Adopted Levels, Gammas

				Literature Cutoff Date	
	Туре	Author			
	Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan	² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018
$Q(\beta^{-}) = -7060$ $\Delta Q(\beta^{-}) = \Delta S(n)$ $S(2n) = 20836$	SY; $S(n)=9340$ SY $=\Delta S(p)=90; \Delta Q(a)$ (syst) 104; $S(2p)=2$	$S(p) = -74 SY; Q(\alpha) = 6110 SY$ $P(\alpha) = 50 (2017Wa10).$ 2143 (syst) 94; Q(εp) = 7760 (syst)	2017Wa10 90 (2017Wa10)		

¹⁷⁰Ir Levels

For calculated α decay branching ratios see 2017Zh03, 2016Sa16.

Cross Reference (XREF) Flags

A	¹⁷⁴ Au	α	decay	(162.9	ms)

¹⁷⁴Au α decay (162.9 ms) ¹⁷⁴Au α decay (139 ms) ¹¹²Sn(⁶⁰Ni,pnγ) В

C

			C	Sh(ru,phy)
E(level) [‡]	J ^π †@	T _{1/2}	XREF	Comments
0.0#	(3 ⁻) [#]	0.87 s +18-12	A	$%\alpha$ =5.2 17; %ε+%β ⁺ =94.8 17 %α: from measurement of 5815α (2002Ro17). T _{1/2} : from 5815α(t) (2002Ro17). See also comment on T _{1/2} for 0+x level. E(level): the identification of this level As the ¹⁷⁰ Ir g.s. (2002Ro17) is based on the consistency of Eα=5815 from this level with Eα systematics for neighboring Ir isotopes (¹⁶⁷ Ir to ¹⁷⁴ Ir).
0+x [#]	(8 ⁺) [#]	811 ms <i>18</i>	BC	$%\alpha$ =38 5; %ε+%β ⁺ ≤62 5; %IT≤62 5 %α: weighted average of 36 10 (1996Pa01) and 39 6 (2004GoZZ). Note, however, that Eα reported by 1996Pa01 and 2004GoZZ for decay from this level differ from values from 2007Ha45. 1978Sc26 suggested %α≈100 based only on α-decay systematics. T _{1/2} : authors' recommended value from 2007Ha45, based on the following α(t) data: 802 ms +30-28 (6007α), 826 ms +30-28 (6053α), 830 ms +58-53 (5951α), 801 ms +63-57 (6121α). Others: 0.43 s 5 (2002Ro17, 6082α), 0.83 s 30 (1996Pa01, 6083α), 1.05 s 15 (1978Sc26, 6030α), 1.1 s 2 (1977Ca23 and 1978Ca11, 6010α), 0.8 s 2 (1977ScYH, 6045α); it is unclear whether these all belong to the 1 ⁷⁰ Ir high-spin isomer.
152.5+x 2	(9+)		BC	J^{π} : suggested by 2004GoZZ; this state is populated In α decay from $(9^+)^{174}$ Au by the strongest, least hindered branch and that branch is possibly unhindered. Consistent with (M1) 153 γ to tentative (8 ⁺) 0+x level.
190.56+x 24	$(7^{-}, 8^{-}, 9^{-})$		BC	J^{π} : (E1) 191 γ to (8 ⁺) 0+x.
370.19+x 10	(_)		С	J ^{π} : 132 γ from (9 ⁻) 502+x is probably not E1.
501.69+x ^{<i>a</i>} 23	(9 ⁻)		С	J^{π} : based on plot of aligned angular momentum for band containing this level compared with that for 11/2[505] band In ¹⁷¹ Ir and on the apparent blocking of the ($v i_{13/2}^2$) band crossing seen In ¹⁷¹ Ir, 2007Ha45 suggest a configuration with a deformation-aligned (π 11/2[505]) coupled to a rotationally-aligned (v 1/2[660]). J=9 is the closest integer to their predicted spin for such a coupling.
768.91+x ^{&} 24	(10^{-})		С	
$1041.52 + x^a 25$	(11 ⁻)		č	
1382.5+x ^{&} 3	(12 ⁻)		С	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁷⁰Ir Levels (continued)

E(level) [‡]	$J^{\pi \dagger @}$	XREF
1717.3+x ^{<i>a</i>} 4	(13 ⁻)	С
2087.4+x ^{&} 4	(14 ⁻)	С

[†] Values given without further comment are from 2007Ha45 In 112 Sn(60 Ni,pn γ) and are based on the authors' deduced band structure and total Routhian surface calculations.

^{\ddagger} From least-squares fit to measured E γ .

[#] Total routhian surface calculations (2007Ha45) indicate $\alpha \gamma$ -soft nucleus with $\beta_2 \approx 0.15$ and $\gamma \approx 15^{\circ}$ for the energetically most favored orbitals, namely, 11/2[505] (1h_{11/2}), 3/2[420] (2d_{3/2}) or 1/2[400] (3s_{1/2}) for the 77th proton coupled to 3/2[521], 5/2[512], 7/2[514] (1h_{9/2}) or 5/2[523] (2f_{7/2}) or 1/2[660] (1i_{13/2}) for the 93rd neutron. The isotopes ¹⁶⁹Ir and ¹⁷¹Ir exhibit 1/2⁺ ground states and 11/2⁻ isomers; the isotone ¹⁶⁹Os has a possible 5/2⁻ ground state based on its unhindered α decay to a probable 5/2[523] g.s. In ¹⁶⁵W. If the Gallagher-Moszkowski rule is valid At this deformation, coupling a 1/2⁺ or 11/2⁻ proton with a 5/2⁻ neutron would result In low-lying 3⁻ and 8⁺ levels, consistent with J^π proposed by 2004GoZZ. However, these J^π assignments must be considered highly tentative.

[@] Additional information 1.

[&] Band(A): Possible (π 11/2[505])+(ν 1/2[660]) α =0 band. Tentative configuration assignment supported by band's rotational properties (energy staggering, intraband B(M1)/B(E2) ratios, comparison of aligned momentum with that for 11/2[505] band In ¹⁷¹Ir, apparent blocking of (ν i²_{13/2}) band crossing present In ¹⁷¹Ir 11/2[505] band). Total Routhian surface (TRS) calculations indicate γ -soft triaxial shapes with $\beta_2 \approx 0.15$ and $\gamma \approx 15^{\circ}$ for low-lying yrast states In the energetically most favored configurations (2007Ha45).

^{*a*} Band(a): Possible (π 11/2[505])+(ν 1/2[660]) α =1 band. See comment on signature partner band.

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	α^{\ddagger}	Comments
152.5+x	(9+)	152.5 2	100	0+x	(8 ⁺)	(M1)	1.84	Mult.: based on strength of Ir K x ray relative to I(153 γ) In α - γ coin spectrum In ¹⁷⁴ Au α decay (811 ms) (2004GoZZ).
190.56+x	(7 ⁻ ,8 ⁻ ,9 ⁻)	190.7 <i>4</i>	100	0+x	(8 ⁺)	(E1)	0.0769 12	E _γ : weighted average of 190.3 4 from (⁶⁰ Ni,pnγ) and 190.2 5 from ¹⁷⁴ Au α decay (811 ms). Mult.: based on absence of Ir K x ray In α-γ coin spectrum In ¹⁷⁴ Au α decay (811 ms) (2004GoZZ).
370.19+x	(_)	218.4 2	82 9	152.5+x	(9 ⁺)			• • • • •
		370.1 [#] 1	≈100 [#]	0+x	(8^{+})			E_{γ} : for doublet.
501.69+x	(9 ⁻)	131.5 2	100	370.19+x	(_)	[M1,E2]	2.2 7	Mult.: not E1 from intensity balance At the 502+x level ($\alpha(\exp)$ >1.5 assuming intraband 267.3 γ is M1) In (⁶⁰ Ni,pn γ).
768.91+x	(10 ⁻)	267.3 1	100	501.69+x	(9 ⁻)	[M1]	0.385	
1041.52+x	(11^{-})	272.7 1	100 9	768.91+x	(10^{-})			
		539.5 2	24 8	501.69+x	(9 ⁻)			
1382.5+x	(12^{-})	340.9 2	100 14	1041.52+x	(11^{-})			
		613.6 8	42 14	768.91+x	(10^{-})			
1717.3+x	(13 ⁻)	335.0 2	≈100	1382.5+x	(12 ⁻)			E_{γ} : for doublet; placement of other component unknown.
		675.9 <i>3</i>	72 24	1041.52+x	(11-)			-

 $\gamma(^{170}\text{Ir})$

Adopted Levels, Gammas (continued)

$\gamma(^{170}\text{Ir})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
2087.4+x	(14-)	370.1 [#] 1 704.5 3	≈100 [#] 54 23	1717.3+x 1382.5+x	(13 ⁻) (12 ⁻)	E_{γ} : for doublet.

[†] From 112 Sn(60 Ni,pn γ), except As noted.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed with intensity suitably divided.

Adopted Levels, Gammas

Level Scheme

¹⁷⁰₇₇Ir₉₃

4

Adopted Levels, Gammas

¹⁷⁰₇₇Ir₉₃