¹⁷⁴Ir α decay (5.01 s) **1992Sc16**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Parent: ¹⁷⁴Ir: E=193 *11*; J^{π} =(7⁺); $T_{1/2}$ =5.01 s 22; Q(α)=5625 *10*; % α decay=2.5 3

 174 Ir-T_{1/2}: Weighted average of 4.9 s 3 and 5.5 s 6 from 1992Sc16, and 5.0 s 4 from 1992Bo21.

¹⁷⁴Ir-% α decay: % α =2.5 3 from 1992Sc16.

1992Sc16: source from ¹⁴¹Pr(³⁶Ar,xn), E=175-204 MeV; measured α excit, E α , I α , E γ , I γ , I(K x ray), α -K x ray coin, $\alpha\gamma$ coin, $\alpha(t)$; deduced α branching; Si and Ge detectors.

1967Si02: sources produced by 169 Tm(16 O,11n), 164 Er(19 F,9n), and 162 Er(19 F,7n); measured E α with a semiconductor detector. 174 Ir activity was assigned on the basis of cross bombardments and excitation functions.

¹⁷⁰Re Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	(5^{+})	
20.13 23	(6 ⁻)	E(level): 20.1 or 190.2; order of 20.2γ and 190.2γ not established.
210.32 19	(7^{+})	$I(\gamma+ce)$ imbalance at the 210 level in $5316\alpha-\gamma$ coin implies that additional transition(s) feed the 210 level.
370.1 6		See comment on 122γ multipolarity.

 † From least-squares fit to Ey.

[‡] Adopted values.

α radiations

Eα	E(level)	$\mathrm{I}\alpha^{\ddagger}$	HF^{\dagger}	Comments				
5316 <i>10</i>	370.1	12 <i>1</i>	2.5 5	Eα,Iα: from 1992Sc16.				
5478 6	210.32	88 2	1.9 3	Eα from 1967Si02. Iα from 1992Sc16.				

[†] Using $r_0=1.55 \ I$ (based on $r_0=1.553 \ I4$ from ¹⁷⁴Pt α decay and $r_0=1.54 \ 3$ from ¹⁷⁴Os α decay (1998Ak04)).

^{\ddagger} For absolute intensity per 100 decays, multiply by 0.025 3.

$\gamma(^{170}\text{Re})$

Intensities from $\alpha \gamma$ **coin (1992Sc16):**

Eγ		5478 <i>α-γ</i> c	oin	5316 α -	γ coin		
K x ray(R	e)	9 1		5.	68		
20.2		2.6 10		-			
122.2		-		1.3	3		
159.8		-		1.2	4		
190.2		17 2		1.5	5		
210.3		63 5		5.9	11		
E _γ I	γ †@	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α &	Comments
20.2 4 2	.6 10	20.13	(6 ⁻)	0.0 (5 ⁺)	(E1)	5.7 4	α (L)=4.40 25; α (M)=1.05 7; α (N+)=0.274 16 α (N)=0.240 14; α (O)=0.0323 18; α (P)=0.00085 4 I _{γ} : reported only in spectrum gated by 5478 α but γ present also

				¹⁷⁴ Ir a	e decay (5.01 s)	1992So	c16 (continued)
$\gamma(^{170}\text{Re})$ (continued)							
Eγ	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α &	Comments
							in spectrum gated by 5316α . Mult.: intensity balance at 20 level requires mult(20γ)=E1 if mult(190γ)=E1, E2 or M1.
^x 122.2 4	1.7 [#] 4				[M1] [‡]	2.91 5	α (K)=2.41 4; α (L)=0.387 7; α (M)=0.0885 15; α (N+)=0.0253 5 α (N)=0.0215 4; α (Q)=0.00361 6; α (P)=0.000263 5
							I_{γ} : observed only in spectrum gated by 5316 α .
159.8 <i>5</i>	1.6 [#] 5	370.1		210.32 (7+	() [M1,E2] [‡]	1.0 4	$\alpha(K)=0.75; \alpha(L)=0.246; \alpha(M)=0.05817; \alpha(N+)=0.0165 \alpha(N)=0.0144; \alpha(O)=0.00215; \alpha(P)=7.E-55$
							I_{γ} : observed only in spectrum gated by 5316 α . However, if Ti(159.8)=I(5316 α)=12 <i>I</i> , one would expect I_{γ} =5.7 <i>I3</i> ; possibly this is not the only transition deexciting the 370 level (see comment on 122 γ multipolarity).
190.2 2	17 2	210.32	(7 ⁺)	20.13 (6-	(E1)	0.0732	α (K)=0.0605 9; α (L)=0.00982 14; α (M)=0.00224 4; α (N+)=0.000628 9
							$\alpha(N)=0.000536\ 8;\ \alpha(O)=8.64\times10^{-5}\ 13;$
							α (P)=5.07×10 ° 8 Mult.: intensity balance at 20 level (with
							mult((20γ) =E1) implies mult((190γ) =E1, but E2 cannot be ruled out
210.3 2	63 5	210.32	(7 ⁺)	0.0 (5+	(E2)	0.270	$\alpha(K)=0.1482\ 21;\ \alpha(L)=0.0926\ 14;\ \alpha(M)=0.0231$
							4; $\alpha(N+)=0.00634$ 10 $\alpha(N)=0.00552$ 8; $\alpha(O)=0.000811$ 12;
							$\alpha(P) = 1.294 \times 10^{-5} 19$
							Mult.: $\Delta \pi$ =(no) from level scheme; E2 is consistent with I(K x ray), M1 is not.

[†] Photon intensities per 100 α decays; from 5478 α - γ coin (1992Sc16), except as noted. The authors normalized intensities for 5478 α - γ coin so Ti(190 γ +210 γ) \approx 100.

[‡] The 5316α - γ data and the adopted level scheme imply an intensity imbalance at the 210 level. This imbalance could be removed if the unplaced 122γ were assumed to be part of a 122γ -38 γ cascade connecting the 370 and 210 levels, provided mult(122γ)=M1 and mult(160γ)=M1,E2; the implied 38 keV transition may be too highly converted for the 38 γ to have been detected. M1 multipolarity for the 122γ would also increase the expected I(K x ray, Re) to a value consistent with the reported one.

[#] I γ reported for 5316 α - γ coin, scaled by evaluator so Ti(190 γ +210 γ)=12 for that spectrum, assuming adopted multipolarities for those transitions.

^(a) For absolute intensity per 100 decays, multiply by 0.025 3.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*x*} γ ray not placed in level scheme.

¹⁷⁴Ir α decay (5.01 s) 1992Sc16

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

¹⁷⁰₇₅Re₉₅