¹⁷⁴Au α decay (162.9 ms) 2004GoZZ,1996Pa01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. M. Baglin ¹ , E. A. Mccutchan ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018

Parent: ¹⁷⁴Au: E=0.0+x; $J^{\pi}=(9^+)$; $T_{1/2}=162.9$ ms 16; $Q(\alpha)=6699$ 7; % α decay<100.0

¹⁷⁴Au-J^{π}: is unmeasured. However, for small deformation, the lowest-energy orbitals available to the 79th proton are probably 1/2[400] (s_{1/2}), 1/2[411] and 3/2[402] (d_{3/2}), and 11/2[505] (h_{11/2}); those available to the 95th neutron are 5/2[512] (h_{9/2}) and 7/2[514] (f_{7/2}). The close proximity of 1/2⁺ and 11/2⁻ orbitals results In 1/2⁺ and 11/2⁻ isomer pairs In the neighboring odd-A Au isotopes, and the isotones ¹⁷³Pt, ¹⁷¹Os, ¹⁶⁷W have (5/2⁻) (probably 5/2[523]) ground states. If ¹⁷⁴Au is near-spherical, its structure might resemble that of ¹⁶⁶Ir (and possibly ¹⁷⁰Au) where a (($\pi d_{3/2}$) \otimes ($\nu f_{7/2}$))2⁻ state is believed to account for the low-spin g.s., based on the Nordheim strong rule (1997Da07), and a ($\pi h_{11/2}$)($\nu f_{7/2}$) configuration leads via the Nordheim weak rule to a J^{π}=9⁺ isomeric state (1997Da07). However, if the deformation is large enough for the Gallagher-Moszkowski rule to apply, a 3⁻ and 9⁺ isomer doublet could result from coupling a 1/2[411] or 1/2[400] proton or a 11/2[505] proton with a neutron In the 5/2[523] (or 5/2[512]) orbital, consistent with J^{π} values suggested by 2004GoZZ and supported by HF<4 deduced here for low-spin ¹⁷⁴Au α decay to a possible (3⁻) ¹⁷⁰Ir g.s. The evaluator very tentatively adopts (3⁻) and (9⁺) for the ¹⁷⁴Au isomers.

¹⁷⁴Au-T_{1/2}: weighted average of 163 ms 2 (6618 α), 160 ms 5 (6548 α), 171 ms 7 (6471 α), 162 ms 4 (6433 α), all from 2004GoZZ. Others: 119 ms 26 (1984ScZQ for 6626 α); 171 ms 29 (1996Pa01, 6544 α). T_{1/2}=120 ms 20 (1983Sc24, 6530 α) and 123 ms 20 (1984ScZQ, 6546 α) are tentatively associated by the evaluator with a different ¹⁷⁴Au state.

¹⁷⁴Au-%α decay: α decay observed by 1983Sc24, 1996Pa01, 2002Ro17 and 2004GoZZ. Gross β decay theory predicts a partial β decay T_{1/2} of≈1 s (1973Ta30) for ¹⁷⁴Au, so %ε+β⁺≈16 is expected; thus, %α may be somewhat less than 100.

2004GoZZ: ¹⁷⁴Au source from ⁹²Mo(⁸⁴Sr,pn), E=390, 395 MeV; 98.27% ⁹²Mo target; fragment mass analyzer and double-sided Si strip detector (for recoils and decay α particles) surrounded by 4 Ge detectors and a low-energy photon spectrometer; recoil decay tagging technique; measured E α , I α , E γ , I γ , I(K x ray), recoil- α - γ coin, α (t), parent-daughter α correlations. Supersedes 2001KoZY.

2002Ro17: ¹⁷⁴Au produced by α decay of ¹⁷⁸Tl; Si strip detector; measured E α , parent-daughter α correlations, T_{1/2} for daughter.

1996Pa01: ¹⁷⁴Au produced in 309 MeV ⁷⁰Ge bombardment of ¹⁰⁶Cd; recoil mass separator with double-sided Si strip detector At focal plane (FWHM \leq 20 keV); measured E α , I α , α (t), parent-daughter α correlations. Other: 1984ScZQ,

The adopted decay scheme is based on the data of 2004GoZZ.

The interpretation of data from this decay is complicated by the similarity of $T_{1/2}$ for the two 174 Au isomers, the similarity of $T_{1/2}$ and one $E\alpha$ to that for 175 Au and the possibility of two α +ce sum peaks for one 174 Au isomer At almost the same energy As an α group from the other 174 Au isomer. α correlation information is of vital importance. The available data for both 174 Au isomers are summarized In the table below. it remains unclear why the 6471α and 6433α from 2004GoZZ are not reported by either 2002Ro17 or 1996Pa01 even though the latter studies report a 6544α correlated with the 170 Ir 6083α . Additional measurements appear to be necessary.

Summary of 174 Au α decay data (for **both** isomers):

$\mathbf{E}\alpha$	$I\alpha$	Half-1	ife		Reference(s)	Correlation(s)
6433 5	29 2	162 ms	4	Н	2004GoZZ	170 Ir(6088 $lpha$),191.2 γ
6471 5	32 3	171 ms	7	Н	2004GoZZ	170 Ir(6088 $lpha$),153.2 γ
6544 10) –	171 ms	29	Н	1996Pa01	170 Ir(6083 α)
6544	-			Н	2002Ro17	$^{1/0}$ Ir(6082 α)
6548# 1	.0 35 3	160 ms	5	Н	2004GoZZ	170 Ir(6088 α)
6530 20) –	120 ms	20	?	1983Sc24	
6546 10) –	123 ms	20	?	1984ScZ0	
6538	-	139 ms	3	L	2002Ro17	178 T1(6704 α)& 170 Tr(5817 α)
6547 5	-	-		L	2004GoZZ	170 Ir(5815 α)
6626 10) –	119 ms	26	?	1984ScZQ	-
6637 13		-		Η	1996Pa01	-
6618 15	<4	163 ms	2	Η	2004GoZZ	170 Ir(6088 $lpha$)

Identified by 2004GoZZ as sum peak from $6471\alpha(^{174}Au)-153ce(K)(^{170}Ir)$ coincidences.

L - Associated With Low-spin ¹⁷⁴Au Decay.

H - Associated With High-spin ¹⁷⁴Au Decay.

¹⁷⁰Ir Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0+x 87+x? 14	(8+)	E(level): from difference In E α to g.s. and possible E α to this level. Level not adopted because 2004GoZZ identify their 6548 α As a sum peak.
153.2+x 5 191.2+x 5	(9 ⁺) (7 ⁻ ,8 ⁻ ,9 ⁻)	

[†] Based on measured E γ , except as noted. E α energy differences from 2004GoZZ lead to E(level) values that are consistent with these.

[‡] From Adopted Levels.

 α radiations

Eα	E(level)	$\mathrm{I}\alpha^{\dagger \mathbf{@}}$	HF [‡]	Comments
6433 [#] 5	191.2+x	29.6 20	>4.9	E α : from 2004GoZZ. Correlated with 6088 α from ¹⁷⁰ Ir (2004GoZZ). coincident with 191.2 γ .
6471 [#] 5	153.2+x	68.5 <i>23</i>	>3.0	Eα: from 2004GoZZ. Iα: sum of I(6471α)=32 3 and I(6548 sum peak)=35 3 (2004GoZZ) equals 67 4. HF: if $%\alpha$ (¹⁷⁴ Au) is >83 then HF < 4 and this transition will be unhindered. Correlated with 6088α from ¹⁷⁰ Ir (2004GoZZ); coincident with 153.2γ.
6548 ^{&} 10	87+x?			E α : from 2004GoZZ. other: 6544 <i>10</i> (1996Pa01). Note, however, that the peak At this energy is identified by 2004GoZZ As a sum peak arising from 6471 α (¹⁷⁴ Au)-153ce(K)(¹⁷⁰ Ir) coin. The 6044 α from 1996Pa01 (correlated with 6083 α (¹⁷⁰ Ir)) may also include a sum contribution and/or the line from ¹⁷⁴ Au (139 ms); however, 1996Pa01 do not report the 6471 α with which the 153-keV transition's K conversion electrons could sum. Correlated with 6083 α from ¹⁷⁰ Ir (1996Pa01,2002Ro17, 2004GoZZ). Coincident with Ir K x ray (2004GoZZ, fig. 6.5c); the E=65.0 <i>5</i> line from 2001KoZY is presumably the Ir K x ray.
6629 10	0.0+x	<4		 Eα: weighted average of 6637 <i>13</i> (1996Pa01) and 6618 <i>15</i> (2004GoZZ; ΔE from text on p. 119). Other Eα: 6626 <i>10</i> (1984ScZQ). HF: if Iα=2 2, HF≥400 400. Correlated with 6088α from ¹⁷⁰Ir (2004GoZZ).

[†] Relative intensities from 2004GoZZ have been renormalized so $\Sigma I\alpha = 100\%$; the relative I α (6618)<4 from 2004GoZZ has been interpreted As I α =2 2. 1996Pa01 note that their 6544 α is stronger than their 6637 α ; however, it is unclear whether those two lines arise entirely from the same parent.

[‡] $r_0=1.5530\ 24$ (unweighted average of $r_0(^{170}\text{Os})=1.556\ 6$ and $r_0(^{170}\text{Pt})=1.548\ 12$ from 2002Ba93, $r_0(^{168}\text{Os})=1.558\ 8$ and $r_0(^{172}\text{Pt})=1.55\ 3$ from 1998Ak04). HF can be given only as a lower limit because $\%\alpha(^{174}\text{Au})$ is unknown. [#] This α line has been attributed to ^{174}Au only by 2004GoZZ and 2001KoZY. However, 1984ScZQ attribute to ^{175}Au both an

[#] This α line has been attributed to ¹⁷⁴Au only by 2004GoZZ and 2001KoZY. However, 1984ScZQ attribute to ¹⁷⁵Au both an $E\alpha$ =6435 *10* (T_{1/2}=220 ms 20) and an $E\alpha$ =6470, and these are In coincidence with 190.0 γ and 152.7 γ , respectively; it seems possible that these May arise, instead, from ¹⁷⁴Au decay.

[@] For absolute intensity per 100 decays, multiply by <1.0.

[&] Existence of this branch is questionable.

			¹⁷⁴ Au $α$ decay (162.9 ms) 2004GoZZ,1996Pa01 (continued)			
$\underline{\gamma(^{170}\mathrm{Ir})}$						
E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	$E_f J^2$	Mult.	α^{\ddagger}	Comments
153.2 5	153.2+x	(9+)	0.0+x (8	+) (M1)	1.81	$\alpha(K)=1.50 \ 3; \ \alpha(L)=0.245 \ 5; \ \alpha(M)=0.0564 \ 10; \ \alpha(N+)=0.0165 \ 3 \ \alpha(N)=0.01386 \ 24; \ \alpha(O)=0.00245 \ 5; \ \alpha(P)=0.000185 \ 4 \ Mult.: based on strength of Ir K x ray relative to I(153\gamma) In 6471\alpha-\gamma coin spectrum (2004GoZZ).$
191.2 5	191.2+x	(7 ⁻ ,8 ⁻ ,9 ⁻)	0.0+x (8	⁺) (E1)	0.0764 12	$\begin{aligned} &\alpha(K) = 0.0629 \ 10; \ \alpha(L) = 0.01046 \ 17; \ \alpha(M) = 0.00241 \ 4; \\ &\alpha(N+) = 0.000689 \ 11 \\ &\alpha(N) = 0.000584 \ 10; \ \alpha(O) = 9.92 \times 10^{-5} \ 16; \ \alpha(P) = 5.90 \times 10^{-6} \ 9 \\ &Mult.: based on absence of Ir K x ray In the 6433$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

[†] From 2004GoZZ.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁷⁴Au α decay (162.9 ms) 2004GoZZ,1996Pa01

Decay Scheme

¹⁷⁰₇₇Ir₉₃