 (but see comment on signature partner band).
- & Band(B): $K^{\pi}=2^{-}$ G_pB, $\alpha=0$ band. Spherical orbitals= $\pi h_{9/2} \otimes v_{13/2}$. Band crossing at $\hbar\omega\approx 0.40$ MeV due to AD. Lower portion of band also reported by 1985Ba48.
- ^{*a*} Band(b): $K^{\pi}=2^{-}$ G_pA, $\alpha=1$ band. Spherical orbitals= $\pi h_{9/2} \otimes v_{1/3/2}$. Band crossing at $\hbar \omega \approx 0.34$ MeV due to BC.
- ^b Band(C): $K^{\pi}=3^{-}$ H_pA, $\alpha=0$ band. Spherical orbitals= $\pi h_{9/2} \otimes v_{1/3/2}$. Delayed band crossing at $\hbar\omega\approx 0.34$ MeV due to BC.
- ^c Band(D): Band based on (24⁻). No configuration proposed.
- ^{*d*} Band(E): K^π=13- 4-quasiparticle band, α =0. Configuration= $\pi([5/2[402], 7/2[404], 9/2[514]) \otimes v5/2[642]$. Spherical orbitals= $\pi(h_{11/2}, d_{5/2}, g_{7/2}) \otimes v_{13/2}$. Band crossing at $\hbar \omega \approx 0.3$ MeV due to BC.
- ^{*e*} Band(e): K^π=13- 4-quasiparticle band, α=1. Configuration= $\pi([5/2[402],7/2[404],9/2[514]) \otimes v5/2[642])$. Spherical orbitals= $\pi(h_{11/2}, d_{5/2}, g_{7/2}) \otimes v_{13/2}$. Band crossing at $\hbar \omega \approx 0.3$ MeV due to BC.
- ^{*f*} Band(F): $K^{\pi}=5^+$ B_pA, $\alpha=0$ band. Spherical orbitals= $\pi d_{5/2} \otimes v i_{13/2}$. Band crossing at $\hbar\omega\approx 0.30$ MeV due to BC. Second band crossing at $\hbar\omega\approx 0.50$ MeV due to E_pF_p.
- ^g Band(f): $K^{\pi}=5^+ A_pA$, $\alpha=1$ band. Spherical orbitals= $\pi d_{5/2} \otimes v i_{13/2}$. Band crossing at $\hbar\omega\approx 0.30$ MeV due to BC. Second band crossing at $\hbar\omega\approx 0.46$ MeV due possibly to E_pF_p .
- ^{*h*} Band(G): D_pA, α =0, K^{π}=6⁺ band. Spherical orbitals= $\pi g_{7/2} \otimes i_{13/2}$. Strongly coupled. Band crossing at $\hbar \omega \approx 0.31$ MeV due to BC. Second band crossing at $\hbar \omega \approx 0.5$ MeV due possibly to E_pF_p.
- ^{*i*} Band(g): $K^{\pi}=6^+$ C_pA, $\alpha=1$ band. Spherical orbitals= $\pi g_{7/2} \otimes v i_{13/2}$. Band crossing at $\hbar\omega\approx 0.31$ MeV due to BC. Second band crossing at $\hbar\omega\approx 0.42$ MeV; E_pF_p is not likely.
- ^{*j*} Band(H): Tentative $F_pEAB, \alpha=0$ band.
- ^{*k*} Band(h): Tentative $E_pEAB, \alpha=1$ band.
- ¹ Band(I): Band based on (28⁺). Side band of band #8 in fig. 2 from 2010Ag06.
- ^{*m*} Band(J): $K^{\pi}=3^+$ G_pF, $\alpha=0$ band. Spherical orbitals= $\pi h_{9/2} \otimes \nu h_{9/2}$. Band crossing at $\hbar \omega \approx 0.3$ MeV due to AB.
- ^{*n*} Band(j): $K^{\pi}=3^+$ G_pE, $\alpha=1$ band. Spherical orbitals= $\pi h_{9/2} \otimes v h_{9/2}$. Band crossing at $\hbar \omega \approx 0.3$ MeV due to AB. Second band crossing at $\hbar \omega \approx 0.4$ MeV.
- ^{*o*} Band(K): $K^{\pi}=2^+ J_pA$, $\alpha=0$ band. Spherical orbitals= $\pi d_{3/2} \otimes v i_{13/2}$. Band crossing at $\hbar \omega \approx 0.3$ MeV due to BC. Second band crossing at $\hbar \omega \approx 0.4$ MeV.
- ^{*p*} Band(k): $K^{\pi}=2^{+} I_{p}A$, $\alpha=1$ band. Spherical orbitals= $\pi d_{3/2} \otimes v i_{13/2}$. Band crossing at $\hbar\omega\approx 0.3$ MeV due to BC. Second band crossing at $\hbar\omega\approx 0.4$ MeV.
- ^q Band(L): Side band 1. Feeds $K^{\pi}=3^+$, G_pF , $\alpha=0$ band.
- ^{*r*} Band(M): Side band 2. Feeds $K^{\pi}=3^+$, G_pE , $\alpha=1$ band.
- ^s Band(N): Side band 3. Feeds $K^{\pi}=2^+ J_pA$, $\alpha=0$ band.
- ^t Band(O): Side band 4. Feeds $K^{\pi}=2^{+}$ I_pA, $\alpha=1$ band.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments			
50.8 2		182.6+x	8-	131.8+x	7-					
71.5 2	2.40 24	394.0+x	10^{-}	322.4+x	9-					
83.0 2	5.9 <i>3</i>	395.02+x	9+	312.04+x	8+					
85.7 2	2.4 3	131.8+x	7-	46.1+x	6-					
88.9 2	5.9 <i>3</i>	145.6+x	8-	56.7+x	7^{-}					
89.3 2	5.9 <i>3</i>	89.23+x	8+	0.0+x	7+	D	R _{ang} =0.69 10.			
97.4 2	5.9 <i>3</i>	365.7+x	10^{-}	268.3+x	9-	D	$R_{ang} = 0.52 \ 6.$			
103.0 2	4.7 5	698.7+x	12-	595.6+x	11-					
	Continued on next page (footnotes at end of table)									

$\gamma(^{170}\text{Ta})$

$\gamma(^{170}\text{Ta})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
110.4 2	2.9.3	291.31+x	9+	$180.84 \pm x 8^{\pm}$		
121.5.2	3.4.3	210.83 + x	9+	$89.23 + x 8^+$	D	$R_{ang} = 0.61.3$
122.7 2	5.9.3	268.3 + x	9-	$145.6 \pm x 8^{-1}$	2	Rang over ev
123.0 2	1.20 /2	462.59 + x		339.66+x		
130.9.2	3.8.4	496.6 + x	11-	$365.7 + x = 10^{-10}$	D	Mult.: R _{ang} =0.68.3. $AI=1$ based on $\gamma(\theta)$ (1985Ba48).
133.4.5	0.60 6	473.17 + x	9+	339.66+x	2	
136.5 2	5.9 3	182.6+x	8-	46.1+x 6 ⁻		R _{ang} =0.63 11; very low for the Q transition implied by the level scheme.
139.1 2	1.80 18	723.74+x	11^{+}	584.62+x 10 ⁺		
139.8 2	5.9 <i>3</i>	322.4+x	9-	182.6+x 8 ⁻	D	$R_{ang} = 0.54 \ 2.$
145.4 2	11.8 6	436.67+x	10^{+}	291.31+x 9 ⁺		R _{ang} =0.94 9.
147.1 2	4.7 5	1102.0+x	14^{-}	954.9+x 13 ⁻		c
152.0 2	13.9 7	362.59+x	10^{+}	210.83+x 9 ⁺	D+Q	R _{ang} =0.70 2.
156.3 2	1.50 15	855.0+x	13-	698.7+x 12 ⁻		6
164.1 2	5.9 <i>3</i>	626.59+x		462.59+x		
167.0 2	18.8 9	663.5+x	12^{-}	496.6+x 11 ⁻	D	$R_{ang} = 0.65 \ 2.$
170.8 2	5.9 <i>3</i>	170.86+x	7+	0.0+x 7 ⁺		$R_{ang} = 0.80 \ 10.$
172.6 2	2.9 3	810.06+x	11^{+}	637.55+x		6
173.8 2	14.7 7	536.37+x	11^{+}	362.59+x 10 ⁺	D+Q	$R_{ang} = 0.69 \ 2.$
174.9 2	1.20 12	637.55+x		462.59+x		
176.0 2	5.9 <i>3</i>	1904.6+x	14^{-}	1728.6+x 13 ⁻		
177.9 2	8.8 4	614.51+x	11^{+}	436.67+x 10 ⁺	D+O	$R_{ang} = 0.79 \ 6.$
178.6 2	5.9 <i>3</i>	211.2+x	7+	32.6+x 5 ⁺		ung
179.3 2	5.9 <i>3</i>	816.99+x		637.55+x		
182.8 2	1.8 2	1145.43+x	13^{+}	962.56+x 12 ⁺		
183.8 2	2.9 3	810.06+x	11^{+}	$626.21 + x = 10^{+}$		
190.5 2	5.9 3	816.99+x		626.59+x		
190.6 2	11.8 6	322.4+x	9-	131.8+x 7 ⁻		$R_{ang} = 0.88 5.$
191.4 2	40.6 20	855.0+x	13-	663.5+x 12 ⁻	D	$R_{ang} = 0.67 2.$
201.7 2	29.4 15	595.6+x	11-	394.0+x 10 ⁻	D	$R_{ang} = 0.50 \ 2.$
202.1 2	1.8 2	291.31+x	9+	89.23+x 8 ⁺		ung
203.1 2	17.6 9	739.48+x	12^{+}	536.37+x 11 ⁺	D+O	$R_{ang} = 0.70 \ 2.$
204.3 2	11.8 6	818.76+x	12^{+}	614.51+x 11 ⁺		$R_{ang} = 1.04$ 7; $\Delta J = 1$ implied by level scheme.
210.9 2	8.8 5	210.83+x	9+	0.0+x 7 ⁺		
211.3 2	5.9 <i>3</i>	394.0+x	10^{-}	182.6+x 8 ⁻	0	$R_{ang} = 1.02 \ 8.$
211.6 2	5.9 <i>3</i>	268.3+x	9-	56.7+x 7 ⁻		$R_{ang}^{m_s}$ =0.67 2; suggests D transition, but ΔJ =2 from level scheme.
215.4 2	23.5 12	954.88+x	13+	739.48+x 12 ⁺	D	$R_{ang} = 0.64 \ 3.$
217.4 2	8.8 4	328.2+x	8+	110.8+x 6 ⁺		
218.6 2	1.20 12	1320.6+x	15^{-}	1102.0+x 14 ⁻		
222.9 2	2.4 3	312.04+x	8+	89.23+x 8 ⁺	D(+Q)	$R_{ang} = 0.75$ 7.
222.9 2	3.5 4	962.56+x	12^{+}	739.48+x 12 ⁺		6
223.6 2	32.4 16	1078.5+x	14^{-}	855.0+x 13 ⁻	D(+Q)	$R_{ang} = 0.71 \ 2.$
224.1 2	17.6 9	395.02+x	9+	170.86+x 7 ⁺		$R_{ang} = 0.78 \ 3$; low for Q transition implied by placement.
225.7 2	5.9 <i>3</i>	436.67+x	10^{+}	210.83+x 9 ⁺	D+Q	$R_{ang} = 0.64$ 7.
228.1 2	11.8 6	434.8+x	$8^{(-)}$	$206.7 + x = 6^{(-)}$		
228.4 2	5.9 <i>3</i>	496.6+x	11^{-}	268.3+x 9 ⁻		
228.7 2	7.6 4	1047.50+x	13+	818.76+x 12 ⁺		
234.8 2	5.9 3	323.95+x		89.23+x 8 ⁺		
239.9 2	14.7 7	2144.5+x	15^{-}	1904.6+x 14 ⁻		
240.1 5	0.30 3	4520.9+x	25^{-}	4280.8+x 24 ⁻		
242.3 2	35.3 18	1320.6+x	15^{-}	1078.5+x 14 ⁻	D	R _{ang} =0.68 3.
246.8 2	20.6 10	1201.66+x	14^{+}	954.88+x 13 ⁺	D	$R_{ang} = 0.66 \ 2.$
247.0 2	3.1 3	1102.0+x	14^{-}	855.0+x 13 ⁻		2
248.7 2	18.8 9	1450.41+x	15^{+}	1201.66+x 14 ⁺		R _{ang} =0.82 16.
249.6 2	8.8 4	1297.07+x	14^{+}	$1047.50 + x 13^+$		

$\gamma(^{170}\text{Ta})$ (continued)

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
250.5.2	5.9.3	339.66+x		89.23+x	8+		
252.0 2	4.7 5	614.51+x	11^{+}	362.59 + x	10^{+}		
255.9 2	35.3 18	436.67+x	10^{+}	180.84+x	8+		$R_{ang}=0.72$ 6; low for Q transition implied by placement.
256.2 2	24.7 12	954.9+x	13-	698.7+x	12^{-}	D	$R_{ang} = 0.45 \ 2.$
260.7 2	5.9 <i>3</i>	584.62+x	10^{+}	323.95+x		D+Q	$R_{ang} = 0.72 \ 4.$
262.0 2	5.9 <i>3</i>	473.17+x	9+	211.2+x	7+		$R_{ang} = 0.76$ 6; low for Q transition implied by placement.
263.6 2	5.9 <i>3</i>	626.21+x	10^{+}	362.59+x	10^{+}		
265.9 2	5.9 <i>3</i>	1562.97+x	15^{+}	1297.07+x	14^{+}		
266.9 2	26.5 13	1587.6+x	16-	1320.6+x	15^{-}	D	R _{ang} =0.68 3.
272.6 2	23.5 12	584.62+x	10^{+}	312.04+x	8+	(Q)	$R_{ang} = 0.84 \ 2.$
273.0 2	1.40 14	3799.0+x	23-	3526.0+x	22^{-}		
273.2 2	24.1 12	595.6+x	11-	322.4+x	9-		R _{ang} =0.84 2; low for Q transition implied by placement.
273.3 2	11.8 6	362.59+x	10^{+}	89.23+x	8+	Q	$R_{ang} = 0.90 \ 4.$
273.4 2	17.6 9	2005.65+x	17^{+}	1732.17+x	16^{+}	D+Q	$R_{ang} = 0.76 \ 3.$
273.7 2	1.20 12	810.06+x	11^{+}	536.37+x	11^{+}		c
274.7 2	1.40 14	1872.8+x	17^{-}	1598.1+x	16-		
277.5 2	2.9 3	1598.1+x	16-	1320.6+x	15^{-}		
281.6 2	10.6 5	2426.1+x	16-	2144.5+x	15^{-}		
281.7 2	17.6 9	1732.17+x	16+	1450.41+x	15^{+}	D+Q	R _{ang} =0.74 5.
282.3 2	5.3 <i>3</i>	818.76+x	12^{+}	536.37+x	11^{+}	D	$R_{ang} = 0.67 \ 6.$
283.8 2	2.40 24	1846.62+x	16+	1562.97+x	15^{+}		c
284.4 2	11.8 6	719.2+x	$10^{(-)}$	434.8+x	$8^{(-)}$	Q	R _{ang} =0.93 4.
285.1 2	17.6 9	1872.8+x	17^{-}	1587.6+x	16-	Ď	$R_{ang} = 0.66 5.$
288.2 2	11.8 6	2600.85+x	19+	2312.56+x	18^{+}	D+Q	$R_{ang} = 0.72 \ 4.$
290.7 2	2.40 24	2137.30+x	17^{+}	1846.62+x	16^{+}		
293.3 2	17.6 9	1395.3+x	15^{-}	1102.0+x	14^{-}		
294.8 2	8.2 4	3219.4+x	21^{+}	2924.6+x	20^{+}	D+Q	R _{ang} =0.72 3.
297.6 2	14.7 7	2170.4+x	18-	1872.8+x	17^{-}	D	Mult.: $\Delta J=1$ based on $\gamma(\theta)$ (1985Ba48).
297.7 2	5.9 <i>3</i>	663.5+x	12^{-}	365.7+x	10^{-}	Q	Mult.: $\Delta J=2$ based on $\gamma(\theta)$ (1985Ba48).
297.8 2	2.40 24	3119.5+x	21-	2821.7+x	20^{-}		
297.9 2	2.9 3	637.55+x		339.66+x			
298.0 2	14.1 7	626.21+x	10^{+}	328.2+x	8+		R _{ang} =0.80 3; low for Q transition implied by placement.
303.0 2	1.80 18	434.8+x	$8^{(-)}$	131.8+x	7-		
303.6 2	1.10 11	2747.94+x	19+	2444.34+x	18^{+}		
304.7 2	100.0 10	698.7+x	12^{-}	394.0+x	10^{-}	Q	Mult.: $R_{ang}=0.86$ 2. $\Delta J=2$ based on $\gamma(\theta)$ (1985Ba48).
305.0 2	4.1 4	3865.0+x	23+	3559.8+x	22^{+}	D	$R_{ang} = 0.60^{\circ} 5.$
305.8 2	8.8 4	395.02+x	9+	89.23+x	8+	D+Q	$R_{ang} = 0.76 \ 6.$
306.0 2	2.10 21	3682.83+x	22^{+}	3376.86+x	21^{+}		
306.8 2	11.5 6	2312.56+x	18^{+}	2005.65+x	17^{+}	D	$R_{ang} = 0.66 \ 3.$
307.0 2	5.9 <i>3</i>	2801.8+x	20^{-}	2494.8+x	19-		
307.2 5	0.3 1	2444.34+x	18^{+}	2137.30+x	17^{+}		
307.3 2	5.9 <i>3</i>	2482.4+x	19-	2175.1+x	18^{-}		
307.9 2	1.20 12	3376.86+x	21^{+}	3068.94+x	20^{+}		
308.2 2	1.50 15	1047.50+x	13+	739.48+x	12^{+}		
311.0 2	8.8 4	2737.1+x	17^{-}	2426.1+x	16-		
311.7 2	13.5 7	1909.8+x	17^{-}	1598.1+x	16-		
312.0 2	1.8 2	312.04+x	8+	0.0+x	7+	D	R _{ang} =0.58 5.
312.1 2	5.9 <i>3</i>	2482.4+x	19-	2170.4+x	18-		
313.9 2	1.20 12	3996.62+x	23^{+}	3682.83+x	22^{+}		
315.0 2	6.9 <i>3</i>	3457.4+x	22^{-}	3142.4+x	21-	D	$R_{ang} = 0.60 \ 4.$
316.9 5	0.2 1	1395.3+x	15-	1078.5+x	14-		
317.8 5	0.2 1	3119.5+x	21^{-}	2801.8+x	20^{-}		
319.3 2	5.9 <i>3</i>	2801.8+x	20^{-}	2482.4+x	19-	D	$R_{ang} = 0.58 \ 3.$
321.0 2	1.20 12	3068.94+x	20^{+}	2747.94+x	19+		
322.3 2	3.1 3	1909.8+x	17^{-}	1587.6+x	16-		

$\gamma(^{170}\text{Ta})$ (continued)

E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.#	Comments
323.1 2	29.4 15	614.51+x	11+	291.31+x	9 ⁺	Q	R _{ang} =1.03 6.
323.6.2	4./ 5	2924.6+x 4129.4+x	20^{+} 24^{-}	2600.85 + x 3805.9 + x	19 ⁺ 23 ⁻	$D \pm O$	R = -0.73.6
323.9 2	5.9 3	323.95 + x	27	0.0+x	23 7 ⁺	DIQ	Rang=0.75 0.
324.2 2	5.9 3	2494.8+x	19-	2170.4+x	18-		E_{γ} : possibly the ΔJ=1 324.0γ or 323γ reported by 1985Ba48.
325.4 2	14.7 7	536.37+x	11^{+}	210.83+x	9+		
328.0 2	1.20 12	4324.6+x	24+	3996.62+x	23+		
328.7 2	20.6 10	723.74+x	11+	395.02+x	9 ⁺		$R_{ang}=0.86$ 3; low for Q transition implied by placement.
328.7 2	3.5 4	4559.7+x	25+	4231.0+x	24+		
332.5 2	7.1 4	3069.6+x	18	2/3/.1+x	17		
337.02	8.84	810.06+x	11'	4/3.1/+x	9' 21+	D	$R_{ang}=0.81$ 4; low for Q transition implied by placement.
340.4 2	0.55	3339.8+X	22	$3219.4 \pm x$	21	D	$R_{ang} = 0.01 \ 3.$
340.5 2	7.94	3142.4+X 1207.07+x	21 14+	2001.0+X	20 13 ⁺	D	$R_{ang} = 0.04 \ 2.$
342.2 2	503	$1297.07 \pm x$ 816.00±x	14	$473 17 \pm x$	0+		
346.9.2	354	34165 + x	19-	3069.6+x	18-		
346.9.2	2 40 24	3763.4 + x	20^{-}	3416.5 + x	10		
346.9.2	1 80 18	4110.3 + x	21-	3763.4+x	20-		
347.3.2	11.8 6	810.06+x	11+	462.59 + x	20		$R_{anc} = 0.83.4$
347.7 2	3.0.3	4843.0+x	26-	4495.3+x	25^{-}		Trang order in
348.5 2	5.9 3	3805.9+x	23-	3457.4+x	22-	D	$R_{ang} = 0.63 \ 3.$
349.2 2	8.8 4	1068.5+x	$12^{(-)}$	719.2+x	$10^{(-)}$	(0)	$R_{ang} = 0.88 \ 6.$
349.3 2	1.20 12	4673.9+x	25^{+}	4324.6+x	24^{+}		ang
354.6 2	5.9 <i>3</i>	816.99+x		462.59+x			
358.3 2	20.6 10	855.0+x	13-	496.6+x	11-	Q	$R_{ang} = 0.96 \ 6.$
359.2 2	32.9 16	954.9+x	13-	595.6+x	11-	Q	$R_{ang} = 0.92 \ 3.$
360.0 2	2.40 24	5318.2+x	27+	4958.1+x	26+		5
361.2 2	2.9 <i>3</i>	723.74+x	11^{+}	362.59+x	10^{+}		
365.6 2	1.80 18	4475.9+x	22-	4110.3+x	21-		
366.1 2	5.0 5	4231.0+x	24^{+}	3865.0+x	23^{+}	D	$R_{ang} = 0.68 \ 4.$
366.1 2	5.9 3	4495.3+x	25-	4129.4+x	24-	D	$R_{ang} = 0.59 \ 4.$
366.2 2	1.20 12	5040.2+x	26+	4673.9+x	25+		
376.92	17.6 9	739.48+x	121	362.59+x	10'	Q	$R_{ang} = 0.97 3.$
3/1./2	1.80 18	5620.9 + x	28 12+	5243.1+X	27 10 [±]	0	D 0.06.2
3/8.0 2	20.6 10	962.56+X	12.	584.62+X	10^{-10}	Q	$R_{ang} = 0.96 3.$
382.0.2	1.20 12	3422.0+x 818 76 L v	12+	$3040.2 \pm x$	20 10 ⁺		P = -0.87.3
384 5 2	12 9 6	$1010.67 \pm x$	12	$430.07 \pm x$	10^{+}		$R_{ang} = 0.87.5$
395.4.5	0.90.9	6142.9 + x	29^{+}	5747 3 + x	28 ⁺		Rang=0.09 5.
396.8.2	414	$719.2 \pm x$	$10^{(-)}$	377.3 + x	<u>0</u> -	D	R = -0.51 A
398.4.2	293	4958 1 + x	26+	45597 + x	25+	D	Rang=0.51 4.
400.0 2	2.10 27	5243.1+x	27-	4843.0+x	$\frac{26}{26}$		
403.3 2	79 4	1102.0+x	14^{-}	698.7+x	12^{-}	0	$R_{ang} = 0.94 4$.
403.7 2	5.9 3	614.51+x	11^{+}	210.83+x	9+	ò	$R_{ang} = 1.04 \ I0.$
404.3 5	0.60 6	5826.2+x	28^{+}	5422.0+x	27+		ung
406.0 2	1.8 2	1145.43+x	13+	739.48+x	12^{+}		
406.4 2	5.9 <i>3</i>	1223.36+x	13+	816.99+x			
413.3 2	21.2 11	1223.36+x	13+	810.06+x	11^{+}	Q	R _{ang} =0.93 4.
415.0 2	17.6 9	1078.5+x	14-	663.5+x	12-	Q	$R_{ang} = 0.98 \ 4.$
415.9 5	0.60 6	2144.5+x	15-	1728.6+x	13-		
418.5 2	38.2 19	954.88+x	13+	536.37+x	11+	Q	$R_{ang} = 1.00 \ 4.$
421.7 2	17.6 9	1145.43+x	13+	723.74+x	11+	Q	$R_{ang} = 0.98 \ 3.$
422.6 <i>2</i> 428.9 <i>2</i>	11.8 <i>6</i> 1.80 <i>18</i>	1491.0+x 5747.3+x	14 ⁽⁻⁾ 28 ⁺	1068.5+x 5318.2+x	12 ⁽⁻⁾ 27 ⁺	Q	R _{ang} =0.98 4.

$\gamma(^{170}\text{Ta})$ (continued) I_{γ}^{\ddagger} E_{γ}^{\dagger} Mult.# E_i (level) J_i^{π} J_f^{π} Comments E_f 26.5 13 13^{+} 614.51+x 11+ Rang=0.95 4. 433.0 2 1047.50 + xQ 31+ 434.6 2 1.0 1 7030.1+x 6595.5+x 30^{+} 954.9+x Rang=0.93 9. 440.4 2 32.4 16 1395.3+x 15^{-} 13-Q 442.1 5 0.60 6 13-1286.5+x 1728.6+x 444.0 2 1.80 18 6064.9+x 29 5620.9+x 28- 14^{+} Rang=0.95 2. 451.3 2 1461.9+x 1010.67+x 12+ Q 12.4 6 452.8 5 0.90 9 6595.5+x 30^{+} 6142.9+x 29^{+} 462.1 2 38.2 19 1201.66 + x 14^{+} 739.48+x 12+ 0 Rang=0.97 4. 465.6 2 29.4 15 1320.6+x 15^{-} 855.0+x 13-Rang=0.92 5. Q 14^{+} 962.56+x 12+ 467.7 2 17.6 9 R_{ang}=0.96 4. 1430.30+x Q 0.40 4 7499.6+x 32^{+} 31^{+} 469.8 5 7030.1+x 15^{+} 472.7 2 17.69 1696.04 + x1223.36+x 13+ Q Rang=0.92 3. $12^{(-)}$ 472.9 2 3.5 4 1068.5 + x595.6+x Rang=0.50 4. 11-D $R_{ang} = 0.92 \ 4.$ 478.2 2 29.4 15 1297.07 + x 14^{+} 818.76+x 12+ Q Rang=0.81 7. 494.8 2 5.93 1956.8+x 16^{+} 1461.9+x 14⁺ 15^{+} 495.5 2 1450.41+x 954.88+x 13⁺ Q $R_{ang} = 0.96 2.$ 35.3 18 58.8 29 1598.1+x 1102.0+x 14⁻ R_{ang}=1.00 5. 496.1 2 16 Q 496.4 2 8.8 4 1987.3+x $16^{(-)}$ 1491.0+x $14^{(-)}$ Rang=1.08 5. Q Rang=0.99 3. 499.62 14.7 7 1645.03+x 15^{+} 1145.43+x 13⁺ Q 17^{+} 507.0 2 1.40 14 2203.01 + x1696.04+x 15⁺ 509.1 2 26.5 13 1587.6+x 16 1078.5+x 14-Q $R_{ang} = 0.88 \ 3. \ \Delta J = 2 \ from \ \gamma(\theta) \ (1985Ba48).$ 17-15-514.5 2 29.4 15 1395.3+x 1909.8+x R_{ang}=0.84 2. 515.6 2 23.5 12 1562.97+x 15^{+} 1047.50+x 13⁺ Q Rang=1.11 4. ang=1.08 6. 14^{+} 519.5 2 11.8 6 1981.4+x 16^{+} 1461.9+x Q 521.5 5 0.60 6 2426.1+x 16 1904.6+x 14^{-} 17^{+} 1696.04+x 15+ 524.0 2 13.5 7 2220.04+x Q R_{ang}=1.12 4. R_{ang}=0.98 3. 526.5214.7 7 1956.8+x 16^{+} 1430.30+x 14+ Q 529.3 5 3682.83+x 22^{+} 3153.6+x? (20^{+}) 0.60 6 1732.17+x 16^{+} 1201.66+x 14+ 530.5 2 35.3 18 Q Rang=1.04 3. 535.62 1.50 15 2517.0+x 18^{+} 1981.4+x 16^{+} $14^{(-)}$ Rang=0.61 7. 536.02 2.40 24 1491.0+x 954.9+x 13^{-} D+Q 16^{+} 1297.07+x 14+ 21.2 11 549.5 2 1846.62 + xQ Rang=0.96 4. 16^{+} 6.5 3 1981.4+x 1430.30+x 14+ R_{ang}=1.06 5. 551.0 2 Q R_{ang}=1.12 7. 552.2 2 26.5 13 1872.8+x 17^{-} 1320.6+x 15⁻ Q R_{ang}=0.93 3. 555.2 2 32.4 16 2005.65 + x 17^{+} 1450.41+x 15⁺ Q 558.0 2 11.8 6 2203.01+x 17^{+} 1645.03+x 15⁺ Q Rang=1.00 3. 560.3 2 11.8 6 2517.0+x 18^{+} 1956.8+x 16⁺ Q Rang=1.14 5. 19^{+} 2220.04+x 17+ Q Rang=0.99 4. 562.8 2 9.4 5 2782.82+x $18^{(-)}$ 1987.3+x $16^{(-)}$ Rang=0.91 5. 563.7 2 7.1 4 2551.0+x Q R_{ang}=1.04 3. 572.6 2 15.3 8 2482.4+x 19^{-} 1909.8+x 17^{-} Q R_{ang}=1.08 5. 2137.30+x 17^{+} 1562.97+x 15⁺ 574.3 2 20.6 10 Q 17^{+} 575.0 2 1.10 11 2220.04+x 1645.03+x 15+ 18-1598.1+x Q 577.02 35.3 18 2175.1+x 16 Rang=0.97 5. R_{ang}=1.00 5. 19^{+} 2203.01+x 17+ 579.8 2 3.8 4 2782.82 + xQ R_{ang}=0.94 3. 18^{+} 580.4 2 29.4 15 2312.56+x 1732.17+x 16+ Q R_{ang}=0.99 4. 582.8 2 25.9 13 2170.4+x 18^{-} 1587.6+x 16 Q Rang=1.05 3. 18^{+} 16^{+} 585.02 8.8 4 2566.3+x 1981.4+x Q R_{ang}=1.10 3. 19^{-} 1909.8+x 17-Q 585.12 16.5 8 2494.8+x 589.3[@] 2 1.20 12 3742.9+x (22^{+}) 3153.6+x? (20⁺) 19^{+} 590.1 2 2.9 3 2810.2+x 2220.04+x 17+ 592.0 2 1.20 12 1987.3+x $16^{(-)}$ 1395.3+x 15-592.6 5 0.60 6 2737.1+x 17^{-} 2144.5+x 15- 19^{+} Rang=0.91 3. 595.2 2 29.4 15 2005.65+x 17⁺ 2600.85 + xQ R_{ang}=1.05 4. 597.8 2 14.7 7 2444.34+x 18^{+} 1846.62+x 16+ Q 601.6 5 0.60 6 3996.62+x 23^{+} 3394.99+x 21⁺

$\gamma(^{170}\text{Ta})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
605.8.2	8.8.5	3122.9+x	20^{+}	2517.0+x	18+	0	$R_{eng} = 0.98.5$
607.2.2	444	2810.2+x	19+	2203.01 + x	17+	õ	$R_{ang} = 1.07.6$
609.6.2	14.1.7	2482.4 + x	19-	1872.8 + x	17-	×	$R_{ang} = 0.82.4$
007.0 2	1111/	2102.117	17	1072.01%	17		$F_{ang} = 0.02$ F_{ang} F_: nossibly the AI=2 608 5 γ reported by 1985Ba48
610.6.2	1186	2747 04±v	10+	2137 30±v	17+	0	P_{γ} possibly the $\Delta J = 2000.57$ reported by 1905 Da+0.
612.0.2	20.0.10	2747.94+x 2024 6 $\pm x$	20+	2137.50+x 2312.56+x	18+	Ň	$R_{ang} = 1.24 \ 10.$ $R_{ang} = -0.04 \ 3$
612.0.2	20.0 10	2924.0+x 3304.00+x	20^{-20+}	$2512.50 \pm x$	10+	Q O	$R_{ang} = 0.04 \ 5.$
614.0.2	203	3687 83 L V	21^{2}	$2762.62 \pm x$ $3068.04 \pm x$	20+	Q	$R_{ang}=0.99$ J.
614.8.2	2.93	$3181.1 \pm v$	20^{+}	$2566.3 \pm x$	18+	\cap	P = -1.11 A
(17.0.2	5.95	2169.0 ± 10	$20^{(-)}$	$2500.3 \pm x$	$10 \\ 10(-)$	Q	$R_{ang} = 1.114$
01/.82	5.0 5	3108.8+X	20	2551.0+X	10+	Q	$R_{ang} = 0.94$ 3.
618.6 2	22.9 11	3219.4+X	21^{+}	2600.85+X	19	Q	$R_{ang} = 1.13 4.$
019.72	2.40 24	3990.02+X	23	33/0.80+X	21		
622.1 2	11.8 0	2494.8+X	19	18/2.8+X	1/	0	D 1005
622.7 2	2.9 3	3803.8+X	221	3181.1+X	201	Q	$R_{ang} = 1.22$ 5.
624.6 2	3.2.3	3119.5+x	21	2494.8+x	19	0	D 100.5
624.72	/.6 4	3068.94+x	201	2444.34+x	18'	Q	$R_{ang} = 1.00$ 5.
626.6 2	1.0 1	2801.8+x	20	2175.1+x	18		
627.2.2	1.20 12	3144.2+x	a+	2517.0+x	18+		P 100 (
628.9 2	6.5 3	33/6.86+x	21+	2/4/.94+x	19+	Q	$R_{ang} = 1.09$ 6.
631.4 2	21.2 11	2801.8+x	20-	2170.4+x	18-	_	E_{γ} : possibly the $\Delta J=2$ 631.7 γ reported by 1985Ba48.
635.2 2	9.7 5	3559.8+x	22+	2924.6+x	20+	Q	$R_{ang} = 1.14 \ 4.$
637.1 2	14.7 7	3119.5+x	21-	2482.4+x	19-	Q	$R_{ang} = 1.18$ 7.
639.3 2	2.9 3	3449.5+x	21+	2810.2+x	19+	Q	$R_{ang} = 1.17 \ 9.$
641.8 2	1.60 16	4324.6+x	24+	3682.83+x	22^{+}		
643.5 5	0.60 6	3069.6+x	18-	2426.1+x	16-		
645.6 2	13.5 7	3865.0+x	23^{+}	3219.4+x	21^{+}	Q	$R_{ang} = 1.14 \ 4.$
646.6 2	17.6 9	2821.7+x	20^{-}	2175.1+x	18-	Q	$R_{ang} = 1.04 \ 6.$
647.7 2	9.4 5	3142.4+x	21-	2494.8+x	19-		E_{γ} : possibly the $\Delta J=2$ 646.5 γ reported by 1985Ba48
650.2.5	0.50.5	1709 6	12-	1079 5	1.4-		but praced differently within the same band.
652 5 2	0.30 3	1/28.0+x	(22^{\pm})	$10/8.3 \pm x$	(21+)		
032.32	12.000	$4072.3 \pm x$	(25)	3420.0+x	(21)	0	P 1.02.4
055.4 2	12.90	5457.4+X	22	2801.8+X	$20^{(-)}$	Q	$R_{ang} = 1.05 4.$
655.6 2	3.4 3	3824.4+x	22()	3168.8+x	20()	Q	$R_{ang} = 0.976.$
656.2.2	6.5 3	3779.1+x	221	3122.9+x	201	Q	$R_{ang} = 1.08$ /.
660.2.2	2.9 3	3142.4+x	21	2482.4+x	19	0	D 110.10
661.0 2	2.9 3	4056.0+x	23+	3394.99+x	21*	Q	$R_{ang} = 1.19 \ IO.$
663.5 2	6.5 3	3805.9+x	23-	3142.4+x	21-	_	
666.0 2	1.20 12	4469.7+x	24+	3803.8+x	22+	Q	$R_{ang} = 0.93 \ 6.$
669.4 2	2.20 22	4118.9+x	23+	3449.5+x	21+	Q	$R_{ang} = 1.09 \ I4.$
671.3 2	7.5 4	4231.0+x	24+	3559.8+x	22+	Q	$R_{ang} = 0.97 \ 4.$
671.9 2	6.8 <i>3</i>	4129.4+x	24-	3457.4+x	22-	Q	$R_{ang} = 1.11 5.$
672.0 2	1.20 12	3420.0+x	(21^{+})	2747.94+x	19+		
674.0 2	2.9 3	3742.9+x	(22^{+})	3068.94+x	20+		
677.2 2	2.9 3	4673.9+x	25+	3996.62+x	23+		
677.5 2	1.80 18	4072.5+x	(23^{+})	3394.99+x	21+		
679.1 2	1.8 2	4056.0+x	23^{+}	3376.86+x	21^{+}		
679.4 5	0.60 6	3416.5+x	19-	2737.1+x	17-		
679.5 2	11.2 6	3799.0+x	23-	3119.5+x	21-	Q	$R_{ang} = 1.07 \ 6.$
684.7 5	0.60 6	4564.0+x		3879.3+x			
686.1 2	1.60 16	4510.5+x	$24^{(-)}$	3824.4+x	$22^{(-)}$	Q	R _{ang} =1.07 7.
689.4 <i>2</i>	4.1 4	4495.3+x	25-	3805.9+x	23-		
689.6 5	0.50 5	4493.6+x	24+	3803.8+x	22^{+}		
690.0 2	1.20 12	3834.2+x		3144.2+x			
690.5 2	1.20 12	4469.7+x	24+	3779.1+x	22+		
691.8 2	1.90 19	4434.7+x	(24^{+})	3742.9+x	(22^{+})		

$\gamma(^{170}\text{Ta})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
693.8 5	0.60 6	3763.4+x	20-	3069.6+x	18-		
693.8 5	0.60 6	4110.3+x	21-	3416.5+x	19-		
694.6 2	10.6 5	4559.7+x	25+	3865.0+x	23+	Q	$R_{ang} = 1.16 \ 6.$
695.6 5	0.90 9	4072.5+x	(23^{+})	3376.86+x	21^{+}		9
698.2 2	1.20 12	3879.3+x		3181.1+x	20^{+}		
701.5 2	1.80 18	4525.9+x	(24^{-})	3824.4+x	$22^{(-)}$		
703.2 2	1.20 12	5229.1+x	(26 ⁻)	4525.9+x	(24^{-})		
704.3 2	7.6 4	3526.0+x	22-	2821.7+x	20^{-}	Q	$R_{ang} = 1.04 \ 6.$
709.4 [@] 5	0.60 6	3153.6+x?	(20^{+})	2444.34+x	18^{+}		5
712.5 5	0.60 6	4475.9+x	22-	3763.4+x	20^{-}		
713.6 2	5.9 3	4843.0+x	26-	4129.4+x	24-		
714.5 2	3.8 4	4493.6+x	24+	3779.1+x	22^{+}	Q	R _{ang} =1.09 12.
715.7 2	1.20 12	5040.2+x	26^{+}	4324.6+x	24^{+}	-	
716.2 5	0.60 6	4835.1+x	25+	4118.9+x	23+		
721.5 2	2.6 3	4777.5+x	25^{+}	4056.0+x	23+	Q	R _{ang} =1.04 9.
721.7 2	1.50 15	4794.2+x	(25^{+})	4072.5+x	(23^{+})		5
721.9 2	8.2 4	4520.9+x	25^{-}	3799.0+x	23-		
727.1 2	6.1 <i>3</i>	4958.1+x	26^{+}	4231.0+x	24^{+}	Q	R _{ang} =1.02 7.
737.7 5	0.50 5	5207.4+x	26^{+}	4469.7+x	24+		
743.9 5	0.60 6	5973.0+x	(28 ⁻)	5229.1+x	(26 ⁻)		
744.7 2	1.20 12	4578.9+x		3834.2+x			
747.8 2	3.5 4	5243.1+x	27-	4495.3+x	25-		
748.1 2	1.80 18	5422.0+x	27+	4673.9+x	25+		
750.1 5	0.30 3	5314.1+x		4564.0+x			
754.1 5	0.80 8	5188.8+x	(26^{+})	4434.7+x	(24^+)	0	D 110 7
754.8 2	5.3 3	4280.8+x	24	3526.0+x	22	Q	$R_{ang} = 1.10$ %
756.6 5	0.90 9	5267.1+x	26(-)	4510.5+x	24(-)		
758.6 2	7.6 4	5318.2+x	27+	4559.7+x	25*	Q	$R_{ang} = 1.02 \ 8.$
763.3 2	2.50 25	5256.9+x	26	4493.6+x	24	Q	$R_{ang} = 0.89 \ 8.$
764.4.5	0.40 4	5542.2+x	27.	4835.1+X	25 '		
766.6.2	1.00 10	5342.2+X	27-	4/7/.5+X	25		
700.0 2	0.5 5	$3207.3 \pm x$	13-	4320.9+x	23 13 ⁺		
77712	1.80.18	$1726.0\pm x$ 3006 62±x	13 23 ⁺	$334.00 \pm x$	13 21 ⁺		
777 9 2	364	$5620.02 \pm x$	23	$4843.0 \pm x$	26^{-}		
778 2 2	1 00 10	6320.4 + x	20 29+	5542.2 + x	20 27+		
784.0.5	0.50.5	5578 2+x	(27^{+})	4794.2 + x	(25^{+})		
786.0.2	1.10 11	5826.2 + x	28^+	5040.2 + x	26+		
789.2 2	4.4 4	5747.3+x	28 ⁺	4958.1+x	26+	0	$R_{ang} = 0.97 \ 9.$
794.3 5	0.60 6	6767.3+x	(30^{-})	5973.0+x	(28^{-})		ang
795.4 5	0.30 3	5984.3+x	(28^+)	5188.8+x	(26^+)		
795.5 5	0.50 5	6052.4+x		5256.9+x	26+		
800.7 2	3.2 <i>3</i>	5081.5+x	26-	4280.8+x	24-	Q	R _{ang} =0.98 7.
801.2 5	0.40 4	6068.3+x	$28^{(-)}$	5267.1+x	$26^{(-)}$		
806.1 5	0.2 1	6405.6+x	29+	5599.5+x	27+		
810.5 5	0.90 9	5389.4+x		4578.9+x			
811.1 2	1.20 12	6233.1+x	29+	5422.0+x	27+		
811.3 5	0.30 3	6863.7+x		6052.4+x			
818.1 2	3.2 3	6105.5+x	29-	5287.5+x	27-		
819.0 5	0.40 4	6026.4+x	28+	5207.4+x	26+		
821.8 2	3.4 3	6064.9+x	29-	5243.1+x	27-		
823.8 2	1.30 13	6080.7+x	28+	5256.9+x	26+		
824.7 2	5.0 5	6142.9+x	29*	5318.2+x	27		
829.7 5	0.10 5	6814.0+x	(30^{+})	5984.3+x	(28^{+})		
831.63	0.707	/158.0+x	31'	0320.4+x	29 '		

$\gamma(^{170}\text{Ta})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
838.3 5	0.30 3	6906.6+x	$30^{(-)}$	6068.3+x	$28^{(-)}$		
838.4 5	0.2 1	6027.3+x	(28^{+})	5188.8+x	(26^{+})		
843.1 2	2.10 21	5924.6+x	28-	5081.5+x	26-	(O)	$R_{ang} = 0.87$ 7.
847.0 2	1.80 18	6467.9+x	30-	5620.9+x	28-		ung
848.2 2	4.2 4	6595.5+x	30^{+}	5747.3+x	28+		
852.4 5	0.40 4	6430.6+x	(29^{+})	5578.2+x	(27^{+})		
852.9 5	0.1 <i>I</i>	7258.5+x	31+	6405.6+x	29+		
854.9 5	0.60 6	6681.1+x	30^{+}	5826.2+x	28^{+}		
854.9 5	0.50 5	7622.2+x	(32^{-})	6767.3+x	(30-)		
856.7 2	1.20 12	7089.8+x	31+	6233.1+x	29+		
868.8 5	0.60 6	6949.5+x	30^{+}	6080.7+x	28^{+}		
869.5 5	0.30 <i>3</i>	7959.3+x	33+	7089.8+x	31+		
873.6 5	0.40 4	1728.6+x	13-	855.0+x	13-		
873.9 5	< 0.1	7687.9+x	(32^{+})	6814.0+x	(30^{+})		
875.3 5	0.2 1	6417.5+x		5542.2+x	27+		
876.6 2	1.20 12	6982.1+x	31-	6105.5+x	29-		
887.2 2	3.1 3	7030.1+x	31+	6142.9+x	29^{+}		
889.5 5	0.1 1	7796.1+x	$32^{(-)}$	6906.6+x	$30^{(-)}$		
890.3 2	1.80 18	6814.9+x	30-	5924.6+x	28-		
891.9 5	< 0.1	8150.4+x	33+	7258.5+x	31+		
893.5 5	0.1 1	7757.2+x		6863.7+x			
893.6 5	0.30 3	6920.0+x	30+	6026.4+x	28^{+}		
893.8 5	0.1 1	6921.1+x	(30^{+})	6027.3+x	(28^{+})		
893.8 5	0.2 1	7311.3+x		6417.5+x			
895.5 2	1.90 19	6960.4+x	31-	6064.9+x	29-		
901.3 5	0.40 4	7331.9+x	(31^{+})	6430.6+x	(29+)		
904.0 2	2.40 24	7499.6+x	32^{+}	6595.5+x	30^{+}		
904.9 5	0.40 4	7994.7+x	33+	7089.8+x	31+		
912.5 5	0.70 7	7380.4+x	32-	6467.9+x	30-		
915.2 5	0.50 5	8537.5+x	(34 ⁻)	7622.2+x	(32 ⁻)		
920.4 5	< 0.1	9070.8+x	35+	8150.4+x	33+		
920.7 5	≈0.5	1286.5+x		365.7+x	10-		E_{γ} , I_{γ} : from e-mail reply of Aug 10, 2010 from one of the authors (D. Hartley) of 2010Ag06.
921.0 5	0.2 1	7602.1+x	32+	6681.1+x	30+		
921.1 5	0.60 6	7870.6+x	32+	6949.5+x	30+		
926.1 5	0.90 9	7908.2+x	33-	6982.1+x	31-		
929.2 2	2.20 22	7959.3+x	33+	7030.1+x	31+		
933.5 5	0.50 5	8091.5+x	33+	7158.0+x	31+		
935.3 5	< 0.1	8623.2+x	(34 ⁺)	7687.9+x	(32^{+})		
937.3 5	< 0.1	7858.4+x	(32^{+})	6921.1+x	(30^{+})		
941.4 5	0.90 9	7756.3+x	32-	6814.9+x	30-		
944.9 2	1.50 15	8904.2+x	35+	7959.3+x	33+		
947.7 5	0.60 6	7908.2+x	33-	6960.4+x	31-		
948.3 5	0.2 1	8280.2+x	(33^{+})	7331.9+x	(31^{+})		
949.2 5	< 0.1	8807.6+x	(34+)	7858.4+x	(32^{+})		
949.4 5	0.2 1	8260.7+x		7311.3+x			
956.4 5	0.30 3	7938.5+x	33-	6982.1+x	31-		
957.1 2	1.50 15	8456.7+x	34+	7499.6+x	32+		
971.1 5	0.40 4	8351.5+x	34-	7380.4+x	32-		
973.8 5	0.50 5	8844.4+x	34+	7/870.6+x	32+		
975.6 5	0.2 1	9513.1+x	(36 ⁻)	8537.5+x	(34 ⁻)		
978.05	0.60 6	7938.5+x	33-	6960.4+x	31-		
981.5 5	0.2 1	8583.6+x	34+	7602.1+x	32		
989.1 5	0.90 9	1728.6+x	13-	739.48+x	12+		
993.5 <i>5</i>	0.90 9	8901.7+x	35-	7908.2+x	33		

			124 S	$n(^{51}V, 5n\gamma)$	2010Ag06,1985Ba48 (continued)
				<u> </u>	(¹⁷⁰ Ta) (continued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
996.9.5	0.30.3	8753.2+x	34-	7756.3+x	32-
997.8 5	0.1 1	9258.5+x		8260.7+x	
1001.6 5	0.2 1	8996.3+x	35+	7994.7+x	33+
1002.7 2	1.20 12	9459.4+x	36+	8456.7+x	34+
1002.7 2	1.0 <i>I</i>	9906.9+x	37+	8904.2+x	35+
1004.1 5	0.1 1	9587.7+x	36+	8583.6+x	34+
1005.7 5	0.2 1	9097.2 + x	35+	8091.5+x	33+
1019.4 5	0.60 6	9370.9+x	36-	8351.5+x	34-
1020.4 5	0.3 /	9864.8 + x	36+	8844.4+x	34+
1036.7 5	0.1 1	10549.8 + x	(38^{-})	9513.1+x	(36 ⁻)
1037.7.5	0.2 1	8976.2+x	35-	7938.5+x	33-
1041.5.5	0.70 7	10500.9 + x	38+	9459.4 + x	36+
1047.9 5	0.60 6	9949.6+x	37-	8901.7+x	35-
1055.5.5	0.2 1	10920.3 + x	38+	9864.8+x	36+
1057.7 5	0.2 1	9810.9+x	36-	8753.2+x	34-
1059.6 5	0.50 5	10430.5 + x	38-	9370.9+x	36-
1064.4 5	0.50 5	10971.3 + x	39+	9906.9+x	37+
1065.2 5	0.30 3	1728.6+x	13-	663.5+x	12-
1066.9 5	0.1 1	10164.1+x	37+	9097.2+x	35+
1071.7 5	0.1 1	10882.6+x	38-	9810.9+x	36-
1083.4 5	0.40 4	11584.3+x	40^{+}	10500.9+x	38+
1089.2 5	0.2 1	11519.7+x	40-	10430.5+x	38-
1097.5 5	0.3 1	11047.1+x	39-	9949.6+x	37-
1098.7 5	0.1 1	11648.5+x	(40^{-})	10549.8+x	(38 ⁻)
1108.1 5	0.1 1	10084.3+x	37-	8976.2+x	35-
1113.4 5	< 0.1	11277.5+x	39+	10164.1+x	37+
1120.0 5	0.1 1	12639.7+x	42-	11519.7+x	40-
1120.9 5	0.30 3	12092.2+x	41+	10971.3+x	39+
1128.6 5	0.2 1	12712.9+x	42+	11584.3+x	40+
1146.5 5	0.1 1	12193.6+x	41^{-}	11047.1+x	39-
1150.8 5	0.1 1	11235.1+x	39-	10084.3+x	37-
1153.4 5	< 0.1	13793.1+x	44-	12639.7+x	42-
$1167.7^{@}.5$	0.1.7	13361.3+x?	(43^{-})	12193.6+x	41-
1168.7.5	0.2 1	13260.9 + x	43+	12092.2+x	41+
1169.4.5	< 0.1	12446.9 + x	41+	11277.5 + x	39+
1176.3 5	0.1 1	13889.2 + x	44+	12712.9 + x	42+
1184.1.5	< 0.1	14977.2 + x	46-	13793.1 + x	44-
1197.3 5	0.1 1	14458.2+x	45+	13260.9 + x	43+
1216.9 [@] 5	< 0.1	15106.1+x?	(46 ⁺)	13889.2+x	44+
$1219.0^{\textcircled{0}}.5$	< 0.1	16196.2+x?	(48^{-})	14977.2+x	46-
1230.7 5	<0.1	15688.9+x	47+	14458.2+x	45+
1267.0 [@] 5	< 0.1	16955.9+x?	(49 ⁺)	15688.9+x	47+

[†] 2010Ag06 report uncertainties of 0.2 keV for most transitions but 0.5 keV when $I\gamma < 1$.

[‡] 2010Ag06 report uncertainties of <5% for I γ >5, \approx 10% for I γ ≤5. The evaluators assign 5% for γ rays with I γ >5, 10% or larger for $I_{\gamma \leq 5}$. Listed intensities are photon intensities as per e-mail reply of Aug 10, 2010 from one of the authors (F.G. Kondev) of 2010Ag06.

[#] Based on $R_{ang} = W(\theta_f, \Phi)/W(\theta_{90^\circ}, \Phi)$ from 2010Ag06, where $W(\theta_f, \Phi)$ is the intensity observed in the forward detectors $(\theta=122^\circ, 130^\circ, 143^\circ, 148^\circ, \text{and } 163^\circ)$ and $W(\theta_{90^\circ}, \Phi)$ is the intensity observed in the detectors near 90° ($\theta=79^\circ, 81^\circ, 90^\circ, 99^\circ$, and 101°). Expected values are \approx 1.0 for Δ J=2, Q transitions (normalized using known E2 transitions), and \approx 0.5 for Δ J=1, (mainly) D transitions. 1985Ba48 deduced consistent ΔJ for a number of transitions based on their unstated $\gamma(\theta)$ data.

[@] Placement of transition in the level scheme is uncertain.

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇

13 9

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇

		Band(f): $\mathbf{K}^{\pi} = 5^{+} \mathbf{A}_{p} \mathbf{A}$, $\alpha = 1$ band	
		(49^+)	
	Band(F): $K^{\pi}=5^+ B_pA$, $\alpha=0$ band	1267 47 ⁺ 15688.9+x	
	<u>(46⁺)</u> <u>15106.1+x</u>	1231	
	1217	45 ⁺ 14458.2+x	
	44 ⁺ 13889.2+x	1197	
	1176	43 ⁺ 13260.9+x	
	42 ⁺ 12712.9+x	1169	
	1129	41 ⁺ 12092.2+x	
	40+ 11584.3+x	1121	
	1083 38+ 10500 9+x	<u>39+</u> <u>10971.3+x</u>	$\operatorname{Band}(\mathbb{C})$, D. A. $\alpha = 0$
	1042	1064 37 ⁺ 9906.9+x	$K^{\pi}=6^+$ band Band(a): $K^{\pi}=6^+$ C A
	<u>36+</u> 9459.4+x	1002	$\frac{36^+ 9587.7 + x}{\alpha = 1 \text{ band}}$
	1003	<u>35+</u> 8904.2+x	1004 <u>35+</u> 8996.3+x
	<u>34</u> ⁺ 8456.7+x	945	<u>34+</u> 8583.6+x 1002
	957 22 ⁺ 7400 6 i x	<u>33+</u> 7959.3+x	982 <u>33+</u> 7994.7+x 32+ 7602.1+x
		929 31 ⁺ 7030.1+x	905 921 <u>31+</u> 7089.8+x
	<u>30+</u> <u>6595.5+x</u>	887	<u>30+</u> 6681.1+x 857
	848 28+ 5747.3+x	29 ⁺ 6142.9+x	28^+ 5826.2+x 911
Band(E): K^{π} =13- 4-quasiparticle band, Band(e): K^{π} =13-	789	27 ⁺ 5318.2+x	786 27 ⁺ 5422.0+x
$\alpha = 0$ 4-quasiparticle band, $\alpha = 1$	26 ⁺ 4958.1+x	759 25 ⁺ 4559 7+x	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{22}{712} \frac{4475.9+x}{21^{-}} \frac{21^{-}}{4110.3+x}$	24 ⁺ 4231.0+x	695 695	24^+ $4324.6+x$ 23^+ 677 $3996.62+x$
<u>20</u> <u>3763.4+x</u> <u>19</u> <u>3416.5+x</u>	22 ⁺ 671 3559.8+x	23 3865.0+x 646	$22^{+} \qquad \begin{array}{c} 642 \\ 3682.83 + x \\ 21^{+} \\ \end{array} \qquad \begin{array}{c} 620 \\ 3376.86 + x \\ \end{array}$
$18^{-} \qquad 3069.6+x \qquad 679 \\ 17^{-} \qquad 2737 1+x$	20+ 635 2924.6+x	21 ⁺ 3219.4+x 619	$20^{+} \begin{array}{c} 614 \\ 3068.94 + x \\ 19^{+} \end{array} \begin{array}{c} 629 \\ + 2747.94 + x \\ 19^{+} \end{array}$
$\frac{16^{-}}{4} \frac{644}{2426.1 + x} \frac{17}{15^{-}} \frac{2737.1 + x}{21347.1 + x}$	18 ⁺ 2312.56+x	19 ⁺ 2600.85+x 595	$\frac{18^{+}}{17^{+}} \begin{array}{c} 625\\2444.34+x\\17^{+}\\17^{+}\\2127\\30\pm x\end{array}$
$14^{-} \begin{array}{c} 522 \\ 13^{-} \\ 13^{-} \\ 13^{-} \\ 16 \\ 1728.6+x \\ 13^{-} \\ 1728.6+x \\ 13^{-} \\ 1728.6+x \\ 1728.6+x \\ 13^{-} \\ 1728.6+x \\ 1728.6+x \\ 1728.6+x \\ 1728.6+x \\ 1728.6+x \\ 1728.6+x$	<u>16+</u> 580 1732.17+x	17 ⁺ 2005.65+x	$\frac{16^{+}}{15^{+}} \begin{array}{c} 598 \\ 1846.62 + x \\ 15^{+} \\ 574 \\ 1562 \\ 97 \pm x \\ 1562 \\ $
. \	<u>14+</u> 530 1201.66+x	15^+ $1450.41+x$ 13^+ 496 $054.88+x$	$14^{+} \qquad 550 \\ 1297.07 + x \qquad 13^{+} \qquad 516 \\ 1047.50 + x \\ \\ 1047.$
	12+ 462 739.48+x	11 ⁺ 418 536.37+x	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	10 37 362.59+x 8+ 273 89.23+x	9 ⁺ 7 ⁺ 325 210.83+x 7 ⁺ 211 0.0+x	<u>8+ 256 180.84+x</u> 9+ 323 291.31+x

¹⁷⁰₇₃Ta₉₇

¹⁷⁰₇₃Ta₉₇