¹⁷⁴Ir α decay (7.9 s) 1992Sc16

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Parent: ¹⁷⁴Ir: E=0.; J^{π}=(3⁺); T_{1/2}=7.9 s 6; Q(α)=5625 10; % α decay=0.47 27 ¹⁷⁴Ir-T_{1/2}: Weighted average of 9 s 2 (1992Sc16) and 7.8 s 6 (1992Bo21).

¹⁷⁴Ir-%α decay: 0.47% 27 from 1986Ke03. Other: 0.4% (1992Sc16).

1992Sc16: source from ¹⁴¹Pr(³⁶Ar,xn), E=175-204 MeV; measured α excit, E α , I α , E γ I γ , I(K x ray), α -(K x ray) coin, $\alpha\gamma$ coin, $\alpha(t)$; deduced α branching; Si and Ge detectors.

¹⁷⁰Re Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0. 31.3 <i>3</i> 224.7 <i>3</i>	(5^+) (4^+) (3^+)	E(level): 31.3 or 193.5; order of 31.4 γ and 193.5 γ not established.

[†] From least-squares fit to $E\gamma$.

[‡] Adopted values.

α radiations

Eα	E(level)	$I\alpha^{\ddagger}$	HF^{\dagger}	
5275 10	224.7	100	1.5 9	

[†] Using $r_0=1.55$ (based on $r_0=1.553$ 14 from ¹⁷⁴Pt α decay and $r_0=1.54$ 3 from ¹⁷⁴Os α decay (1998Ak04)).

[‡] For absolute intensity per 100 decays, multiply by 0.0047 27.

y(KC)	γ(¹⁷⁰ Re)	
--------	----	--------------------	--

Eγ	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
31.4 4	3.6 16	31.3	(4 ⁺)	0.	(5 ⁺)	(M1)	26.6 11	α (L)=20.5 9; α (M)=4.70 20; α (N+)=1.34 6 α (N)=1.14 5; α (O)=0.191 8; α (P)=0.0139 6
								Mult.: from intensity balance at 31 level, assuming $mult(194\gamma)=E1$, E2 or M1.
193.5 2	52 8	224.7	(3 ⁺)	31.3	(4 ⁺)	(E2)	0.358	α (K)=0.185 3; α (L)=0.1310 20; α (M)=0.0328 5; α (N+)=0.00899 14
								α (N)=0.00783 <i>12</i> ; α (O)=0.001144 <i>17</i> ; α (P)=1.588×10 ⁻⁵ 23
								Mult.: E1 or E2 based on I(K x ray); $\Delta \pi$ =no from level scheme.
224.6 4	35 7	224.7	(3 ⁺)	0.	(5 ⁺)	(E2)	0.218 4	α (K)=0.1244 <i>19</i> ; α (L)=0.0708 <i>12</i> ; α (M)=0.0176 <i>3</i> ; α (N+)=0.00484 <i>8</i>
								α (N)=0.00421 7; α (O)=0.000620 10; α (P)=1.100×10 ⁻⁵ 17
								Mult., α : E1 or E2 based on I(K x ray); $\Delta \pi$ =no from level scheme.

[†] Photon intensity per 100 α decays from 5275 α - γ coin (1992Sc16). On this scale, I(K x ray, Re)=8 3.

[‡] For absolute intensity per 100 decays, multiply by 0.0047 27.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

$\frac{174}{174}$ Ir α decay (7.9 s) 1992Sc16

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Legend

0.

7.9 s 6

/5 - - - 9: