#### $^{170}{\rm Hf}\,\varepsilon$ decay 1969Tr02

|                 | History                                                                            |                   |                        |
|-----------------|------------------------------------------------------------------------------------|-------------------|------------------------|
| Туре            | Author                                                                             | Citation          | Literature Cutoff Date |
| Full Evaluation | C. M. Baglin <sup>1</sup> , E. A. Mccutchan <sup>2</sup> , S. Basunia <sup>1</sup> | NDS 153, 1 (2018) | 1-Oct-2018             |

Parent: <sup>170</sup>Hf: E=0.0;  $J^{\pi}=0^+$ ;  $T_{1/2}=16.01$  h 13;  $Q(\varepsilon)=1052$  33;  $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$  decay=100.0 Sources produced, typically, by <sup>175</sup>Lu(p,6n) and <sup>171</sup>Yb( $\alpha$ ,5n).

1970Ch17: measured  $E\gamma$ ,  $I\gamma$ .

1969Tr02: E=66 MeV; measured E $\gamma$ , I $\gamma$ , E(ce), I(ce), ce $\gamma$ -coin,  $\gamma\gamma$ -coin.

1968Ab08: measured  $\beta\gamma$ -coin,  $\gamma\gamma$ -coin,  $T_{1/2}$ .

1966Ha23: measured  $E\gamma$ ,  $I\gamma$ , I(ce).

Other: 2000La11.

The decay scheme is that of 1969Tr02; portions of the scheme from 1966Ha23 differ significantly.

# <sup>170</sup>Lu Levels

| E(level) <sup>†</sup>        | $J^{\pi \ddagger}$ | $T_{1/2}^{\#}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|--------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0@                         | $0^{+}$            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $44.50^{@}5$                 | 2+                 | 3.00 ns 6      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 92.89 9                      | (4) <sup>-</sup>   | 0.67 s 10      | from decay scheme, a 4.2% 12 intensity imbalance occurs at this level; no $\varepsilon$ feeding is                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                    |                | expected. See comment on 96 level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 96.01 <i>10</i>              | (3)-               |                | T <sub>1/2</sub> : from Adopted Levels.<br>J <sup><math>\pi</math></sup> : probable configuration=(( $\pi$ 7/2[404])+( $\nu$ 1/2[521])) (1969Tr02).<br>J <sup><math>\pi</math></sup> : possible configuration ( $\pi$ 1/2[541])-( $\nu$ 7/2[633]) (1988So04, who predict the ( $\pi$<br>7/2[404])-( $\nu$ 1/2[521]) configuration suggested for this level in 1969Tr02 to be at higher<br>energy).                                                                                                 |
|                              |                    |                | No transition has been observed to deexcite the 96 level. If a 3.09 transition to the 92.89 $(4)^-$ level existed, it presumably could not have been detected, but the other possible transitions (both $\Delta K=(3)$ ) should have been within the experimental range of 1969Tr02. $I(\gamma+ce)=19.5$ would be needed in order to remove the intensity imbalance at the 93 level, consistent with the expected absence of an $\varepsilon$ branch to that level from the 0 <sup>+</sup> parent. |
| 98.49 <sup>@</sup> 6         | 1+                 |                | E(level): note that adopted band assignment differs from that shown here and In 1969Tr02 and 1988So04.                                                                                                                                                                                                                                                                                                                                                                                             |
| 114.87 7                     | (3)+               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 116.00 7                     | $(1)^{+}$          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 164.71 <sup>&amp;</sup> 6    | 1-                 | 3.90 ns 20     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 170.00 7                     | 2+                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 176.70 <sup>@</sup> 11       | 3+                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198.37 6                     | 1+                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 212.49 <sup>&amp;</sup> 7    | $1^{-},2^{-}$      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 244.81 <sup>b</sup> 6        | 1-                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 283.86 <sup>b</sup> 6        | (2)-               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 304.14 10                    | 0-,1-,2-           |                | E(level): order of $481\gamma$ -208 $\gamma$ cascade not established, so E=577.28 <i>16</i> is also possible.<br>However, E=304 is favored by the tentative placement of the 511 $\gamma$ from the 815 level.                                                                                                                                                                                                                                                                                      |
| 349.00 10                    | 1+                 |                | Configuration ( $\pi$ 5/2[402])-( $\nu$ 7/2[633]) bandhead suggested in 1988So04, but (( $\pi$ 1/2[541])+( $\nu$ 1/2[521])) suggested in 1969Tr02.                                                                                                                                                                                                                                                                                                                                                 |
| 407.47 <sup><i>a</i></sup> 6 | $(0)^{-}$          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 436.90? 10                   | (0+)               |                | Possible configuration ( $\pi$ 1/2[541])-( $\nu$ 1/2[521]) (1969Tr02) not adopted; see comment in Adopted Levels.                                                                                                                                                                                                                                                                                                                                                                                  |
| 470.24 <sup><i>a</i></sup> 6 | 1-                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 785.46 6                     | $1^{+}$            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 801.70 10                    | (1-)               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 814.60 8                     | $(1)^{-}$          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 923.20 15                    | 21                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# <sup>170</sup>Hf $\varepsilon$ decay **1969Tr02** (continued)

# <sup>170</sup>Lu Levels (continued)

<sup>†</sup> From a least-squares fit to  $E\gamma$ , by evaluators.

<sup>‡</sup> From Adopted Levels.

<sup>#</sup> From  $\gamma\gamma(t)$  measurement (1968Ab08), except where noted.

<sup>@</sup> Band(A):  $K^{\pi}=0^+$  g.s. band. Configuration ( $\pi$  7/2[404])-( $\nu$  7/2[633]) (1969Tr02). Odd J members exhibit Newby shift.

- <sup>&</sup> Band(B):  $K^{\pi}=1^{-}$  band. Configuration ( $\pi$  7/2[404])-( $\nu$  5/2[512]) (1969Tr02).
- <sup>*a*</sup> Band(C): proposed  $K^{\pi}=0^{-}$  band; configuration ( $\pi$  1/2[411])-( $\nu$  1/2[521]) (1969Tr02).

<sup>b</sup> Band(D):  $K^{\pi}=1^{-}$  band. Configuration ( $\pi$  1/2[411])+( $\nu$  1/2[521]) (1969Tr02).

### $\varepsilon, \beta^+$ radiations

| E(decay)                             | E(level) | $\mathrm{I}\varepsilon^{\dagger \#}$ | $\log ft^{\dagger}$  | Comments                                 |
|--------------------------------------|----------|--------------------------------------|----------------------|------------------------------------------|
| (1.3×10 <sup>2</sup> <sup>@</sup> 3) | 923.20   | 0.084 23                             | 6.8 5                | εK=0.59 18; εL=0.30 13; εM+=0.11 5       |
| $(2.4 \times 10^2 @ 3)$              | 814.60   | 0.18 5                               | 7.21 20              | εK=0.743 20; εL=0.194 14; εM+=0.063 6    |
| $(2.5 \times 10^2 @ 3)$              | 801.70   | 0.26 8                               | 7.11 20              | εK=0.749 17; εL=0.190 12; εM+=0.061 5    |
| $(2.7 \times 10^2 \ 3)$              | 785.46   | 43 12                                | 4.96 18              | εK=0.756 14; εL=0.185 10; εM+=0.059 4    |
| $(5.8 \times 10^2 \ 3)$              | 470.24   | 3.0 9                                | 6.91 14              | εK=0.8036 19; εL=0.1498 14; εM+=0.0466 5 |
| $(6.2 \times 10^2 @ 3)$              | 436.90?  | 0.0088 24                            | 9.50 13              | εK=0.8055 17; εL=0.1484 12; εM+=0.0461 5 |
| $(6.4 \times 10^2 \ 3)$              | 407.47   | 6.0 17                               | 6.71 14              | εK=0.8069 15; εL=0.1474 11; εM+=0.0457 4 |
| $(7.0 \times 10^2 \ 3)$              | 349.00   | 1.2 4                                | 7.49 15              | εK=0.8094 12; εL=0.1456 9; εM+=0.0451 4  |
| $(7.7 \times 10^2 @ 3)$              | 283.86   | 0.42 18                              | $8.32^{1u} 20$       | εK=0.781 3; εL=0.1660 20; εM+=0.0528 8   |
| $(8.1 \times 10^2 \ 3)$              | 244.81   | 1.0 3                                | 7.70 14              | εK=0.8128 9; εL=0.1431 7; εM+=0.04415 24 |
| $(8.4 \times 10^2 \ 3)$              | 212.49   | 3.2 10                               | 7.23 <sup>‡</sup> 14 | εK=0.8136 8; εL=0.1425 6; εM+=0.04392 22 |
| $(8.5 \times 10^2 \ 3)$              | 198.37   | 15 4                                 | 6.58 12              | εK=0.8140 8; εL=0.1422 6; εM+=0.04382 21 |
| $(8.9 \times 10^2 \ 3)$              | 164.71   | 2.7 9                                | 7.36 15              | εK=0.8148 8; εL=0.1416 6; εM+=0.04361 19 |
| $(9.4 \times 10^2 \ 3)$              | 116.00   | 3.4 10                               | 7.31 14              | εK=0.8158 7; εL=0.1408 5; εM+=0.04333 17 |
| $(9.4 \times 10^2 @ 3)$              | 114.87   | 1.0 3                                | 7.84 14              | εK=0.8159 7; εL=0.1408 5; εM+=0.04332 17 |
| $(9.5 \times 10^2 \ 3)$              | 98.49    | 2.3 7                                | 7.49 14              | εK=0.8162 6; εL=0.1406 5; εM+=0.04323 17 |
| $(1.05 \times 10^3 \ 3)$             | 0.0      | ≤40                                  | ≥6.3                 | εK=0.8179 5; εL=0.1393 4; εM+=0.04277 13 |

<sup>†</sup> I $\varepsilon$  is from intensity imbalance At each level, assigning  $0.5I\gamma\pm0.5I\gamma$  for transitions with uncertain placement. The indicated uncertainties in I $\varepsilon$  are those which stem from uncertainty in g.s.  $\varepsilon$  branching;  $\Delta I\gamma$  is not given in 1969Tr02. Also, unplaced lines could influence weak branches significantly (2.4% of I $\gamma$  remains unplaced). Consequently,  $\Delta(\log ft)$  represents a lower limit, and log ft values for weak branches do not constitute reliable arguments for J<sup> $\pi$ </sup> assignments.

<sup>‡</sup> Apparently too low to allow J(213)=2; log  $f^{1u}t < 8.5$  for I $\varepsilon > 0.5\%$ .

<sup>#</sup> Absolute intensity per 100 decays.

<sup>@</sup> Existence of this branch is questionable.

 $\gamma(^{170}Lu)$ 

Iγ normalization: no  $\varepsilon + \beta^+$  branch to g.s. has been observed. log ft > 6.4 is expected for this 0<sup>+</sup> to 0<sup>+</sup>, isospin-forbidden transition; this implies  $\varepsilon + \beta^+$  branching<40% to g.s. The evaluators, therefore, assume  $\%\varepsilon + \beta^+ = 20\ 20$  to g.s., so  $\Sigma$  (I( $\gamma$ +ce) to g.s.)=80% 20.  $\Delta$ (I $\gamma$  normalization) allows only for uncertainty in branching to g.s.; it would rise to 0.07 if  $\Delta$ I $\gamma$  were 20%.

Data are from 1969Tr02, except as noted. Conversion electron data are given in comments; uncertainty in Ice from 1969Tr02 is  $\approx 20\%$ . Conversion coefficients, when given, are calculated by the evaluator from authors' stated I $\gamma$  and Ice (some values differ from those given in table 3 of 1969Tr02); the authors' normalization gives values consistent with those expected based on subshell ratios for low energy transitions, and with E1 theory for the 164.7, 572.9 and 620.7 keV transitions.  $\alpha$ (K)exp for other E1 transitions are, typically, within about 30% of E1 theory, but those for 541 $\gamma$ , 481 $\gamma$ , 470 $\gamma$  are 40-50% high.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\delta^{@}$ | $\alpha^{\boldsymbol{b}}$ | $I_{(\gamma+ce)}^{a}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|---------------------------|------------------------|----------------------|------------------|----------------------|--------------------|--------------|---------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16.39 <i>10</i>        |                           | 114.87                 | (3)+                 | 98.49            | 1+                   | E2+(M3)            | ≈0.03        | ≈2.52×10 <sup>4</sup>     | 22.0                  | ce(L)/(γ+ce)≈0.748; ce(M)/(γ+ce)≈0.200;<br>ce(N+)/(γ+ce)≈0.052<br>ce(N)/(γ+ce)≈0.0466; ce(O)/(γ+ce)≈0.0055;<br>ce(P)/(γ+ce)≈2.85×10 <sup>-5</sup><br>M1:M2:M3:N:O=32:180:250:100:20 (1969Tr02).<br>I <sub>γ</sub> : 0.00087, from Ice=22.0 (1969Tr02) and α=25200.<br>Mult.,δ: from subshell ratios, γ is predominantly E2.<br>Authors assign M1+E2 with δ=2.0. However the<br>subshell ratios are also consistent with E2+M3, δ≈0.03<br>(from M1:M2). The latter is adopted for consistency<br>with level scheme. |
| 28.38 10               | 0.90                      | 198.37                 | 1+                   | 170.00           | 2+                   | M1+E2              | 0.079        | 30.9 6                    |                       | $\alpha$ (L)=23.9 5; $\alpha$ (M)=5.50 11; $\alpha$ (N+)=1.48 3<br>$\alpha$ (N)=1.288 24; $\alpha$ (O)=0.182 4; $\alpha$ (P)=0.00917 16<br>L1:L2:L3:M1:M2:M3=1615:320:280:390:83:70 (1969Tr02).<br>$\delta$ : from L1/L3.                                                                                                                                                                                                                                                                                          |
| 32.35 10               | 0.30                      | 244.81                 | 1-                   | 212.49           | 1-,2-                | M1+E2              | 0.09         | 20.9 4                    |                       | $\alpha(L)=16.2^{'}3; \alpha(M)=3.72^{'}7; \alpha(N+)=1.002^{'}18$<br>$\alpha(N)=0.873^{'}16; \alpha(O)=0.1235^{'}22; \alpha(P)=0.00622^{'}11^{'}$<br>L1:L2:M1=325:75:85 (1969Tr02)<br>$\delta$ : from subshell ratios.                                                                                                                                                                                                                                                                                            |
| 39.06 10               | ≈0.011                    | 283.86                 | (2)-                 | 244.81           | 1-                   | E2                 |              | 218 5                     | ≈2.5                  | ce(L)/(γ+ce)=0.760 10; ce(M)/(γ+ce)=0.188 5;<br>ce(N+)/(γ+ce)=0.0481 13<br>ce(N)/(γ+ce)=0.0430 12; ce(O)/(γ+ce)=0.00510 14;<br>ce(P)/(γ+ce)=2.70×10 <sup>-6</sup> 7<br>L2:L3≈100:90 (1969Tr02)<br>I <sub>γ</sub> : from I(γ+ce) and α.<br>I <sub>(γ+ce)</sub> : based on I(ce(L23))≈1.90 (1969Tr02) and<br>mult=E2.                                                                                                                                                                                                |
| 44.52 10               | 1.15                      | 44.50                  | 2+                   | 0.0              | 0+                   | E2                 |              | 114.6 21                  |                       | $ \begin{array}{l} \alpha(\text{L}) = 87.4 \ 16; \ \alpha(\text{M}) = 21.7 \ 4; \ \alpha(\text{N}+) = 5.55 \ 10 \\ \alpha(\text{N}) = 4.96 \ 9; \ \alpha(\text{O}) = 0.589 \ 11; \ \alpha(\text{P}) = 0.000369 \ 6 \\ \text{L}1:\text{L}2:\text{L}3:\text{M}2:\text{M}3:\text{N} = 73:4830:5800:1285:1550:750} \\ (1969\text{Tr}02). \end{array} $                                                                                                                                                                 |

ω

|                        |                           |                        |                      |                  |                      | 1                  | $^{170}$ Hf $\varepsilon$ d | ecay 196                      | 9 <b>Tr02</b> (co     | ntinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------|------------------------|----------------------|------------------|----------------------|--------------------|-----------------------------|-------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                           |                        |                      |                  |                      |                    |                             | $\gamma(^{170}\text{Lu})$ (co | ontinued)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\delta^{@}$                | $\alpha^{\boldsymbol{b}}$     | $I_{(\gamma+ce)}^{a}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 47.80 10               | 13.3                      | 212.49                 | 1-,2-                | 164.71           | 1-                   | M1+E2              | 0.048                       | 5.43 9                        |                       | $\alpha$ (L)=4.22 7; $\alpha$ (M)=0.953 15; $\alpha$ (N+)=0.260 4<br>$\alpha$ (N)=0.225 4; $\alpha$ (O)=0.0330 5; $\alpha$ (P)=0.00197 3<br>L1:L2:L3:M1:M2:N=4500:540:150:1030:110:300 (1969Tr02).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48.42 10               |                           | 92.89                  | (4)-                 | 44.50            | 2+                   | M2                 |                             | 223                           | 19.5                  | 6. from substent ratios.<br>$ce(L)/(\gamma+ce)=0.754 \ 9; \ ce(M)/(\gamma+ce)=0.189 \ 4;$<br>$ce(N+)/(\gamma+ce)=0.0518 \ 12$<br>$ce(N)/(\gamma+ce)=0.0452 \ 11; \ ce(O)/(\gamma+ce)=0.00635 \ 15;$<br>$ce(P)/(\gamma+ce)=0.000311 \ 8$<br>L1:L2:L3:M1:M2:M3:N=910:90:390:280:40:110:100 (1969Tr02).<br>L : 0.0871 from Ice=19.50 (1969Tr02) and $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 54.03 10               | 5.00                      | 98.49                  | 1+                   | 44.50            | 2+                   | M1                 |                             | 3.67                          |                       | $\alpha(L)=2.85 5; \alpha(M)=0.641 10; \alpha(N+)=0.175 3$<br>$\alpha(N)=0.1515 23; \alpha(O)=0.0224 4; \alpha(P)=0.001381 21$<br>1.1:12:M1:N=1260:140:310:90 (1969Tr02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 55.19 10               | 5.10                      | 170.00                 | 2+                   | 114.87           | (3)+                 | M1+E2              | 0.13                        | 4.06 7                        |                       | $\alpha(L)=3.145; \ \alpha(M)=0.719\ 11; \ \alpha(N+)=0.194\ 3$<br>$\alpha(N)=0.169\ 3; \ \alpha(O)=0.0242\ 4; \ \alpha(P)=0.001279\ 20$<br>L1:L2:L3:M1:M2:N=1270:215:150:320:80:80 (1969Tr02).<br>$\delta$ : from L1/L3. however, subshell ratios are not mutually consistent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 62.8 1                 | 0.50                      | 470.24                 | 1-                   | 407.47           | (0)-                 | M1                 |                             | 2.36                          |                       | $\alpha$ (L)=1.83 3; $\alpha$ (M)=0.413 6; $\alpha$ (N+)=0.1128 17<br>$\alpha$ (N)=0.0975 15; $\alpha$ (O)=0.01443 22; $\alpha$ (P)=0.000889 14<br>L1:M1 $\approx$ 85:20; $\alpha$ (L1)exp $\approx$ 1.7 (1969Tr02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 70.42 10               | 1.00                      | 114.87                 | (3)+                 | 44.50            | 2+                   | M1                 |                             | 10.09                         |                       | $\alpha(K)=8.40\ 13;\ \alpha(L)=1.313\ 20;\ \alpha(M)=0.295\ 5;\ \alpha(N+)=0.0807\ 12$<br>$\alpha(N)=0.0697\ 11;\ \alpha(O)=0.01033\ 15;\ \alpha(P)=0.000636\ 10$<br>$\alpha(L)\exp=1\ 0;\ L1:M1=100:25\ (1969Tr02)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 71.48 10               | 1.00                      | 116.00                 | $(1)^{+}$            | 44.50            | 2+                   | M1                 |                             | 9.66                          |                       | $\alpha(\text{L1}) \approx 10^{\circ}, 21^{\circ}, 10^{\circ}, 21^{\circ}, 10^{\circ}, 1$ |
| 71.58 10               | 0.40                      | 170.00                 | 2+                   | 98.49            | 1+                   | E2                 |                             | 12.99                         |                       | $\begin{aligned} \alpha(\text{K}) = 1.513 \ 22; \ \alpha(\text{L}) = 8.74 \ 14; \ \alpha(\text{M}) = 2.17 \ 4; \ \alpha(\text{N}+) = 0.558 \ 9 \\ \alpha(\text{N}) = 0.498 \ 8; \ \alpha(\text{O}) = 0.0597 \ 10; \ \alpha(\text{P}) = 0.0001106 \ 16 \\ \text{L}2:\text{L}3:\text{M}2:\text{M}3:\text{N} = 150:162:37:40:20 \ (1969\text{Tr}02). \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x72.0^{\circ}$ 1      | 0.14                      | 244.91                 | 1-                   | 170.00           | 2+                   |                    |                             |                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 80.13 <i>10</i>        | 2.80                      | 244.81                 | 1<br>1-              | 164.71           | 2<br>1 <sup>-</sup>  | M1                 |                             | 6.96                          |                       | $\alpha(K)=5.80 \ 9; \ \alpha(L)=0.901 \ 13; \ \alpha(M)=0.203 \ 3; \ \alpha(N+)=0.0554 \ 8 \ \alpha(N)=0.0479 \ 7; \ \alpha(O)=0.00709 \ 11; \ \alpha(P)=0.000437 \ 7 \ \alpha(K)\exp=5.96; \ K:L1:L2:M1=1670:240:20:65 \ (1969Tr02) \ E_{w}: \ 80.19 \ in \ tables \ 3 \ and \ 4 \ of \ 1969Tr02.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 98.55 10               | 15.0                      | 98.49                  | 1+                   | 0.0              | 0+                   | M1                 |                             | 3.84                          |                       | $\alpha(K)=3.20$ 5; $\alpha(L)=0.495$ 7; $\alpha(M)=0.1113$ 16; $\alpha(N+)=0.0304$ 5<br>$\alpha(N)=0.0263$ 4; $\alpha(O)=0.00389$ 6; $\alpha(P)=0.000240$ 4<br>$\alpha(K)\exp=2.52$ (1969Tr02)<br>K:L1:L2:M1:N=3780:690:60:170:45 (1969Tr02). ce(K) unresolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 99.93 10               | 9.00                      | 198.37                 | 1+                   | 98.49            | 1+                   | M1+E2              | 0.61                        | 3.60 6                        |                       | from ce(L3, 44.5).<br>$\alpha(K)=2.51 4$ ; $\alpha(L)=0.839 13$ ; $\alpha(M)=0.200 3$ ; $\alpha(N+)=0.0528 8$<br>$\alpha(N)=0.0465 7$ ; $\alpha(O)=0.00612 9$ ; $\alpha(P)=0.000183 3$<br>$\alpha(K)\exp=2.51 (1969Tr02)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

 $^{170}_{71}\mathrm{Lu}_{99}$ -4

|                                                  |                           |               |                      |        |                        | 170                | $^{0}$ Hf $\varepsilon$ dec | ay 1969                   | Tr02 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|---------------------------|---------------|----------------------|--------|------------------------|--------------------|-----------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                           |               |                      |        |                        |                    | <u>γ(</u>                   | ( <sup>170</sup> Lu) (coi | ntinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ${\rm E}_{\gamma}^{\dagger}$                     | $I_{\gamma}^{\ddagger a}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup> | $\delta^{@}$                | $\alpha^{\boldsymbol{b}}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |                           |               |                      |        |                        |                    |                             |                           | K:L1:L2:L3:M:N=2260:315:250:205:200:50 (1969Tr02).<br>$\delta$ : from $\alpha$ (K)exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ×112.8& 1                                        | ≈0.40                     |               |                      |        |                        |                    |                             |                           | o. nom a(k)exp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 113.9 <sup>&amp;c</sup> 1                        | 0.80                      | 283.86        | $(2)^{-}$            | 170.00 | 2+                     |                    |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> 115.0 <sup>&amp;</sup> 1            | ≈0.90                     |               |                      |        |                        |                    |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 115.95 <i>10</i>                                 | 2.90                      | 116.00        | (1)+                 | 0.0    | 0+                     | [M1]               |                             | 2.41                      | $\alpha(K)=2.01 \ 3; \ \alpha(L)=0.310 \ 5; \ \alpha(M)=0.0697 \ 10; \ \alpha(N+)=0.0191 \ 3 \ \alpha(N)=0.01646 \ 24; \ \alpha(O)=0.00244 \ 4; \ \alpha(P)=0.0001506 \ 22 \ \alpha(K)exp=0.62; \ K:L1=180:35 \ (1969Tr02) \ I_{\gamma}: \ 3.5 \ 4 \ in \ 1970Ch17, \ but \ this \ may \ include \ I(115\gamma).$<br>Mult.: E2(+M1) from $\alpha(K)exp, \ but \ K/L1=5 \ cf. \ 10 \ and \ 7 \ for \ E2 \ and \ M1, \ respectively, \ favors \ M1; \ feeds \ 0^+ \ state \ so \ cannot \ be \ M1+E2. \ I(ceK) \ probably \ includes \ ce(M1) \ of \ 55.2\gamma \ (1969Tr02).$ |
| <sup>x</sup> 116.9 <sup>&amp;</sup> 1            | ≈1.70                     |               |                      |        |                        |                    |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> 117.8 <sup>&amp;</sup> 1            | ≈2.00                     |               |                      |        |                        |                    |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 119.15 <i>10</i>                                 | 3.80                      | 283.86        | (2)-                 | 164.71 | 1-                     | M1(+E2)            | <1.3                        | 2.07 16                   | $\alpha(K)=1.5 4; \alpha(L)=0.45 17; \alpha(M)=0.11 5; \alpha(N+)=0.028 11$<br>$\alpha(N)=0.025 10; \alpha(O)=0.0033 11; \alpha(P)=0.00011 4$<br>$\alpha(K)\exp=1.47; K:L1=560:75 (1969Tr02)$<br>Mult., $\delta$ : from $\alpha(L1)\exp$ , allowing 30% uncertainty in $\alpha(L1)\exp$ .                                                                                                                                                                                                                                                                                    |
| 120.19 <i>10</i>                                 | 68.5                      | 164.71        | 1-                   | 44.50  | 2+                     | E1                 |                             | 0.216                     | $\alpha(K)=0.179 \ 3; \ \alpha(L)=0.0290 \ 5; \ \alpha(M)=0.00653 \ 10; \ \alpha(N+)=0.001733 \ 25 \ \alpha(N)=0.001514 \ 22; \ \alpha(O)=0.000209 \ 3; \ \alpha(P)=9.88\times10^{-6} \ 14 \ \alpha(K)exp=0.146 \ K:L1:L2:L3:M1:N=1000:145:37:42:50:13 \ (1969Tr02). \ I_{\gamma}: \ other: \ 65 \ 6 \ in \ 1970Ch17.$                                                                                                                                                                                                                                                       |
| 123.6 <mark>&amp;c</mark> 1                      | 0.13                      | 407.47        | $(0)^{-}$            | 283.86 | (2)-                   |                    |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> 127.4 <sup>&amp;</sup> 1            | 0.14                      | 156.50        | 2+                   | 44.50  | 2+                     |                    |                             | 1 42 2 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 132.20 10                                        | 0.20                      | 176.70        | 3*                   | 44.50  | 2*                     | M1+E2              |                             | 1.42 24                   | $\alpha(K)=0.95; \alpha(L)=0.3615; \alpha(M)=0.094; \alpha(N+)=0.02310$<br>$\alpha(N)=0.0209; \alpha(O)=0.002610; \alpha(P)=7.E-54$<br>Mult.: from Adopted Gammas. $\alpha(K)=3.0$ , but Ice imprecise due to                                                                                                                                                                                                                                                                                                                                                                |
| x139.2& 1                                        | 0.08                      |               |                      |        |                        |                    |                             |                           | May connect 315.6 and 176.7 levels As In Adopted Levels, Gammas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| x143.6 <sup>&amp;</sup> 1                        | 0.00                      |               |                      |        |                        |                    |                             |                           | Weak line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 146.32 10                                        | 5.20                      | 244.81        | 1-                   | 98.49  | 1+                     | E1                 |                             | 0.1290                    | $\alpha(K)=0.1072 \ 16; \ \alpha(L)=0.01697 \ 24; \ \alpha(M)=0.00381 \ 6; \ \alpha(N+)=0.001016 \ 15 \ \alpha(N)=0.000886 \ 13; \ \alpha(O)=0.0001238 \ 18; \ \alpha(P)=6.09\times10^{-6} \ 9 \ \alpha(K)\exp=0.077(1969Tr02) \ I_{\gamma}: \ other: \ 5.6 \ 6 \ in \ 1970Ch17.$                                                                                                                                                                                                                                                                                            |
| <sup>x</sup> 147.7 <sup>&amp;</sup> 1<br>153.9 1 | 0.30                      | 198.37        | 1+                   | 44.50  | 2+                     | M1+E2              | 0.84                        | 0.914                     | Weak line.<br>$\alpha(K)=0.670 \ 10; \ \alpha(L)=0.188 \ 3; \ \alpha(M)=0.0446 \ 7; \ \alpha(N+)=0.01183 \ 17$<br>$\alpha(N)=0.01039 \ 15; \ \alpha(O)=0.001391 \ 20; \ \alpha(P)=4.72\times10^{-5} \ 7$<br>$\alpha(K)\exp=0.67$                                                                                                                                                                                                                                                                                                                                             |
| 162.65 10                                        | 6.20                      | 407.47        | (0)-                 | 244.81 | 1-                     | [M1]               |                             | 0.922                     | α(K)=0.770 11; α(L)=0.1182 17; α(M)=0.0266 4; α(N+)=0.00727 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

S

|                                       |                           |                        |                      |        |                      | $^{170}\mathbf{Hf}\varepsilon$ | decay            | 1969Tr                    | 02 (continued)                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|---------------------------|------------------------|----------------------|--------|----------------------|--------------------------------|------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                           |                        |                      |        |                      |                                | $\gamma(^{170}]$ | Lu) (conti                | nued)                                                                                                                                                                                                                                                                                                                                                                           |
| $E_{\gamma}^{\dagger}$                | $I_{\gamma}^{\ddagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>             | $\delta^{@}$     | $\alpha^{\boldsymbol{b}}$ | Comments                                                                                                                                                                                                                                                                                                                                                                        |
|                                       |                           |                        |                      |        |                      |                                |                  |                           | $\alpha$ (N)=0.00628 9; $\alpha$ (O)=0.000931 14; $\alpha$ (P)=5.76×10 <sup>-5</sup> 9<br>$\alpha$ (K)exp=0.435; K:L12=270:41 (1969Tr02)<br>Mult., $\delta$ : $\alpha$ (L12)exp midway between E1 and E2,M1 theory; mult=M1+E2<br>from $\alpha$ (K)exp, but E2 component inconsistent with placement;<br>inconsistency attributable to interference from ce(N)(99.9 $\gamma$ ). |
| 164.71 10                             | 119.5                     | 164.71                 | 1-                   | 0.0    | 0+                   | El                             |                  | 0.0946                    | $\alpha(K)=0.0788 \ II; \ \alpha(L)=0.01232 \ I8; \ \alpha(M)=0.00276 \ 4; \ \alpha(N+)=0.000739 \ II \ \alpha(N)=0.000644 \ 9; \ \alpha(O)=9.05\times10^{-5} \ I3; \ \alpha(P)=4.55\times10^{-6} \ 7 \ \alpha(K)\exp=0.080 \ K:L1:L2:L3:M=950:100:20:22:33 \ (1969Tr02)$                                                                                                       |
| 168.0 <i>1</i>                        | 1.80                      | 212.49                 | 1-,2-                | 44.50  | 2+                   | E1                             |                  | 0.0898                    | $\alpha(K)=0.0748 \ II; \ \alpha(L)=0.01168 \ I7; \ \alpha(M)=0.00262 \ 4; \ \alpha(N+)=0.000701 \ I0 \ \alpha(N)=0.000611 \ 9; \ \alpha(O)=8.59\times10^{-5} \ I2; \ \alpha(P)=4.33\times10^{-6} \ 6 \ \alpha(K)=x_{P}\approx0.11$                                                                                                                                             |
| 169.0 <i>1</i>                        | 2.70                      | 283.86                 | (2) <sup>-</sup>     | 114.87 | (3)+                 | E1                             |                  | 0.0885                    | $\alpha(K) = 0.0737 \ 11; \ \alpha(L) = 0.01150 \ 17; \ \alpha(M) = 0.00258 \ 4; \ \alpha(N+) = 0.000690 \ 10 \ \alpha(N) = 0.000601 \ 9; \ \alpha(O) = 8.45 \times 10^{-5} \ 12; \ \alpha(P) = 4.27 \times 10^{-6} \ 6 \ \alpha(K) \exp \approx 0.074$                                                                                                                         |
| <sup>x</sup> 183.9 <sup>&amp;</sup> 1 | 0.14                      |                        |                      |        |                      |                                |                  |                           |                                                                                                                                                                                                                                                                                                                                                                                 |
| 185.4 1                               | 0.95                      | 283.86                 | $(2)^{-}$            | 98.49  | $1^{+}$              |                                |                  |                           |                                                                                                                                                                                                                                                                                                                                                                                 |
| 186.5 <i>1</i>                        | 0.30                      | 470.24                 | 1-                   | 283.86 | $(2)^{-}$            |                                |                  |                           |                                                                                                                                                                                                                                                                                                                                                                                 |
| 187.87 10                             | 0.40                      | 283.86                 | (2)-                 | 96.01  | (3)-                 | M1                             |                  | 0.616                     | $\alpha$ (K)=0.515 8; $\alpha$ (L)=0.0788 12; $\alpha$ (M)=0.01772 25; $\alpha$ (N+)=0.00485 7<br>$\alpha$ (N)=0.00419 6; $\alpha$ (O)=0.000621 9; $\alpha$ (P)=3.84×10 <sup>-5</sup> 6<br>$\alpha$ (K)exp=0.55                                                                                                                                                                 |
| <sup>x</sup> 189.3 <sup>&amp;</sup> 1 | 0.25                      |                        |                      |        |                      |                                |                  |                           |                                                                                                                                                                                                                                                                                                                                                                                 |
| 191.0 <i>1</i>                        | 0.30                      | 283.86                 | (2)-                 | 92.89  | (4)-                 |                                |                  |                           |                                                                                                                                                                                                                                                                                                                                                                                 |
| 198.48 10                             | 0.62                      | 198.37                 | 1+                   | 0.0    | 0+                   | MI                             |                  | 0.529                     | $\alpha(K)=0.442$ 7; $\alpha(L)=0.0676$ 10; $\alpha(M)=0.01520$ 22; $\alpha(N+)=0.00416$ 6<br>$\alpha(N)=0.00359$ 5; $\alpha(O)=0.000532$ 8; $\alpha(P)=3.30\times10^{-5}$ 5<br>$\alpha(K)\exp=0.60$                                                                                                                                                                            |
| 208.1 <i>1</i>                        | 12.20                     | 304.14                 | 0-,1-,2-             | 96.01  | (3)-                 | M1(+E2)                        | ≤0.8             | 0.42 5                    | $\alpha(K)=0.345; \alpha(L)=0.0623; \alpha(M)=0.01429; \alpha(N+)=0.0038320$<br>$\alpha(N)=0.0033319; \alpha(O)=0.00047612; \alpha(P)=2.5\times10^{-5}4$<br>$\alpha(K)\exp=0.393; K:L1:M=480:53:18(1969Tr02)$<br>$I_{\gamma}: other: 18.819 in 1970Ch17 for (208.1\gamma+209.3\gamma).$<br>$\delta: 0.3+5-3 from K/M: 0.74 from L1/M.$                                          |
| 209.3 1                               | 2.30                      | 407.47                 | (0) <sup>-</sup>     | 198.37 | 1+                   | (E1)                           |                  | 0.0509                    | $\alpha(K) = 0.0425 \ 6; \ \alpha(L) = 0.00651 \ 10; \ \alpha(M) = 0.001458 \ 21; \ \alpha(N+) = 0.000391 \ 6$<br>$\alpha(N) = 0.000340 \ 5; \ \alpha(O) = 4.83 \times 10^{-5} \ 7; \ \alpha(P) = 2.53 \times 10^{-6} \ 4$<br>$\alpha(K) \exp \approx 0.087$                                                                                                                    |
| <sup>x</sup> 218.3 <sup>&amp;</sup> 1 | 0.35                      |                        |                      |        |                      |                                |                  |                           |                                                                                                                                                                                                                                                                                                                                                                                 |
| 225.5 1                               | 3.90                      | 470.24                 | 1-                   | 244.81 | 1-                   | M1                             |                  | 0.372                     | $\alpha$ (K)=0.311 5; $\alpha$ (L)=0.0474 7; $\alpha$ (M)=0.01066 15; $\alpha$ (N+)=0.00291 4<br>$\alpha$ (N)=0.00252 4; $\alpha$ (O)=0.000373 6; $\alpha$ (P)=2.32×10 <sup>-5</sup> 4<br>$\alpha$ (K)exp=0.36<br>K:L12:M=140:30:8 (1969Tr02).<br>I <sub>Y</sub> : other: 7.1 7 in 1970Ch17.                                                                                    |
| 242.75 10                             | 0.36                      | 407.47                 | (0) <sup>-</sup>     | 164.71 | 1-                   | M1                             |                  | 0.304                     | Mult.: from $\alpha$ (K)exp.<br>$\alpha$ (K)=0.254 4; $\alpha$ (L)=0.0387 6; $\alpha$ (M)=0.00869 13; $\alpha$ (N+)=0.00238 4                                                                                                                                                                                                                                                   |

 $^{170}_{71}Lu_{99}$ -6

|                                                             |                           |                        |                       |                  |                             | 17                 | $^{70}$ Hf $\varepsilon$ d | lecay 1969Tr               | 02 (contin            | ued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------|---------------------------|------------------------|-----------------------|------------------|-----------------------------|--------------------|----------------------------|----------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |                           |                        |                       |                  |                             |                    |                            | $\gamma(^{170}Lu)$ (contin | nued)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $E_{\gamma}^{\dagger}$                                      | $I_{\gamma}^{\ddagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$  | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$        | Mult. <sup>#</sup> | $\delta^{@}$               | $\alpha^{\boldsymbol{b}}$  | $I_{(\gamma+ce)}^{a}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 257.8 1                                                     | 0.40                      | 470.24                 | 1-                    | 212.49           | 1-,2-                       | M1+E2              | ≈1.5                       | ≈0.1638                    |                       | $\begin{aligned} &\alpha(N) = 0.00205 \ 3; \ \alpha(O) = 0.000305 \ 5; \ \alpha(P) = 1.89 \times 10^{-5} \ 3 \\ &\alpha(K) \exp = 0.333 \\ &\alpha(K) \approx 0.1229; \ \alpha(L) \approx 0.0315; \ \alpha(M) \approx 0.00742; \ \alpha(N+) \approx 0.00197 \\ &\alpha(N) \approx 0.001729; \ \alpha(O) \approx 0.000233; \ \alpha(P) \approx 8.38 \times 10^{-6} \\ &\alpha(K) \exp = 0.13 \end{aligned}$                                                                                                        |
| $x^{2}62.0^{\&} 1$<br>$x^{2}69.0^{\&} 1$                    | 0.40<br>0.50              |                        |                       |                  |                             |                    |                            |                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <sup>x</sup> 278.8 <sup>cc</sup> 1<br>291.4 1               | 0.40<br>4.80              | 407.47                 | (0)-                  | 116.00           | (1) <sup>+</sup>            | E1                 |                            | 0.0222                     |                       | $\alpha(K)=0.0186 \ 3; \ \alpha(L)=0.00278 \ 4; \ \alpha(M)=0.000621 \ 9; \ \alpha(N+)=0.0001673 \ 24$                                                                                                                                                                                                                                                                                                                                                                                                            |
| <sup>x</sup> 304.2 1                                        | 1.37                      |                        |                       |                  |                             | M1                 |                            | 0.1647                     |                       | $\begin{aligned} &\alpha(N) = 0.0001453 \ 21; \ \alpha(O) = 2.09 \times 10^{-5} \ 3; \ \alpha(P) = 1.147 \times 10^{-6} \ 16 \\ &\alpha(K) \exp = 0.025 \\ &\alpha(K) = 0.1379 \ 20; \ \alpha(L) = 0.0209 \ 3; \ \alpha(M) = 0.00469 \ 7; \\ &\alpha(N+) = 0.001282 \ 18 \end{aligned}$                                                                                                                                                                                                                           |
| 308.9 <i>1</i>                                              | 9.4                       | 407.47                 | (0)-                  | 98.49            | 1+                          | E1                 |                            | 0.0192                     |                       | $\alpha(N)=0.001107 \ 16; \ \alpha(O)=0.0001643 \ 23; \ \alpha(P)=1.022\times10^{-5} \ 15 \ \alpha(K)\exp=0.153 \ (1969Tr02)$<br>$E_{\gamma}: \ fits \ 304.2 \ to \ g.s. \ transition, but mult not \ consistent. \ \alpha(K)=0.01614 \ 23; \ \alpha(L)=0.00240 \ 4; \ \alpha(M)=0.000536 \ 8; \ \alpha(N+)=0.0001447 \ 21 \ \alpha(N)=0.0001256 \ 18; \ \alpha(O)=1.81\times10^{-5} \ 3; \ \alpha(P)=1.001\times10^{-6} \ 14 \ \alpha(K)\exp=0.021 \ L_{\gamma}: \ there \ 12.4 \ 12 \ in \ 1070Ch \ 17 \ Angle$ |
| <sup>x</sup> 310.5 <sup>&amp;</sup> 1<br>315.4 1<br>349.0 1 | $0.43 \\ 0.49 \\ 4.90$    | 785.46<br>349.00       | $\frac{1^{+}}{1^{+}}$ | 470.24           | $1^{-}_{0^{+}}$             | M1                 |                            | 0.1140                     |                       | $\alpha(K) = 0.0955 \ 14$ : $\alpha(L) = 0.01440 \ 21$ : $\alpha(M) = 0.00323 \ 5$ :                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                           |                        |                       | 0.0              | Ũ                           |                    |                            | 011110                     |                       | $\alpha(N) = 0.000884 \ I3$<br>$\alpha(N) = 0.000764 \ I1; \ \alpha(O) = 0.0001134 \ I6; \ \alpha(P) = 7.06 \times 10^{-6} \ I0$<br>$\alpha(K) \exp = 0.129; \ K:L1 = 63:11 \ (1969 Tr02)$                                                                                                                                                                                                                                                                                                                        |
| 378.0 <i>1</i><br>425.7 <i>1</i>                            | 0.56<br>3.96              | 785.46<br>470.24       | 1+<br>1-              | 407.47<br>44.50  | $(0)^{-}$<br>2 <sup>+</sup> | E1                 |                            | 0.00904 13                 |                       | $\alpha = 0.00904 \ 13; \ \alpha(K) = 0.00761 \ 11; \ \alpha(L) = 0.001107 \ 16; \alpha(M) = 0.000247 \ 4; \ \alpha(N+) = 6.69 \times 10^{-5} \ 10 \alpha(N) = 5.80 \times 10^{-5} \ 9; \ \alpha(O) = 8.42 \times 10^{-6} \ 12; \ \alpha(P) = 4.84 \times 10^{-7} \ 7$                                                                                                                                                                                                                                            |
| 436.9 <sup>c</sup> 1                                        |                           | 436.90?                | (0+)                  | 0.0              | 0+                          | (E0)               |                            |                            | 0.04                  | $\alpha$ (K)exp=0.0101<br>K:L=3.3:0.6 (1969Tr02)<br>ce(K)/ce=0.86.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>x</sup> 462.0 1                                        | ≈0.20                     |                        |                       |                  |                             | M1                 |                            | 0.0545                     |                       | Mult.: ce is observed, but $\gamma$ is not (1969Tr02).<br>$\alpha(K)=0.04577; \alpha(L)=0.00683 10; \alpha(M)=0.001532 22;$<br>$\alpha(N+)=0.000419 6$<br>$\alpha(N)=0.000362 5; \alpha(O)=5.38\times10^{-5} 8; \alpha(P)=3.36\times10^{-6} 5$                                                                                                                                                                                                                                                                    |
| 470.2 1                                                     | 2.40                      | 470.24                 | 1-                    | 0.0              | 0+                          | E1                 |                            | 0.00723 11                 |                       | $\alpha$ (K)exp=0.11 (1969Tr02)<br>$\alpha$ =0.00723 <i>11</i> ; $\alpha$ (K)=0.00610 <i>9</i> ; $\alpha$ (L)=0.000881 <i>13</i> ;                                                                                                                                                                                                                                                                                                                                                                                |

From ENSDF

|                                                  |                           |                  |                      |                      |                        | <sup>170</sup> <b>H</b> | If $\varepsilon$ decay 1 | 969Tr02 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------|---------------------------|------------------|----------------------|----------------------|------------------------|-------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                           |                  |                      |                      |                        |                         | $\gamma(^{170}Lu)$       | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $E_{\gamma}^{\dagger}$                           | $I_{\gamma}^{\ddagger a}$ | $E_i$ (level)    | $\mathbf{J}_i^{\pi}$ | $E_f$                | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup>      | α <b>b</b>               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 481.3 <i>I</i>                                   | 16.7                      | 785.46           | 1+                   | 304.14 0             | -,1-,2-                | E1                      | 0.00686 10               | $\begin{aligned} &\alpha(M) = 0.000196 \ 3; \ \alpha(N+) = 5.32 \times 10^{-5} \ 8\\ &\alpha(N) = 4.61 \times 10^{-5} \ 7; \ \alpha(O) = 6.71 \times 10^{-6} \ 10; \ \alpha(P) = 3.90 \times 10^{-7} \ 6\\ &\alpha(K) \exp = 0.0092\\ &\alpha = 0.00686 \ 10; \ \alpha(K) = 0.00579 \ 9; \ \alpha(L) = 0.000835 \ 12; \ \alpha(M) = 0.000186 \ 3; \\ &\alpha(N+) = 5.05 \times 10^{-5} \ 7\\ &\alpha(N) = 4.37 \times 10^{-5} \ 7; \ \alpha(O) = 6.37 \times 10^{-6} \ 9; \ \alpha(P) = 3.71 \times 10^{-7} \ 6 \end{aligned}$ |
| <sup>x</sup> 494.8 1                             | 0.18                      |                  |                      |                      |                        | M1                      | 0.0456                   | $\alpha(\mathbf{K})\exp=0.0085$<br>Mult, $\alpha(\mathbf{K})\exp$ : for doubly-placed $\gamma$ .<br>$\alpha(\mathbf{K})=0.0383$ 6; $\alpha(\mathbf{L})=0.00571$ 8; $\alpha(\mathbf{M})=0.001279$ 18; $\alpha(\mathbf{N}+)=0.000350$ 5<br>$\alpha(\mathbf{N})=0.000302$ 5; $\alpha(\mathbf{O})=4.49\times10^{-5}$ 7; $\alpha(\mathbf{P})=2.81\times10^{-6}$ 4<br>$\alpha(\mathbf{K})\exp=0.050$                                                                                                                                 |
| 501.6 <i>1</i>                                   | 16.8                      | 785.46           | 1+                   | 283.86 (2            | 2)-                    | E1                      | 0.00627 9                | $\begin{aligned} \alpha(\mathbf{K}) \exp &= 0.0507 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 510.9 <sup>c</sup> 1                             | 0.74                      | 814.60           | (1)-                 | 304.14 0             | -,1-,2-                | M1                      | 0.0420                   | $I_{\gamma}$ : other: 13.6 <i>I</i> 4 in 19/0Ch17.<br>$\alpha$ (K)=0.0352 5; $\alpha$ (L)=0.00525 8; $\alpha$ (M)=0.001176 <i>I</i> 7; $\alpha$ (N+)=0.000322 5<br>$\alpha$ (N)=0.000278 4; $\alpha$ (O)=4.13×10 <sup>-5</sup> 6; $\alpha$ (P)=2.59×10 <sup>-6</sup> 4<br>$\alpha$ (K)exp=0.039                                                                                                                                                                                                                                |
| x533.5 <sup>&amp;</sup> 1<br>540.7 1             | 0.18<br>11.1              | 785.46           | 1+                   | 244.81 1             | _                      | E1                      | 0.00533 8                | $\alpha$ =0.00533 8; $\alpha$ (K)=0.00450 7; $\alpha$ (L)=0.000644 9; $\alpha$ (M)=0.0001435 21;<br>$\alpha$ (N+)=3.89×10 <sup>-5</sup> 6<br>$\alpha$ (N)=3.37×10 <sup>-5</sup> 5; $\alpha$ (O)=4.93×10 <sup>-6</sup> 7; $\alpha$ (P)=2.90×10 <sup>-7</sup> 4<br>$\alpha$ (K)exp=0.0066                                                                                                                                                                                                                                        |
| <sup>x</sup> 554.1 <sup>&amp;</sup> 1<br>572.9 1 | 0.28<br>66.0              | 785.46           | 1+                   | 212.49 1             | -,2-                   | E1                      | 0.00471 7                | $\alpha$ =0.00471 7; $\alpha$ (K)=0.00398 6; $\alpha$ (L)=0.000568 8; $\alpha$ (M)=0.0001265 18;<br>$\alpha$ (N+)=3.43×10 <sup>-5</sup> 5<br>$\alpha$ (N)=2.97×10 <sup>-5</sup> 5; $\alpha$ (O)=4.35×10 <sup>-6</sup> 6; $\alpha$ (P)=2.57×10 <sup>-7</sup> 4<br>$\alpha$ (K)exn=0.0041; K:L=27:37 (1969Tr02)                                                                                                                                                                                                                  |
| 587.1 <i>I</i>                                   | 1.20                      | 785.46           | 1+                   | 198.37 1             | +                      | M1                      | 0.0294                   | $I_{\gamma}$ : other: 61 6 in 1970Ch17.<br>$\alpha$ (K)=0.0247 4; $\alpha$ (L)=0.00366 6; $\alpha$ (M)=0.000819 12; $\alpha$ (N+)=0.000224 4<br>$\alpha$ (N)=0.000193 3; $\alpha$ (O)=2.88×10 <sup>-5</sup> 4; $\alpha$ (P)=1.81×10 <sup>-6</sup> 3<br>$\alpha$ (K)exp=0.032                                                                                                                                                                                                                                                   |
| $x_{602.2}^{\&}$ 1<br>$x_{605.2}^{\&}$ 1         | 0.40                      |                  |                      |                      |                        |                         |                          | Weak line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 608.8 <sup>&amp;c</sup> 1<br>615.5 1             | 0.75<br>1.70              | 785.46<br>785.46 | $1^+$<br>$1^+$       | 176.70 3<br>170.00 2 | +<br>+                 | M1                      | 0.0260                   | $\alpha$ (K)=0.0219 3; $\alpha$ (L)=0.00324 5; $\alpha$ (M)=0.000725 11; $\alpha$ (N+)=0.000198 3 $\alpha$ (N)=0.0001712 24; $\alpha$ (O)=2.55×10 <sup>-5</sup> 4; $\alpha$ (P)=1.599×10 <sup>-6</sup> 23                                                                                                                                                                                                                                                                                                                      |
| 620.7 <i>1</i>                                   | 81.7                      | 785.46           | 1+                   | 164.71 1             | _                      | E1                      | 0.00398 6                | $\alpha$ (K)exp=0.025<br>$\alpha$ =0.00398 6; $\alpha$ (K)=0.00337 5; $\alpha$ (L)=0.000478 7; $\alpha$ (M)=0.0001064 15;                                                                                                                                                                                                                                                                                                                                                                                                      |

 $\infty$ 

From ENSDF

 $^{170}_{71}Lu_{99}\text{-}8$ 

 $^{170}_{71}$ Lu<sub>99</sub>-8

|                                          |                           |               |                      |        |                      | 17                 | <sup>0</sup> <b>Hf</b> $\varepsilon$ <b>d</b> | ecay 1969T | r02 (continued)                                                                                                                                                                                                                                                 |  |  |  |
|------------------------------------------|---------------------------|---------------|----------------------|--------|----------------------|--------------------|-----------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\gamma$ <sup>(170</sup> Lu) (continued) |                           |               |                      |        |                      |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| $E_{\gamma}^{\dagger}$                   | $I_{\gamma}^{\ddagger a}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\delta^{@}$                                  | α <b>b</b> | Comments                                                                                                                                                                                                                                                        |  |  |  |
|                                          |                           |               |                      |        |                      |                    |                                               |            | $\alpha$ (N+)=2.89×10 <sup>-5</sup> 4<br>$\alpha$ (N)=2.50×10 <sup>-5</sup> 4; $\alpha$ (O)=3.66×10 <sup>-6</sup> 6; $\alpha$ (P)=2.19×10 <sup>-7</sup> 3<br>$\alpha$ (K)exp=0.0035; K:L:M=28.8:3.6:1.0 (1969Tr02)<br>$I_{\gamma}$ : other: 87 9 in 1970Ch17.   |  |  |  |
| <sup>x</sup> 632.7 <sup>&amp;</sup> 1    | 0.15                      |               |                      |        |                      |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 639.4 <mark>&amp;</mark> <i>c</i> 1      | 0.08                      | 923.20        | 2+                   | 283.86 | $(2)^{-}$            |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| <sup>x</sup> 654.5 <sup>&amp;</sup> 1    | 0.06                      |               |                      |        |                      |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| <sup>x</sup> 661 <sup>&amp;</sup>        | 0.10                      |               |                      |        |                      |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 669.4 <sup>&amp;c</sup> 1                | 0.75                      | 785.46        | $1^{+}$              | 116.00 | $(1)^{+}$            |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| <sup>x</sup> 674 <sup>&amp;</sup>        | 0.15                      |               |                      |        |                      |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 686.7 <sup>C</sup> 1                     | 1.17                      | 801.70        | (1 <sup>-</sup> )    | 114.87 | (3)+                 |                    |                                               |            | $\alpha$ (K)exp=0.0128<br>Mult.: from $\alpha$ (K)exp, mult=M1(+E2) or E1+M2 with $\delta$ =0.55; from decay scheme, $\Delta \pi$ =ves if mult(757 $\gamma$ )=E1.                                                                                               |  |  |  |
| <sup>x</sup> 692.8 <sup>&amp;</sup> 1    | 0.11                      |               |                      |        |                      |                    |                                               |            | ······································                                                                                                                                                                                                                          |  |  |  |
| <sup>x</sup> 711.4 <sup>&amp;</sup> 1    | 0.06                      |               |                      |        |                      |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| <sup>x</sup> 724 <sup>&amp;</sup>        | 0.03                      |               |                      |        |                      |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 740.8 1                                  | 0.83                      | 785.46        | 1+                   | 44.50  | 2+                   | E2(+M1)            | ≈1.5                                          | ≈0.01009   | $\alpha(K) \approx 0.00835; \ \alpha(L) \approx 0.001352; \ \alpha(M) \approx 0.000306; \ \alpha(N+) \approx 8.31 \times 10^{-5}$<br>$\alpha(N) \approx 7.20 \times 10^{-5}; \ \alpha(O) \approx 1.047 \times 10^{-5}; \ \alpha(P) \approx 5.92 \times 10^{-7}$ |  |  |  |
| 746.5 1                                  | 0.38                      | 923.20        | 2+                   | 176.70 | 3+                   | M1+E2              | ≈1.7                                          | ≈0.00947   | $\alpha(K) \exp = 0.0084$<br>$\alpha \approx 0.00947; \ \alpha(K) \approx 0.00782; \ \alpha(L) \approx 0.001279; \ \alpha(M) \approx 0.00029;$                                                                                                                  |  |  |  |
|                                          |                           |               |                      |        |                      |                    |                                               |            | $\alpha(N+)\approx7.86\times10^{-5}$                                                                                                                                                                                                                            |  |  |  |
|                                          |                           |               |                      |        |                      |                    |                                               |            | $\alpha(N) \approx 6.82 \times 10^{-5}$ ; $\alpha(O) \approx 9.88 \times 10^{-5}$ ; $\alpha(P) \approx 5.52 \times 10^{-7}$                                                                                                                                     |  |  |  |
| 757.1 <sup>c</sup> 1                     | 1.84                      | 801.70        | (1 <sup>-</sup> )    | 44.50  | 2+                   | E1                 |                                               | 0.00266 4  | $\alpha$ = 0.00266 4; $\alpha$ (K)=0.00226 4; $\alpha$ (L)=0.000317 5; $\alpha$ (M)=7.04×10 <sup>-5</sup> 10; $\alpha$ (N+)=1.91×10 <sup>-5</sup> 3                                                                                                             |  |  |  |
|                                          |                           |               |                      |        |                      |                    |                                               |            | $\alpha(N)=1.655\times10^{-5}$ 24; $\alpha(O)=2.44\times10^{-6}$ 4; $\alpha(P)=1.476\times10^{-7}$ 21                                                                                                                                                           |  |  |  |
| 770.2.1                                  | 0.56                      | 814 60        | $(1)^{-}$            | 44 50  | 2+                   |                    |                                               |            | $\alpha$ (K)exp $\approx 0.0027$                                                                                                                                                                                                                                |  |  |  |
| $785.5 \frac{\&C}{2}$                    | 0.20                      | 785.46        | 1+                   | 0.0    | $^{2}$ 0+            |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 801.7 1                                  | 1.20                      | 801.70        | (1 <sup>-</sup> )    | 0.0    | $0^{+}$              |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 808.1 <sup>&amp;c</sup> 1                | 0.07                      | 923.20        | 2+                   | 114.87 | $(3)^{+}$            |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 814.5 1                                  | 0.27                      | 814.60        | (1)-                 | 0.0    | 0+                   |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 878.7 <sup>&amp;c</sup> 1                | 0.13                      | 923.20        | $2^{+}$              | 44.50  | 2+                   |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |
| 923.1 <sup>&amp;c</sup> 1                | 0.05                      | 923.20        | $2^{+}$              | 0.0    | $0^{+}$              |                    |                                               |            |                                                                                                                                                                                                                                                                 |  |  |  |

<sup>†</sup> From table 1 of 1969Tr02 for transitions listed in that table; from tables 4 and 5 otherwise. For several transitions, slight energy differences ( $\leq 0.1$  keV) exist between data in these tables.  $\Delta E=0.1$  for photon data (1969Tr02); internal consistency of ce energies from different subshells is at least of that precision, so evaluator assigns  $\Delta E=0.1$  to all transitions, except 661, 674, 724, which 1969Tr02 quote to nearest keV only.

From ENSDF

 $\gamma(^{170}Lu)$  (continued)

- <sup>‡</sup> Relative photon intensities from 1969Tr02 normalized so I(165 $\gamma$ )=119.50; uncertainties not stated by authors. I $\gamma$  values (±10%) given by 1970Ch17 are in excellent agreement with those of 1969Tr02 for 10 of the 12 lines measured by 1970Ch17.
- <sup>#</sup> From available subshell ratios and/or  $\alpha(K)$ exp.
- <sup>@</sup> From conversion electron intensities; uncertainties unknown.
- & Assignment probable although only photons were observed (1969Tr02).
- <sup>*a*</sup> For absolute intensity per 100 decays, multiply by 0.22 6.
- <sup>b</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- <sup>c</sup> Placement of transition in the level scheme is uncertain.
- $x \gamma$  ray not placed in level scheme.

# <sup>170</sup>Hf ε decay 1969Tr02



<sup>170</sup><sub>71</sub>Lu<sub>99</sub>





# <sup>170</sup>Hf ε decay **1969Tr02**

# Decay Scheme (continued)





Legend



<sup>170</sup><sub>71</sub>Lu<sub>99</sub>





<sup>170</sup><sub>71</sub>Lu<sub>99</sub>