(HI,xnγ) 2006Jo04,2005Jo18,1998Ki20

TypeAuthorCitationLiterature Cutoff DateFull EvaluationC. M. Baglin¹, E. A. Mccutchan², S. Basunia¹NDS 153, 1 (2018)1-Oct-2018

This data set includes 112 Sn(63 Cu,p4n γ), 112 Sn(60 Ni,2n γ), 96 Mo(78 Kr,3n γ) and 96 Ru(78 Kr,2p2n γ).

2006Jo04: ¹¹²Sn(⁶⁰Ni,2n γ), E=266 MeV; 93%-enriched ¹¹²Sn target; prompt γ -rays detected At target by JUROGAM spectrometer (43 EUROGAM type escape-suppressed Ge detectors at 158°, 134°, 108°, 94°, 86°, 72°); recoils separated by the RITU recoil separator and deposited into the GREAT spectrometer (Si and Ge detectors and multiwire proportional counter) at its focal plane; events time-stamped with 10 ns precision; measured E γ , I γ , recoil-x- γ coin, $\gamma\gamma$ coin; γ spectra correlated with subsequent ¹⁷⁰Pt 6550 α . See also 2005Jo18.

1998Ki20: ¹¹²Sn(63 Cu,p4n γ), E=338 MeV; ¹¹²Sn(60 Ni,2n γ), E=266 MeV; 93.2% ¹¹²Sn target; gas-filled recoil separator, Si strip detector in focal plane; JUROSPHERE γ detector array (17 Compton-suppressed Ge detectors); measured E γ , I γ from recoil-gated α -tagged γ spectrum, $\gamma\gamma$ coin, I γ (157.6°)/I γ (79° and 101°).

1998Se20: 96 Mo(78 Kr, $3n\gamma$), E(78 Kr)=345 MeV, enriched 96 Mo target; 96 Ru(78 Kr, $2p2n\gamma$), E(78 Kr)=385 MeV, enriched 96 Ru target; recoil α -decay tagging method; 10 Compton-suppressed HPGe detector array, recoil fragment mass analyzer with double-sided Si strip detector behind focal plane; measured E γ , E α .

1997Ju04: ¹¹²Sn(63 Cu,p4n γ), E=338 MeV; gas-filled recoil separator, Si strip detector in focal plane; JUROSPHERE γ detector array (20 Compton-suppressed Ge detectors); measured recoil-gated α -tagged γ spectrum.

170Pt Levels

E(level) [†]	Jπ‡	Comments
0#	0^{+}	
509.20 [#] 20	2^{+}	
1171.90 [#] 23	4+	
1514.1 [@] 8	(3 ⁻)	
1898.3 [@] 4	$5^{(-)}$	
1912.31 [#] 25 1972.5? 7	6+	
2111.5 [@] 4	$7^{(-)}$	
2436.8 [#] 4 2443.7? 5	8+	
2495.5 [@] 11 2501.3? 11 2509.6? 7 2629.0? 5	(9 ⁻)	
3025.2 [#] 4	(10 ⁺)	J^{π} : The 10 ⁺ member of the g.s. band is either the 3025 or the 3038 level; 2006Jo04 assign 10 ⁺ to 3025 in level scheme figure 1 and in the text, but assign 10 ⁺ to 3038 in table I. 2005Jo18 assigned 10 ⁺ to 3038 level.
3038.2 5 3067.3? [@] 11 3121.5? 12 3708.2? [@] 11	(10 ⁺)	J^{π} : see comment on 3025 level.

[†] From least-squares fit to $E\gamma$.

[±] From 2006Jo14. The three strongest γ -rays form a cascade of stretched Q transitions, and the energy of the strongest agrees closely with that expected for the first 2⁺ state (based on the energy systematics for first excited states of even-A Pt isotopes from ¹⁷²Pt to ¹⁹⁰Pt (see, e.g., fig. 4 of 1998Se20)). This supports their association with the first three excited states of the g.s. band of ¹⁷⁰Pt.

[#] Band(A): $K^{\pi}=0^+$ g.s. Band. Weakly-deformed; possibly crossed by a deformed intruder configuration At J $\approx 8\hbar$ (2006Jo04).

[@] Band(B): Sequence on (3⁻) 1514.

$(\mathbf{HL}\mathbf{x}\mathbf{n}\gamma)$	2006Jo04.2005Jo18.1998Ki20	(continued)
(1119/11/)		(commucu)

$\gamma(^{170}\text{Pt})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.‡	Comments
185.3 [#] 1	93	2629.0?		2443.7?			R=0.88 26.
213.2 <i>I</i>	11 3	2111.5	$7^{(-)}$	1898.3	$5^{(-)}$	Q	R=1.20 23.
							other E γ (I γ): 213.5 (16 <i>l</i>) for unplaced γ (1998Ki20).
^x 254.7 3	8 <i>3</i>						
384.0 10	4 1	2495.5	(9 ⁻)	2111.5	$7^{(-)}$		R=1.46 <i>14</i> for $384.0\gamma + 384.4\gamma$ (2006Jo04).
384.4 10	23 10	1898.3	5(-)	1514.1	(3 ⁻)		R=1.46 <i>14</i> for $384.0\gamma + 384.4\gamma$ (2006Jo04).
X440.9.2	4 1						other Ey (1y): 385.0 (26.2) for unplaced γ (1998K120).
509.2.2	41	509.20	2+	0	0^{+}	0	R = 1.14.6 (2006Io04)
507.2 2	100 0	507.20	2	0	0	Q	$I_{\nu}(157.6^{\circ})/I_{\nu}(79^{\circ} \text{ and } 101^{\circ}) = 1.06 \ 12 \ (1998 \text{Ki}20).$
							Other E γ : 510 keV (1997Ju04), 508 keV (1998Se20); 508.9 (I γ =100 5) (1998Ki20); authors do not state the uncertainty in E γ .
524.5 2	27 6	2436.8	8+	1912.31	6+	Q	R=1.32 <i>13</i> .
							other E γ (I γ): 524.0 (32 3) for unplaced γ (1998Ki20).
537.1 [#] 1	17 4	2509.6?		1972.5?			other E γ (I γ): 536.4 (21 4) for unplaced γ (1998Ki20).
545.4 [#] 2	14 5	2443.7?		1898.3	5(-)		other E γ (I γ): 545.0 (14 4) for unplaced γ (1998Ki20).
571.8 [#] 2	16 6	3067.3?		2495.5	(9-)		other E γ (I γ): 572.5 (13 3) for unplaced γ (1998Ki20).
588.4 2	21 5	3025.2	(10^{+})	2436.8	8+		other E γ (I γ): 588.3 (19 3) for unplaced γ (1998Ki20).
601.4 3	16 7	3038.2	(10^{+})	2436.8	8+		other E γ (I γ): 600.5 (26 6) for unplaced γ (1998Ki20).
603.0 [#] 10	199	2501.3?		1898.3	$5^{(-)}$		
620.2 [#] 4	13 8	3121.5?		2501.3?			
640.9 [#] 2	94	3708.2?		3067.3?			
662.7 1	90 10	1171.90	4+	509.20	2^{+}	Q	R=1.22 9 (2006Jo04).
							other data: $E\gamma=662.3$, $I\gamma=86$ 6; $I\gamma(157.6^{\circ})/I\gamma(79^{\circ})$ and $101^{\circ})=1.20$ 14 (1998Ki20).
^x 670.3 2	12 7						
726.4 3	31 7	1898.3	$5^{(-)}$	1171.90	4+	D	R=0.89 11 (2006Jo04).
							other data: $E\gamma = 725.9$, $I\gamma = 30.3$ (1998Ki20) for unplaced γ .
740.4 1	60 11	1912.31	6+	1171.90	4+		R=1.03 <i>14</i> (2006Jo04). other data: $E\gamma$ =739.5, $I\gamma$ =49 <i>7</i> ; $I\gamma$ (157.6°)/ $I\gamma$ (79° and 101°)=0.88 <i>17</i> (1998Ki20)
^x 748.5 4	10 5						
800.6 [#] 6	20 10	1972.5?		1171.90	4+		
1005.0 10	33 18	1514.1	(3 ⁻)	509.20	2^{+}		

[†] From 2006Jo04 for the ¹¹²Sn(⁶⁰Ni,2n γ), E=266 MeV reaction; data from 1998Ki20 for the same reaction At the same bombarding energy are given In comments; they are In satisfactory agreement with data from 2006Jo04.

[‡] Based on angular distribution ratio R (2006Jo04) where R=I γ (158°)/[I γ (86°)+ I γ (94°)]. R=1.32 5 and 0.86 2 for known Δ J=2 443 γ and Δ J=1 947 γ In ¹⁷⁰Os, respectively. Supported by I γ (157.6°)/I γ (79° and 101°) values from 1998Ki20 which are consistent with value expected for stretched Q transition for several transitions (As indicated In comments).

[#] Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

(HI,xnγ) 2006Jo04,2005Jo18,1998Ki20 Legend $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \text{Coincidence} \end{array}$ Level Scheme (continued) ► • Intensities: Relative $I_{\boldsymbol{\gamma}}$ • + 1005,0 33 • 60° 0010 $\frac{(3^{-})}{4^{+}}$ 1514.1 1171.90 _____; 2+ 509.20 0^+ 0

¹⁷⁰₇₈Pt₉₂

(HI,xnγ) 2006Jo04,2005Jo18,1998Ki20

¹⁷⁰₇₈Pt₉₂